CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 26

_id 2720
authors Magyar, Peter and Temkin, Aron
year 2000
title Developing an Algorithm for Topological Transformation
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 203-205
summary This research intends to test the architectural application of Jean Piaget’s clinical observations, described in the book: The Child’s Conception of Space (Piaget, 1956), according to which topology is an ordering discipline, active in the human psyche. Earlier attempts, based on the principles of graph-theory, were able to cover only a narrow aspect of spatial relations, i.e. connectivity, and were mostly a-perceptional, visually mute. The “Spaceprint” method, explained and illustrated in co-author’s book: Thought Palaces (Magyar, 1999), through dimensional reduction, investigates volumetric, 3D characteristics and relationships with planar 2D configurations. These configurations, however, represent dual values: they are simultaneously the formal descriptors of both finite matter and (fragments of) infinite space. The so- called “Particular Spaceprint”, as a tool of design development in building, object, or urban scales, with the help of digital technology, could express - again simultaneously - qualities of an idea-gram and the visual, even tactile aspects of material reality. With topological surface-transformations, the “General Spaceprints”, these abstract yet visually active spatial formulas can be obtained.
series SIGRADI
email
last changed 2016/03/10 09:55

_id 8171
authors Ataman, Osman
year 1999
title Facilitating Conceptual Change: Computers, Cognitive Processes and Architecture
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 275-279
summary Computers have gained universal acceptance as tools that designers use. However, computers are often not used to advance the design process but just to make drawings. Many architectural schools still focus on a production orientation which puts the highest value on information management, precise representations and drafting enhancements. Mostly, computer education is limited with button pushing and training manuals. It is the contention of the author that students in Design Studio courses can benefit greatly from computer based educational pedagogy designed to provide them with experiences they currently do not possess. In particular, little time in the computer courses (outside lectures) is spent applying concepts and features of digital tools in design studio environment. In architecture, computers cannot be simply defined as a presentation and production tools. As a cognitive tool, computers provide designers with intelligible and effective representational tools of thought and communication, changes the syntactic structure of design. Consequently, the conceptual structure of computers impacts the conceptual structure of the design project, fosters the analytical processes and facilitates conceptual changes. This paper describes the use of computers in a first year architectural design studio. It attempts to address the importance of developing a design process that is redefined by the use of computing, integrating concept and perception. Furthermore, it describes the theoretical foundations and the underlying cognitive processes that contribute designers' conceptual development.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 2570
authors Barrón, Alicia and Chiarelli, Julia
year 1999
title Problemática de las Modelizaciones (The Issue of Modeling)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 182-185
summary The modelization of an architectural fact, generated through a CAD program, doesn't have only the purpose of generating a virtual electronic, but a constructive scale model of geometric nature. It also implies, a conceptualization level and a posture in front of the pattern that makes thinking in other fields besides the formally constructive, such as: the descriptive and geometric patterns, the communicational and the symbolic pattern. We should understand the way the constructive thought is done the message of the model, either for the relationship with the environment and with the human scale, depends not only upon the author, but his elections will be intrinsically related with his cultural baggage, besides its geometric, graphical and technicians data. These databases condition the result of the model, for this reason we analyzed these relationships looking for a good handling of the cultural codes, to achieve a complete communication of the model. In these moments of the "global village", we should consider this problematic as a visceral topic of the architectural representation, to achieve an effective communication, among different cultures, of the models represented.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 875c
authors Bonta, Pedro
year 1999
title CAO - Centro Asistido Por Ordenador
doi https://doi.org/10.52842/conf.acadia.1999.012
source ACADIA Quarterly, vol. 18, no. 1, pp. 12-12
summary The formal education of future professionals requires training in four basic skills: abstraction, systemical thought, experimentation and collaboration. The capacity of abstraction allows to understand and manage realty in different ways in order to create opportunities to reinterpret and reorganize the information. The systemical thought promotes the distinction and the interpretation, teaching how they should be interpreted and how they can be refuted. They should learn how to analyze the reality from different points of view, under different conditions, which allows imagining new alternatives and possibilities. Through the experimentation we look for different possibilities and results and verify analogies and relevant differences, comparing with previous ideas. Another relevant aspect is the capacity of collaborating, sharing troubles and solutions, building new knowledge.
series ACADIA
email
last changed 2022/06/07 07:54

_id aef9
id aef9
authors Brown, A., Knight, M. and Berridge, P. (Eds.)
year 1999
title Architectural Computing from Turing to 2000 [Conference Proceedings]
doi https://doi.org/10.52842/conf.ecaade.1999
source eCAADe Conference Proceedings / ISBN 0-9523687-5-7 / Liverpool (UK) 15-17 September 1999, 773 p.
summary The core theme of this book is the idea of looking forward to where research and development in Computer Aided Architectural Design might be heading. The contention is that we can do so most effectively by using the developments that have taken place over the past three or four decades in Computing and Architectural Computing as our reference point; the past informing the future. The genesis of this theme is the fact that a new millennium is about to arrive. If we are ruthlessly objective the year 2000 holds no more significance than any other year; perhaps we should, instead, be preparing for the year 2048 (2k). In fact, whatever the justification, it is now timely to review where we stand in terms of the development of Architectural Computing. This book aims to do that. It is salutary to look back at what writers and researchers have said in the past about where they thought that the developments in computing were taking us. One of the common themes picked up in the sections of this book is the developments that have been spawned by the global linkup that the worldwide web offers us. In the past decade the scale and application of this new medium of communication has grown at a remarkable rate. There are few technological developments that have become so ubiquitous, so quickly. As a consequence there are particular sections in this book on Communication and the Virtual Design Studio which reflect the prominence of this new area, but examples of its application are scattered throughout the book. In 'Computer-Aided Architectural Design' (1977), Bill Mitchell did suggest that computer network accessibility from expensive centralised locations to affordable common, decentralised computing facilities would become more commonplace. But most pundits have been taken by surprise by just how powerful the explosive cocktail of networks, email and hypertext has proven to be. Each of the ingredients is interesting in its own right but together they have presented us with genuinely new ways of working. Perhaps, with foresight we can see what the next new explosive cocktail might be.
series eCAADe
email
more http://www.ecaade.org
last changed 2022/06/07 07:49

_id 8802
authors Burry, Mark, Dawson, Tony and Woodbury, Robert
year 1999
title Learning about Architecture with the Computer, and Learning about the Computer in Architecture
doi https://doi.org/10.52842/conf.ecaade.1999.374
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 374-382
summary Most students commencing their university studies in architecture must confront and master two new modes of thought. The first, widely known as reflection-in-action, is a continuous cycle of self-criticism and creation that produces both learning and improved work. The second, which we call here design making, is a process which considers building construction as an integral part of architectural designing. Beginning students in Australia tend to do neither very well; their largely analytic secondary education leaves the majority ill-prepared for these new forms of learning and working. Computers have both complicated and offered opportunities to improve this situation. An increasing number of entering students have significant computing skill, yet university architecture programs do little in developing such skill into sound and extensible knowledge. Computing offers new ways to engage both reflection-in-action and design making. The collaboration between two Schools in Australia described in detail here pools computer-based learning resources to provide a wider scope for the education in each institution, which we capture in the phrase: Learn to use computers in architecture (not use computers to learn architecture). The two shared learning resources are Form Making Games (Adelaide University), aimed at reflection-in-action and The Construction Primer (Deakin University and Victoria University of Wellington), aimed at design making. Through contributing to and customising the resources themselves, students learn how designing and computing relate. This paper outlines the collaborative project in detail and locates the initiative at a time when the computer seems to have become less self-consciously assimilated within the wider architectural program.
keywords Reflection-In-Action, Design Making, Customising Computers
series eCAADe
email
last changed 2022/06/07 07:54

_id ga9906
id ga9906
authors Caglioti, Giuseppe
year 1999
title Ambiguity in Art and Science
source International Conference on Generative Art
summary Ambiguity can be defined as the coexistence and/or coalescence of two incompatible aspects in the same reality. Ambiguity manifests itself * in pathologic processes occurring in matter, e.g. at the critical state of the solid ¬ ® liquid phase transformation. * during the process of measurement of quantum structures: a process formally very similar to the process of perception. * Systematically, in our mind, during the process of perception - especially during visual perception of paintings or acoustic perception of music.Therefore ambiguity is an intrinsic feature of the process of perception and an intriguing step in the way toward the formation of thought. Ambiguity is continuosly experienced in our mind: every act of perception culminates into the critical state of a dynamic instability of the interiorized image, where the incoherent heap of sensory stimuli merges into coherent visual or auditive thinking. In turn, since perception is essential for life, we should look at ambiguity not so much as to a fastidious travel companion, but rather as to a fixed course toward perception itself, scientific thought and aesthetic emotion: ambiguity is a permanent cultural value.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 6e36
authors Castañé, Dora
year 1999
title Documentation and Patrimony. The Digital Era: A Channel for Memory Recovery
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 451-457
summary The end of the millennium with its new digital technology is contributing important tools to the area of documentation and historical patrimony those of us who support the preservation of memories think that a very important way of personalizing and strengthening our identity is to provide to those who inhabit the city with heightened awareness towards the values of our past. The revitalization requires that the patrimony in itself be valued. At the same time, it necessitates the preparation of a great amount of information utilizing cataloguing, research databases, and other materials be accessible to all citizens. This piece of work shares the different digital data base experiences that are being developed in the CEDODAL foundation art and latinamerican architecture (center for documentation), which is under the direction of the architect Ramon Gutierrez, a research services organization, and diverse higher education institutions (universities). Four bases are introduced, each with different thought and criterion structures in the definition of fields as well as in their dynamic visualizations. Each of them possesses great quantities of digital images, blue prints, and texts. In three of those bases, the data is the output from teams of researchers in different topics through special arrangements with Santa Fe's provincial water), Fonart, and city government. At the same time, the CEDODAL catalogues its documentaries with great quantities of photographic information, blue prints, research passages, and a library.
series SIGRADI
email
last changed 2016/03/10 09:48

_id c229
authors Cavazos, María Estela Sánchez
year 2002
title Experiencia en Digitalización de Procesos de Diseño Arquitectónico Caso Taller de Modelación Espacial, Universidad Autónoma de Aguascalientes [Experience in Digitalization Processes of Architectural Design: Study Case of Space Modeling, Independent University of Aguascalientes ]
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 252-256
summary This project has been based in an experience that took time in the years 1999 and 2000 where a group of 13 students of the Architectonic Design Masters in the U.A.A. were submitted to a project that consisted in register their Architectonic Design Processing during a year with the main purpose of having the most complete material possible to be used as material for different research projects. At the end of the architectonic project the students scanned all the graphics and ordered them in the format that was established by the group using ACDSee32 as the program, which resulted very simple to manage and permitted to order the graphics and write comments to them as it was thought. The result obtained was 12 ordered texts by seven segments pefectly identifi ed and with easy manage for any investigation that you want to realice with them, in fact today exist two fi nished investigations that were realized with this information added to one formal investigation and some informal in process.
series SIGRADI
email
last changed 2016/03/10 09:48

_id 7ad1
authors Giordano, Rubén F. and Tosello, María Elena
year 1999
title Laberinto: Una Biblioteca para la Virtualidad. Reflexiones y Acontecimientos en el Cyberespacio (Labyrinth: A Library for Virtuality. Reflections and Events in Cyberspace)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 83-86
summary This project investigates in the limits of the word like only means of structuring of the thought, before the appearance of new paradigms: the multimedias and the ciber-space that have transformed so much the language written as the architectural one causing unpublished situations: 1.) The transformation of a concrete container to other virtual. 2.) The transformation of the design object, of one static material to another that is a process. 3.) The transformation in the traditional ways of thinking (reversible as the formal logic of the mathematics) to new imaginarys epistemologicals. // These non alone events have caused changes in the forms of to know and to communicate the reality but rather the same one suffers a dilation process. We present for their exploration, a road synthesized in some hypotheses that were elaborated with reason of the International Competition of ACADIA 1998: 1.) The new communication systems (cibercomunication) they generate a new territory that should be colonized. This territory this conformed by objects related by infinite bonds (hipertext). 2.) The topographical form is not lineal and sequential, this it is multidirectional and multiradial. The phenomenon of the blow-up and the dilation are the mechanisms with those that the new objects are generated. 3.) These related fields generate interstitial empty spaces where it appears the desire. The interstice like existential space.
series SIGRADI
email
last changed 2016/03/10 09:52

_id ga9928
id ga9928
authors Goulthorpe
year 1999
title Hyposurface: from Autoplastic to Alloplastic Space
source International Conference on Generative Art
summary By way of immediate qualification to an essay which attempts to orient current technical developments in relation to a series of dECOi projects, I would suggest that the greatest liberation offered by new technology in architecture is not its formal potential as much as the patterns of creativity and practice it engenders. For increasingly in the projects presented here dECOi operates as an extended network of technical expertise: Mark Burry and his research team at Deakin University in Australia as architects and parametric/ programmatic designers; Peter Wood in New Zealand as programmer; Alex Scott in London as mathematician; Chris Glasow in London as systems engineer; and the engineers (structural/services) of David Glover’s team at Ove Arup in London. This reflects how we’re working in a new technical environment - a new form of practice, in a sense - a loose and light network which deploys highly specialist technical skill to suit a particular project. By way of a second disclaimer, I would suggest that the rapid technological development we're witnessing, which we struggle to comprehend given the sheer pace of change that overwhelms us, is somehow of a different order than previous technological revolutions. For the shift from an industrial society to a society of mass communication, which is the essential transformation taking place in the present, seems to be a subliminal and almost inexpressive technological transition - is formless, in a sense - which begs the question of how it may be expressed in form. If one holds that architecture is somehow the crystallization of cultural change in concrete form, one suspects that in the present there is no simple physical equivalent for the burst of communication technologies that colour contemporary life. But I think that one might effectively raise a series of questions apropos technology by briefly looking at 3 or 4 of our current projects, and which suggest a range of possibilities fostered by new technology. By way of a third doubt, we might qualify in advance the apparent optimism of architects for CAD technology by thinking back to Thomas More and his island ‘Utopia’, which marks in some way the advent of Modern rationalism. This was, if not quite a technological utopia, certainly a metaphysical one, More’s vision typically deductive, prognostic, causal. But which by the time of Francis Bacon’s New Atlantis is a technological utopia availing itself of all the possibilities put at humanity’s disposal by the known machines of the time. There’s a sort of implicit sanction within these two accounts which lies in their nature as reality optimized by rational DESIGN as if the very ethos of design were sponsored by Modern rationalist thought and its utopian leanings. The faintly euphoric ‘technological’ discourse of architecture at present - a sort of Neue Bauhaus - then seems curiously misplaced historically given the 20th century’s general anti-, dis-, or counter-utopian discourse. But even this seems to have finally run its course, dissolving into the electronic heterotopia of the present with its diverse opportunities of irony and distortion (as it’s been said) as a liberating potential.1 This would seem to mark the dissolution of design ethos into non-causal process(ing), which begs the question of ‘design’ itself: who 'designs' anymore? Or rather, has 'design' not become uncoupled from its rational, deterministic, tradition? The utopianism that attatches to technological discourse in the present seems blind to the counter-finality of technology's own accomplishments - that transparency has, as it were, by its own more and more perfect fulfillment, failed by its own success. For what we seem to have inherited is not the warped utopia depicted in countless visions of a singular and tyrranical technology (such as that in Orwell's 1984), but a rich and diverse heterotopia which has opened the possibility of countless channels of local dialect competing directly with the channels of power. Undoubtedly such multiplicitous and global connectivity has sent creative thought in multiple directions…
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 3203
authors Jabi, Wassim
year 1999
title STUDIO@UB
doi https://doi.org/10.52842/conf.acadia.1999.x.g4q
source ACADIA Quarterly, vol. 18, no. 2, p. 1
summary Design can be thought of as a process of interpolation. In the face of incomplete and distorted conditions, the designer interjects solutions that interpolate and mediate the given situation. The Upper level Electronic Studio in the Spring term 1999 investigated the nature of interpolation and its relationship to process, space, and program. In particular, it investigated how virtual space can interpolate and augment physical space. The students also researched the multiplicity of meanings of interpolation such as: Insertion/interjection, estimation, linkage, mediation, transformation, and augmentation. The process of interpolation was then mapped into a real architectural problem: The re-design of Hayes and Crosby Halls as an integrated School of Architecture and Planning for the 21st century. Some students took advantage of the option to choose other sites and building programs.
series ACADIA
email
last changed 2022/06/07 07:49

_id 7471
authors Kram, Reed
year 1999
title The Digital Sketch Workshop: a Core Course in Design with Computation
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 251-264
summary This paper summarizes DIGITAL SKETCH, a workshop that took place over the course of two weeks in September 1998 at Designskolen Kolding, Denmark. DIGITAL SKETCH was an attempt to create a foundation course in design for the digital medium for students with strong visual design skills, but little to no computer experience. Teaching design on computers is commonly thought of as detailing the current version of the latest commercial software. As long as this is the case, design on computers will (quite rightfully) continue to get little respect from those designers using more traditional design methods. How can we find the "core" of this medium when faced with the constant onslaught of operating system upgrades and version 11.2 of software Y83? For DIGITAL SKETCH, we tried to demystify the process of controlling the computer. In this workshop we examined the meanings of the term "sketch" as it applies to the design process on the computer. Our hope was that by revealing some of the unique characteristics of the digital medium, we might develop new design processes in tune with this medium.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id dc5a
authors Luque, Manuel J.
year 1999
title Working with a CAAD's Spreadsheet
doi https://doi.org/10.52842/conf.ecaade.1999.217
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 217-222
summary This paper shows the content of a subject imparted at the ETSAB (UPC). It describes the use of CAD systems in tasks that could not even be thought before new technology arrival and traditional methods had to be used. CAD systems potential to simultaneously work with constitutive objects and relations between them is taken into advantage. The definite design is not only the juxtaposition of some but the tight relation linking them. This work proposes CAD systems to be used in architectural design projects as spreadsheets to perform arithmetic calculations. The process to obtain an architectural model has ended in a logic sequence of formal operations, which uses completely defined objects as data. Any element of the project, data or operation, can be changed and model updating is automatically performed obtaining the new result. Finally a concrete exercise developed along the course is shown like a practical example.
keywords Teaching, CAD, Architectural Design, Planning
series eCAADe
email
last changed 2022/06/07 07:51

_id ga9905
id ga9905
authors Maldonado, Gabriel
year 1999
title Generating digital music with DirectCsound & VMCI
source International Conference on Generative Art
summary This paper concerns two computer-music programs: DirectCsound, a real-time version of the well-known sound-synthesis language Csound, and VMCI, a GUI program that allow the user to control DirectCsound in real-time. DirectCsound allows a total live control of the synthesis process. The aim of DirectCsound project is to give the user a powerful and low-cost workstation in order to produce new sounds and new music interactively, and to make live performances with the computer. Try to imagine DirectCsound being a universal musical instrument. VMCI (Virtual Midi Control Interface) is a program which allows to send any kind of MIDI message by means of the mouse and the alpha-numeric keyboard. It has been thought to be used together with DirectCsound, but it can also be used to control any MIDI instrument. It provides several panels with virtual sliders, virtual joysticks and virtual-piano keyboard. The newer version of the program (VMCI Plus 2.0) allows the user to change more than one parameter at the same time by means of the new Hyper-Vectorial-Synthesis control. VMCI supports seven-bit data as well as higher-resolution fourteen-bit data, all supported by the newest versions of Csound.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id cf49
authors Martínez, Javier Alberto
year 1999
title Potencialidades del SIG 3D y los Modelos Urbanos Interactivos (The Potential of the SIG 3D and the Interactive Urban Models)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 225-229
summary We are facing a constant growth in 3D GIS, and its interaction with CAD, VR and CG, influence each other more than ever. In this context, 3D urban models can interactively assist in any step of a decision making process. Urban planners can benefit from 3D urban models in a way never thought before. PC technology , free 3D interactive viewers and VRML offer low cost implementations. Data coming from cadastral updates in Argentina are an invaluable source of digital data and building height attributes are included on that. In that way, tabular or attribute data can be linked to 3D graphic data. Geographic Information Systems can add to these 3D urban models all the benefits of attribute data plus its spatial analysis capabilities. Queries of any kind, and links to hypertext, planning documents can enhance the information provided by this "virtual world". Finally, regarding communication aspects, Interactive design and decision making can be reached in a much easier way as 3D is better than 2D. If we consider that 3D urban models can easily be browsed in VRML we have then the enormous potential of collaborative design through internet and intranet.
series SIGRADI
email
last changed 2016/03/10 09:55

_id 5278
authors Méndez, Ricardo and Pimentel, Diego
year 1999
title Ontología de la Red (Ontology of the Network)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 63-67
summary Internet was born as a new technologic support, difference from analogous supports that shaped century xx masses' culture. Fragmentation, multiplicity, multidirectionality structure form systems foundational essence. Metaphor generated by rational thought, produce a wrong speech in the collective imaginary. Network is a long way from industrial notion,' of motorway information, to concentration a diagram that warrants security in a speed detriment. Internet is not defined by speed and instantiating values. Security and compatibility in information translation are the values that determine its configuration. Networks system organization is based on a functioning's diagram that industrial philosophy rejected as thought alternative. The most powerful intercommunication network between computer does not answer to the postindustrial line dynamism. In fact, it's alike to the labyrinthine space where Teseo emerged victorious, defeating Minotauro.
series SIGRADI
email
last changed 2016/03/10 09:55

_id eb7a
authors Porada, Mikhael
year 1999
title Virtual Analogy and Architecture
doi https://doi.org/10.52842/conf.ecaade.1999.069
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 69-73
summary Our fashion of thought is dialogic in its way to use simultaneously logic- mathematics and analogical approaches (Morin, 1986). The analogy works as well at the level of the unconscious by the construction of an analogon that permits us to recognise a face between thousand of others, despite changes intervened in time; as consciously where by an effort of constructive analogy, we establish bridges between different events or domains giving to the design a new lighting that puts it on the way to a solution. For this reason visual approach acquires a great importance in the establishment of similitude in conception. Many testimonies of scientists, philosophers, artists confirm this observation about their creative work, while underlining the danger of no founded analogies. In current life, analogy brings a support of likeness to the daily conversations, and the possibility to advance in the dialogue by a chaining of analogies having for objective to strengthen the speech.
series eCAADe
email
last changed 2022/06/07 08:00

_id ee8a
authors Porrúa, Marina and Rueda, Marta
year 1999
title Innovación Didáctica. Digitalización de un ejercicio práctico cuya problemática central es la organización de la forma en el espacio bidimensional y la introducción al diseño textil (Didactic Innovation. Digitalization of a practical exercises whose Central Issue is the Organization of Form in Bidimensional Space and the Introduction to the Textile Design)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 285-288
summary The projectual disciplines must respond with some grade of originality to a approached problem. In order to products of design be creative must be implemented a creative process of design and also from the teaching. The essence of creativity are the variations over a subject. A pedagogic way for this, is the one to recognise, individualise and represent the problem attributes, building upon them an "exploration space", to analyse and create new combinatorial alternatives or restructuring of the problem. The digital media incorporation as a new proyectual environment approaches the interactivity not only of the combinatorial variables, but, also to the hypermedia's. Both the digital documents, as the creative process, have a "no linear" or a "net" structure, that allows the construction of a himself way, self-managemented into this structure. The interactivity makes possible to work, as the divergent thought does, in a "polydirectional" field, that stimulates the fluency, the flexibility and the originality. The new- media's, used as didactic tool, open to "action", allow the students to convert them in "co- author", together professors, about themself learning process. >From this educational conception and its potential enrichment with the hypermedia, we are designing a project of digitising of an exercise to our didactic proposal and its later application into the course with our students.
series SIGRADI
email
last changed 2016/03/10 09:57

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

For more results click below:

this is page 0show page 1HOMELOGIN (you are user _anon_483789 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002