CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 626

_id 076e
authors Ennis, G. and Lindsay, M.
year 1999
title VRML Possibilities: The evolution of the Glasgow Model
source Proceedings of International Conference on Virtual Systems and MultiMedia. University of Abertay. Dundee
summary During the 1980's, ABACUS, a research unit at the University of Strathclyde developed an interest in the ability to model and manipulate large geometrical databases of urban topography. Initially, this interest lay solely in the ability to source, capture and store the relevant data. However, once constructed, these models proved genuinely useful to a wide range of users and there was soon a demand for more functionality relating to the manipulation not just of the graphics, but also the range of urban attributes. Although a number of improvements were implemented there were drawbacks to the wide adoption of the software produced. The problems were almost all due to deficiencies in the then current hardware and software system available to the professions, and although this strand of research continued to be pursued, most of the development had to be focused on research applications and deployment. However, the recent advent of the Virtual Reality Modelling Language (VRML) standards have rekindled interest in this field since this language enables many of the issues that have proved problematic in the past to be addressed and solved. The potential now exists to provide wide access to large scale urban models. This paper focuses on the application of VRML as applied to the 'Glasgow Model'.
series other
email
last changed 2003/04/23 15:50

_id 7be4
authors Ennis, G., Lindsay, M. and Grant, M.
year 1999
title VRML possibilities: The evolution of the Glasgow model
source Proceedings of International Conference on Virtual Systems and Multimedia - VSMM '99, Abertay University: Dundee
summary Contributed by Jose Ripper Kós (josekos@ufrj.br)
keywords 3D City modeling
series other
last changed 2001/06/04 20:27

_id 6476
authors Maver, T., Petric, J., Ennis, G. and Lindsay, M.
year 2000
title Visiting The Virtual City
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 135-139
summary In 1999, the city of Glasgow in Scotland, celebrated the honour of being the UK City of Architecture and Design. The same year saw the successful launch, on the Internet, of a fully interactive virtual experience of the city. This paper describes the evolution and functionality of vrglasgow over the last 10 years and anticipates its future development over the next 5 years. Currently the system comprises the VRML topography, the road network and the 3-D geometry of around 10,000 buildings within the city centre. The visitor to the virtual city to navigate and search under a range of headings for items of interest and experience some of Glasgow’s best architecture. Data from a number of information sources are interlinked and made accessible through VRML as well as through the conventional internet modes such as lists, tables and search engines. Consequently, the visitor can explore the city intuitively.
keywords 3D City modeling
series SIGRADI
email
last changed 2016/03/10 09:55

_id 53a4
authors Vélez Jahn, Gonzalo
year 1999
title The MUMOVIAR (Museum for Modeling Virtual Architecture) - A Proposal for a Research Theme (The Mumoviar (For Museum Virtual Modeling Architecture) - to for Proposal to Research Theme)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 379-383
summary One of the most interesting areas in the forefront of non-immersive virtual reality (VRML) applications to architecture is the one that concerns the design, construction and exploration of on-line multi-access worlds using the Internet-WWW. However, and despite the great proliferation of earlier single-access models built on VRML, attempts to collect, classify and provide accesibility that type of models has proved almost nil. On the other side, one of the architectural typologies that promises the greatest transformation potential in the virtual architecture area in cyberspace is the one that concerns virtual museums and galleries. This paper seeks to provide a bridge between the two aforementioned approaches by formulating a conceptual basis for the creation of a virtual, on-line, multi-access museum intended to house collections of VRML building models. Such models, initially shown at a conventional model scale, would be accessed by visitors through an interface intended to transport those visitors into the models’ environments, where changes in scale could provide navigation access to interior and exterior view of the building . Accordingly, the museum would act as a sort of "spaceport” toward different routes of exploration. This modelistic cascading seems to offer interesting possibilities as regards future virtual architecture applications.
series SIGRADI
email
last changed 2016/03/10 10:02

_id 1022
authors Jozen, T., Wang, L. and Sasada, T.
year 1999
title Sketch VRML - 3D Modeling of Conception
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 557-563
doi https://doi.org/10.52842/conf.ecaade.1999.557
summary When an idea hits upon architect's mind suddenly, that idea may be memorized on a piece of paper like as napkin of a restaurant, reverse face of pamphlet etc. For conceptual design, free-form drawing with pencil and paper can efficiently delineate architect's thinking. In environmental design such as urban developing, architects usually describe their initial conception on 2D sketch. Our aim is to construct the Sketch-VRML system mixing non-photo realistic free-form 2D sketch and usual 3D computer graphics for conceptual design applying it to environmental design. It is our principle that we can use CG lightly and naturally like 'croquis' with no special hardware needed but just pencil and paper. From free-form 2D sketch on paper, the Sketch-VRML system builds it up to 3D model 'as is' resembling free hand drawing and it can be revolved and extruded. 3DCG component already produced will be useful material for design making as well as sketches. Therefore, we would like to use these materials as conception making resource with database.
keywords Conception, Sketch, 3DCG, Database
series eCAADe
last changed 2022/06/07 07:52

_id a70b
authors Jung, Th., Do, E.Y.-L. and Gross, M.D.
year 1999
title Immersive Redlining and Annotation of 3D Design Models on the Web
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, pp. 81-98
summary The Web now enables people in different places to view three-dimensional models of buildings and places in a collaborative design discussion. Already design firms with offices around the world are exploiting this capability. In a typical application, design drawings and models are posted by one party for review by others, and a dialogue is carried out either synchronously using on line streamed video and audio, or asynchronously using email, chat room, and bulletin board software. However, most of these systems do not allow designers to embed annotations and proposed design changes in the threedimensional design model under discussion. We present a working prototype of a system that has these capabilities and describe the configuration of Web technologies we used to construct it.
keywords VRML, Immersive Environment, Virtual Annotation, Computer-aided Design, Building Models
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 9eb6
authors Peng C. and Blundell Jones, P.
year 1999
title Hypermedia Authoring and Contextual Modeling in Architecture and Urban Design: Collaborative Reconstructing Historical Sheffield
source Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake City 29-31 October 1999, pp. 114-124
doi https://doi.org/10.52842/conf.acadia.1999.114
summary Studies of historical architecture and urban contexts in preparation for contemporary design interventions are inherently rich in information, demanding versatile and efficient methods of documentation and retrieval. We report on a developing program to establish a hypermedia authoring approach to collaborative contextual modeling in architecture and urban design. The paper begins with a description of a large-scale urban history study project in which 95 students jointly built a physical model of the city center of Sheffield as it stood in 1900, at a scale of 1:500. Continuing work on the Sheffield urban study project, it appears to us desirable to adopt a digital approach to archiving the material and in making it both indexible and accessible via multiple routes. In our review of digital models of cities, some interesting yet unexplored issues were identified. Given the issues and tasks elicited, we investigated hypermedia authoring in HTML and VRML as a designer-centered modeling methodology. Conceptual clarity of the methodology was considered, intending that an individual or members of design groups with reasonable computing skills could learn to operate it quickly. The methodology shows that it is practicable to build a digital contextual databank by a group of architecture/urban designers rather than by specialized modeling teams. Contextual modeling with or without computers can be a research activity on its own. However, we intend to investigate further how hypermedia-based contextual models can be interrelated to design development and communication. We discuss three aspects that can be explored in a design education setting.
series ACADIA
email
last changed 2022/06/07 07:59

_id b34d
authors Russell, P., Kohler, N., Forgber, U., Koch, V. and Rügemer, J.
year 1999
title Interactive Representation of Architectural Design: The Virtual Design Studio as an Architectural Graphics Laboratory
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 459-465
doi https://doi.org/10.52842/conf.ecaade.1999.459
summary This paper introduces the Virtual Design Studio (VDS), an internet based design studio environment established by ifib. VDS transfers lessons learned through research projects in the field of Computer Supported Co-operative Work (CSCW) being carried out at ifib into design education. By training for interdisciplinary co-operation within the design process, the students will become better prepared for the flexibility and co-operability required in planning situations. Increasing the communication and co-operation in the planning process can be achieved through the implementation of IT based virtual workspaces. In the design studio setting, this is done through the use of available internet software and technologies. The methodology of the VDS is briefly described including specific assignments intended to focus student investigations into specific areas including the representation of their work using the world wide web. The pedagogical expectations are discussed and anecdotal evidence precedes an general evaluation of the teaching method. The authors postulate that one of the unintended by-products of the studio is the evolution of an effective use of interactivity in the presentation of design concepts, ideas and solutions. A handful of student work is presented to describe the different approaches taken in using the world wide web (WWW) to display project work. A description of the local evolution (VDS specific) of graphical methods and technologies is followed by a comparison with those used in traditional settings. Representation is discussed with focus on the ability of the WWW to replace, augment or corrupt other methods of presentation. The interactive nature of web based presentations induces alterations to the narration of architectural work and can enhance the spatial perception of design space. Space Perception can be enabled through geometrically true VRML representations, the inclusion of auditory sensations, the abstraction of representation through the use of advertising techniques as well as the introduction of non-linear narrative concepts. Examples used by students are shown. A critical assessment of these new representational methods and the place of current new media within the context of architectural representation is discussed.
keywords Virtual Design Studio, Architectural Graphics, Teaching
series eCAADe
email
last changed 2022/06/07 07:56

_id 6fa1
authors Wang, L., Jozen, T. and Sasada, T.
year 1999
title Construction of a Support System for Environmental Design
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 545-551
doi https://doi.org/10.52842/conf.ecaade.1999.545
summary The technique described here can be used to support the design process. To do this we constructed a system as follows: First, to obtain resources of design, a semi-structured database was constructed to be share among designers; Second, to collaborate in operations, an XML-based collaborative information system using a semi-structured database was defined; Thirdly, to re-compose the 3DCG model parts, a re-compose system which can compose scenes in a visual space, were constructed; and finally, to support architects at the conceptual stage, a sketch VRML system which can compose 3D sketches, was constructed.
keywords Environmental Design, Re-composition 3DCG, Database
series eCAADe
last changed 2022/06/07 07:58

_id 36d3
authors Af Klercker, Jonas
year 1999
title A CAVE-Interface in CAAD-Education?
source CAADRIA '99 [Proceedings of The Fourth Conference on Computer Aided Architectural Design Research in Asia / ISBN 7-5439-1233-3] Shanghai (China) 5-7 May 1999, pp. 313-323
doi https://doi.org/10.52842/conf.caadria.1999.313
summary The so called "CAVE-interface" is a very interesting and thrilling development for architects! It supports a better illusion of space by exposing almost a 270° view of a computer model than the 60° which can be viewed on an ordinary computer screen. At the Lund University we have got the possibility to experiment with a CAVE-installation, using it in research and the education of CAAD. The technique and three experiments are discribed. The possibilities are discussed and some problems and questions are put forward.
series CAADRIA
email
last changed 2022/06/07 07:54

_id 9aaf
authors Burrow, Andrew and Woodbury, Robert
year 1999
title Pi-Resolution in Design Space Exploration
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, pp. 291-308
summary In studying the phenomenon of design we use models to envision mechanisms by which computers might support design. In one such model we understand design as guided movement through a space of possibilities. Design space explorers embody this model as mixed-initiative environments in which designers engage in exploration via human computer interaction. Constraint resolution provides a formal framework for interaction in design space explorers. Rather than directly providing solutions to design problems, constraint resolution provides a mechanism for organizing construction. Therefore, we are less interested in the set of solutions to a constraint problem than the process by which intermediate steps are generated. Pi-resolution is one such mechanism applicable to design space explorers. It describes the solution, by recursive enumeration, of feature structure type constraints. During pi-resolution, satisfiers are constructed by the application of type constraints drawn from an inheritance hierarchy. This constructive process provides a strong model for design space exploration. The constraint solver does not do the work of the designer, but rather design efforts are situated in, and organized by, constraint resolution. Therefore, the efficiency of the recursive enumeration in finding solutions is not an issue, since non-determinism in the search is resolved by the human user as design space exploration.
keywords Design Space Explorers, Typed Feature Structures, Functional Decomposition, Mixed Initiative
series CAAD Futures
email
last changed 2006/11/07 07:22

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id b9d3
authors Galán, B., Argumedo, C. and Paganini, A.
year 1999
title Possibilities of the Computer for the Simulation of the Designer's Constructive Strategies
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 74-78
summary The dynamic analysis (prospective), of products and systems, it is a methodological resource of the design that allows synthetically, and with great economy of investigation resources and time, to put in evidence the tendencies in the evolution of the object. Finally, the design strategies are defined as postures in front of these tendencies of evolution of the significant variables in the cycle of the product. Having as theoretical context the theory of systems,we explored the dynamic analysis of products and systems, taking their evolution along a temporary series that embraces a complete cycle, from the birth of the object until their maturation in the period of saturation of the market. Starting from the analysis of the evolution of the diverse subsystems, and the conflicts among the world of the necessities, (as pressure exercised from the context), and the technical agreement, it shows the evolutionary dynamics,the underlying conflicts to the logic of the system for each product. They are revealed to the design like a cultural operation that should keep in mind the processes of transformation of the mental representations of the object whose evolution should respect certain rules for its as, clearly such as the well-known maya threshold, (most advanced, yet accepted).
series SIGRADI
email
last changed 2016/03/10 09:52

_id a25e
authors Loy, Hollis A.
year 1999
title Foundation for a Thorough CAAD Education
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 301-308
doi https://doi.org/10.52842/conf.ecaade.1999.301
summary The birth and development of computing is considered by most as one of the greatest technological achievements of the twentieth century. Since the integration of computers in the built environment, over two decades ago, computing methods developed into efficient designing and calculating tools. In contrast, accelerating advancements in computing technology have created generation gaps amongst architects. There are inexperienced, novice, intermediate and advanced computer-capable architects. If each group was asked to define CAAD, some would still describe it as a computer program for technical draughting. Others may define CAAD (Computer Aided Architectural Design) as a vast array of digital media in CAD, multimedia and DTP, assisting architects in compiling visual presentations. Currently, most architectural schools are capable of instructing most, if not all, facets of CAAD (2D & 3D CAD, model rendering, photo montage, brochure layouts, etc.). However, this knowledge is accumulated at random throughout the course of study. "Computer Graphics for Architects" is the latest educational development in Europe bridging generation gaps with senior architects and serving as an introductory CAAD seminar to beginning architecture students. This book and lecture presents a gallery of recent architectural CAD, multimedia, and DTP presentations practiced in Europe´s second largest architectural firm. The terminology is user-friendly and its content concentrates on responding to the most often posed questions by CAAD beginners relating to: (1) Terminology (2) Appearance (3) Time Consumption (4) Cost Techniques introduced are independent of any platform. The goal is to summarize quickly and effectively the countless possibilities of presentations applicable in architecture practice. "Computer Graphics for Architects" provides a direction for future presentations and motivates students to excel in CAAD.
series eCAADe
email
last changed 2022/06/07 07:59

_id de8c
authors Martens, Bob
year 1999
title MAKING LIGHT TANGIBLE: SIMULATION OF LIGHT DESIGN WITHIN ARCHITECTURAL EDUCATION
source Full-scale Modeling and the Simulation of Light [Proceedings of the 7th European Full-scale Modeling Association Conference / ISBN 3-85437-167-5] Florence (Italy) 18-20 February 1999, pp. 1-6
summary In times where computer-assisted representations dominate the “market” of visual simulation, the major strongholds of simulation in true size in conveying (artificial) light configurations have been observed. Though light cannot be “touched” due to its material absence the human eye reacts extremely sensitively to differing constellations. In matters of seconds differences are perceived and classified. Opening up a rift between the various simulation techniques, however, would not prove wise. The normal procedure still consists of trial positioning of lighting objects on site (i.e.: 1:1 simulation at building site). Regarding the effort this causes attempts as to gaining similar results by means of (partial) computer representations are worth considering. The degree of abstraction, however, might be too significant to make for conclusive decisions. In other words: Can the gap between imagination and translation thereof into reality be bridged? This contribution deals with the experimental implementation of artificial light in the full-scale lab and its possibilities regarding the 1:1 simulation at the Vienna University of Technology, with special attention to the didactic aspects related thereto.
keywords Lighting Design, Full-scale Modeling, Architectural Education, Simulation Dome, Visual Simulation, Model Simulation, Real Environments
series other
type normal paper
email
last changed 2004/05/04 11:28

_id 94b4
authors Matalasov, M. and Lapshina, Je.
year 1999
title Modelling (Simulation) and Reality
source Simulation of Architectural Space - Color and Light, Methods and Effects [Proceedings of the 4rd European Architectural Endoscopy Association Conference / ISBN 3-86005-267-5] Dresden (Germany), 29 September - 1 October 1999, pp. 32-35
summary In a terms of studying and practical design a sufficient experience of analytic work of our lab shows, that the view of suggesting scheme on the same kind of process development is accompanied by sadden mistakes or conscious inaccuracies.Traditional conventions of architectural models same times with no paying attention to scale and size may drive to cause of distortion from the points of view to them. Power and possibilities of modern CAD initiates same sort of temptations and errors. For our point of view, solving the above problems is having same restrictions, one of which, may be – providing a visual coincidence of the videoframes of building site and it’s model done whether by small scale modelling or CAD. According to our practice a different methods of superimposing of real and designing spaces are shown in this article.
series EAEA
more http://info.tuwien.ac.at/eaea
last changed 2005/09/09 10:43

_id ddss2004_d-49
id ddss2004_d-49
authors Polidori, M. and R. Krafta
year 2004
title Environment – Urban Interface within Urban Growth
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Developments in Design & Decision Support Systems in Architecture and Urban Planning, Eindhoven: Eindhoven University of Technology, ISBN 90-6814-155-4, p. 49-62
summary This work presents the synthesis of a model of urban growth dedicated to accomplish simulations of urban spatial dynamics, based on integrated urban and environmental factors and promoting simultaneity among external and internal growth. The city and surrounding environment are captured and modeled in computational ambient, by application of the centrality / potential model (Krafta, 1994 and 1999), with support of graph theory, cellular automata, GIS and geocomputation. The model assumes the city as a field of opportunities for obtaining income, mediated by the space, which is composed of urban and environmental attributes, that work as attractors or as resistances for the urban growth. The space configuration and the distribution of those attributes generate tensions that differentiate qualitatively and quantitatively the space, through the centrality measure (built with the support of graphs techniques), coming to provoke growth in places with larger potential of development (built with the help of techniques of CA – cellular automata). Growths above environmental thresholds are considered problems, generated and overcome in the same process of production of the urban space. Iterations of that process offer a dynamic behaviour to the model, allowing to observe the growth process along the time. The model presents several possibilities: a) urban - natural environment integration; b) internal and external growth integration; c) variety in the scale; d) GIS integration and geocomputation; e) user interface; f) calibration; g) theoretical possibilities; and h) practical possibilities.
keywords Environment, Urban Growth, Urban Morphology, Simulation
series DDSS
last changed 2004/07/03 22:13

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 4511
authors Ratti, Carlo and Richens, Paul
year 1999
title Urban Texture Analysis with Image Processing Techniques
source Proceedings of the Eighth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-8536-5] Atlanta, 7-8 June 1999, pp. 49-64
summary A new paradigm for investigating the environmental consequences of urban texture is proposed. Using raster-based models and software algorithms derived from image processing, efficient methods of measuring geometric parameters and predicting radiation exchange are developed. The possibilities of generating synthetic urban textures, and integrating cellular automata, are explored. Results suggest the possibility of a raster-based urban model to inform planning and design.
keywords Urban Texture, Image Processing, Urban Environmental Analysis, Urban Morphology, Cellular Automata
series CAAD Futures
email
more http://www.arct.cam.ac.uk/research/pubs/
last changed 2006/11/07 07:22

_id 3d23
authors Sellgren, Ulf
year 1999
title Simulation-driven Design
source KTH Stockholm
summary Efficiency and innovative problem solving are contradictory requirements for product development (PD), and both requirements must be satisfied in companies that strive to remain or to become competitive. Efficiency is strongly related to ”doing things right”, whereas innovative problem solving and creativity is focused on ”doing the right things”. Engineering design, which is a sub-process within PD, can be viewed as problem solving or a decision-making process. New technologies in computer science and new software tools open the way to new approaches for the solution of mechanical problems. Product data management (PDM) technology and tools can enable concurrent engineering (CE) by managing the formal product data, the relations between the individual data objects, and their relation to the PD process. Many engineering activities deal with the relation between behavior and shape. Modern CAD systems are highly productive tools for concept embodiment and detailing. The finite element (FE) method is a general tool used to study the physical behavior of objects with arbitrary shapes. Since a modern CAD technology enables design modification and change, it can support the innovative dimension of engineering as well as the verification of physical properties and behavior. Concepts and detailed solutions have traditionally been evaluated and verified with physical testing. Numerical modeling and simulation is in many cases a far more time efficient method than testing to verify the properties of an artifact. Numerical modeling can also support the innovative dimension of problem solving by enabling parameter studies and observations of real and synthetic behavior. Simulation-driven design is defined as a design process where decisions related to the behavior and performance of the artifact are significantly supported by computer-based product modeling and simulation. A framework for product modeling, that is based on a modern CAD system with fully integrated FE modeling and simulation functionality provides the engineer with tools capable of supporting a number of engineering steps in all life-cycle phases of a product. Such a conceptual framework, that is based on a moderately coupled approach to integrate commercial PDM, CAD, and FE software, is presented. An object model and a supporting modular modeling methodology are also presented. Two industrial cases are used to illustrate the possibilities and some of the opportunities given by simulation-driven design with the presented methodology and framework.
keywords CAE; FE Method; Metamodel; Object Model; PDM; Physical Behavior, System
series thesis:PhD
email
last changed 2003/02/12 22:37

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_538268 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002