CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 9 of 9

_id 7ccd
authors Augenbroe, Godfried and Eastman, Chuck
year 1999
title Computers in Building: Proceedings of the CAADfutures '99 Conference
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, 398 p.
summary This is the eight CAADfutures Conference. Each of these bi-annual conferences identifies the state of the art in computer application in architecture. Together, the series provides a good record of the evolving state of research in this area over the last fourteen years. Early conferences, for example, addressed project work, either for real construction or done in academic studios, that approached the teaching or use of CAD tools in innovative ways. By the early 1990s, such project-based examples of CAD use disappeared from the conferences, as this area was no longer considered a research contribution. Computer-based design has become a basic way of doing business. This conference is marked by a similar evolutionary change. More papers were submitted about Web- based applications than about any other area. Rather than having multiple sessions on Web-based applications and communications, we instead came to the conclusion that the Web now is an integral part of digital computing, as are CAD applications. Using the conference as a sample, Web-based projects have been integrated into most research areas. This does not mean that the application of the Web is not a research area, but rather that the Web itself is an integral tool in almost all areas of CAAD research.
series CAAD Futures
email
last changed 2006/11/07 07:22

_id ab77
authors Iki, K., Shimoda, S., Kumadaki, N. and Homma, R.
year 1999
title Development and Use of Intranet-Based CAFM System
doi https://doi.org/10.52842/conf.caadria.1999.383
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 383-392
summary In the past CAFM system study, we proposed a system for supporting data-processing and plan-drafting, on the assumption that it is to be used in different stages of Building Construction, Interior Spatial Planning and Maintenance. By the above system, we have developed a CAFM system using the DBMS (Data Base Management System), CAD (Computer Aided Design) and Spread Sheet as the analysis tools. Management system with FM-related data editing functions such as 'Input', 'Modification', 'Deleting', etc, are proposed. To promote the FM business smoothly, information should be shared among departments concerned, and informative administrative framework should be organized. This time, we propose a prototype of CAFM system on INTRANET which is developed for general users that permits browsing and downloading of system database.
series CAADRIA
last changed 2022/06/07 07:50

_id b57c
authors Kvan, Thomas
year 1999
title Designing Together Apart
source Open University, Milton Keynes
summary The design of computer tools to assist in work has often attempted to replicate manual methods. This replication has been proven to fail in a diversity of fields such as business management, Computer-Aided Design (CAD) and Computer- Supported Collaborative Work (CSCW). To avoid such a failure being repeated in the field of Computer-Supported Collaborative Design (CSCD), this thesis explores the postulation that CSCD does not have to be supported by tools which replicate the face-to-face design context to support distal architectural design. The thesis closely examines the prevailing position that collaborative design is a social and situated act which must therefore be supported by high bandwidth tools. This formulation of architectural collaboration is rejected in favour of the formulation of a collaborative expert act. This proposal is tested experimentally, the results of which are presented. Supporting expert behaviour requires different tools than the support of situated acts. Surveying research in computer-supported collaborative work (CSCW), the thesis identifies tools that support expert work. The results of the research is transferred to two contexts: teaching and practice. The applications in these two contexts illustrate how CSCD can be applied in a variety of bandwidth and technological conditions. The conclusion is that supporting collaborative design as an expert and knowledge-based act can be beneficially implemented in the teaching and practice of architecture.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 4a1a
authors Laird, J.E.
year 2001
title Using Computer Game to Develop Advanced AI
source Computer, 34 (7), July pp. 70-75
summary Although computer and video games have existed for fewer than 40 years, they are already serious business. Entertainment software, the entertainment industry's fastest growing segment, currently generates sales surpassing the film industry's gross revenues. Computer games have significantly affected personal computer sales, providing the initial application for CD-ROMs, driving advancements in graphics technology, and motivating the purchase of ever faster machines. Next-generation computer game consoles are extending this trend, with Sony and Toshiba spending $2 billion to develop the Playstation 2 and Microsoft planning to spend more than $500 million just to market its Xbox console [1]. These investments have paid off. In the past five years, the quality and complexity of computer games have advanced significantly. Computer graphics have shown the most noticeable improvement, with the number of polygons rendered in a scene increasing almost exponentially each year, significantly enhancing the games' realism. For example, the original Playstation, released in 1995, renders 300,000 polygons per second, while Sega's Dreamcast, released in 1999, renders 3 million polygons per second. The Playstation 2 sets the current standard, rendering 66 million polygons per second, while projections indicate the Xbox will render more than lOO million polygons per second. Thus, the images on today's $300 game consoles rival or surpass those available on the previous decade's $50,000 computers. The impact of these improvements is evident in the complexity and realism of the environments underlying today's games, from detailed indoor rooms and corridors to vast outdoor landscapes. These games populate the environments with both human and computer controlled characters, making them a rich laboratory for artificial intelligence research into developing intelligent and social autonomous agents. Indeed, computer games offer a fitting subject for serious academic study, undergraduate education, and graduate student and faculty research. Creating and efficiently rendering these environments touches on every topic in a computer science curriculum. The "Teaching Game Design " sidebar describes the benefits and challenges of developing computer game design courses, an increasingly popular field of study
series journal paper
last changed 2003/04/23 15:50

_id f8b5
authors Oswald, Daniel and Pittioni, Gernot
year 1999
title AVOCAAD Exercises Facility Management Training on the web A Facility Management Survey Relevance for the Architects Business
source AVOCAAD Second International Conference [AVOCAAD Conference Proceedings / ISBN 90-76101-02-07] Brussels (Belgium) 8-10 April 1999, pp. 81-87
summary Facilities Management (FM) can't be seen as a subject with a specific area of knowledge with exactly defined borders relative to other subjects. Analysing the economic aspects of FM leads to the realisation that building management is experiencing a process of increasing specialisation and professionalism. It is possible to define FM from a variety of different points of origin. One possible approach views FM as an integral solution for the administration of buildings, their commercial activities, and technical maintenance from an economic perspective, during the whole life of a building. FM covers all strategies in order to efficiently provide, adequately operate and adapt buildings, their contents and systems to changing organisational demands. The current practice of limited analysis of specific administrative aspects, e.g. maintenance, is replaced by consideration of all factors that affect costs. Since all costs can be directly traced to space, the perfect procedure requires that FM is practised during the *hole living-cycle, starting with the definition of the program of construction until the day of conversion or demolition. Through successful FM, the real estate can contribute decisively to the improvement of productivity and the quality of life.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 7a81
authors Pinet, Céline
year 1999
title ACADIA'S Browser: Crossing Centuries, Blurring Boundaries
doi https://doi.org/10.52842/conf.acadia.1999.024.4
source ACADIA Quarterly, vol. 18, no. 4, pp. 24-25
summary New years are inspiring; they are times for new beginnings. As we are now starting a new century, I am inspired… and it looks like I am not the only one: Two graduates from Columbia University have recently launched a web- business and people are taking notice.
series ACADIA
email
last changed 2022/06/07 08:00

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id cf6b
authors Smith, S.
year 1999
title Document Management: Solutions for AutoCAD Workgroups
source Cadalyst, vol 16, No.4, April, 42-50
summary The volume of documents handled by companies today is about twice what it was ten years ago. Electronic files, plus the sea of paper you wade through on a daily basis, reach Mt. Everest proportions for everyone in a company. Productivity suffers from this overload-often documents are overwritten or lost just because there are so many of them. Also, when companies downsize to become more efficient, they may lose key people who manage the ever-growing mountain of information. Business cycles are shorter, technology keeps changing, and all this is managed by a smaller staff.
series journal paper
last changed 2003/04/23 15:14

_id 1570
authors Sowizral, H.A. and Deering, M.F.
year 1999
title The Java 3D API and Virtual Reality
source IEEE Computer Graphics and Applications, May/June
summary Java 3D proves a natural choice for any Java programmer wanting to write an interactive 3D graphics program. A programmer constructs a scene graph containing graphic objects, lights, sounds, environmental effects objects, and behavior objects that handle interactions or modify other objects in the scene graph. The programmer then hands that scene graph to Java 3D for execution. Java 3D starts rendering objects and executing behaviors in the scene graph. Virtual reality applications go through an identical writing process. However, before a user can use such an application, Java 3D must additionally know about the user's physical characteristics (height, eye separation, and so forth) and physical environment (number of displays, their location, trackers, and so on). Not surprisingly, such information varies from installation to installation and from user to user. So Java 3D lets application developers separate their application's operation from the vagaries of the user's final display environment. The Java 3D application programmer's interface (API) provides a very flexible platform for building a broad range of graphics applications. Developers have already used Java 3D to build applications in a variety of domains including mechanical CAD, molecular visualization, scientific visualization, animation previews, geographic information systems, business graphics, 3D logos, and educational offerings. Virtual reality applications have included immersive workbench applications, headtracked shutter-glass-based desktop applications, and portals (a cave-like room with multiple back-projected walls).
series journal paper
last changed 2003/04/23 15:50

No more hits.

HOMELOGIN (you are user _anon_103059 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002