CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 5 of 5

_id 326c
authors Hirschberg, U., Gramazio, F., H¾ger, K., Liaropoulos Legendre, G., Milano, M. and Stöger, B.
year 2000
title EventSpaces. A Multi-Author Game And Design Environment
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 65-72
doi https://doi.org/10.52842/conf.ecaade.2000.065
summary EventSpaces is a web-based collaborative teaching environment we developed for our elective CAAD course. Its goal is to let the students collectively design a prototypical application - the EventSpaces.Game. The work students do to produce this game and the process of how they interact is actually a game in its own right. It is a process that is enabled by the EventSpaces.System, which combines work, learning, competition and play in a shared virtual environment. The EventSpaces.System allows students to criticize, evaluate, and rate each otherÕs contributions, thereby distributing the authorship credits of the game. The content of the game is therefore created in a collaborative as well as competitive manner. In the EventSpaces.System, the students form a community that shares a common interest in the development of the EventSpaces.Game. At the same time they are competing to secure as much credit as possible for themselves. This playful incentive in turn helps to improve the overall quality of the EventSpaces.Game, which is in the interest of all authors. This whole, rather intricate functionality, which also includes a messaging system for all EventSpaces activities, is achieved by means of a database driven online working environment that manages and displays all works produced. It preserves and showcases each authorÕs contributions in relation to the whole and allows for the emergence of coherence from the multiplicity of solutions. This Paper first presents the motivation for the project and gives a short technical summary of how the project was implemented. Then it describes the nature of the exercises and discusses possible implications that this approach to collaboration and teaching might have.
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:50

_id 5477
authors Donath, D., Kruijff, E., Regenbrecht, H., Hirschberg, U., Johnson, B., Kolarevic, B. and Wojtowicz, J.
year 1999
title Virtual Design Studio 1998 - A Place2Wait
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 453-458
doi https://doi.org/10.52842/conf.ecaade.1999.453
summary This article reports on the recent, geographically and temporally distributed, intercollegiate Virtual Design Studio based on the 1998 implementation Phase(x) environment. Students participating in this workshop had to create a place to wait in the form of a folly. This design task was cut in five logical parts, called phases. Every phase had to be finished within a specific timeframe (one day), after which the results would be stored in a common data repository, an online MSQL database environment which holds besides the presentations, consisting of text, 3D models and rendered images, basic project information like the descriptions of the phases and design process visualization tools. This approach to collaborative work is better known as memetic engineering and has successfully been used in several educational programs and past Virtual Design Studios. During the workshop, students made use of a variety of tools, including modeling tools (specifically Sculptor), video-conferencing software and rendering programs. The project distinguishes itself from previous Virtual Design Studios in leaving the design task more open, thereby focusing on the design process itself. From this perspective, this paper represents both a continuation of existing reports about previous Virtual Design Studios and a specific extension by the offered focus. Specific attention will be given at how the different collaborating parties dealt with the data flow and modification, the crux within a successful effort to cooperate on a common design task.
keywords Collaborative design, Design Process, New Media Usage, Global Networks
series eCAADe
email
last changed 2022/06/07 07:55

_id 217b
authors Kolarevic, B. Schmitt, G., Hirschberg, U., Kurmann, D. and Johnson, Brian
year 2000
title An experiment in design collaboration
source Automation in Construction 9 (1) (2000) pp. 73-81
summary Computer supported communication and collaboration among partners in the building design and construction process are no longer mere possibilities, but, given the will and know-how of the participants, a reality. Team members could work on a building design at any place, simultaneously together (synchronously) or separately (asynchronously), while the latest state of the design would always be available in a shared database. But to be successful, this emerging type of cooperation often requires new design and communication methods. This paper documents an experimental approach to design collaboration, tested in an intensive, one-week long Virtual Design Studio exercise involving three academic institutions. It briefly describes the structure and goals of the studio exercise, the methodologies applied, the resulting process of collaboration, and the lessons learned.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ecaade2023_205
id ecaade2023_205
authors Meeran, Ahmed and Joyce, Sam
year 2023
title Rethinking Airport Spatial Analysis and Design: A GAN based data driven approach using latent space exploration on aerial imagery for adaptive airport planning
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 501–510
doi https://doi.org/10.52842/conf.ecaade.2023.2.501
summary Airports require long term planning, balancing estimations of future demand against available airfield land and site constraints. This is becoming more critical with climate change and the transition to sustainable aviation fuelling infrastructure. This paper demonstrates a novel procedure using Satellite Imagery and Generative Learning to aid in the comparative analysis and early-stage airfield design. Our workflow uses a GAN trained on 2000 images of airports transforming them into a high-dimensional latent space capturing the typologies’ large-scale features. Using a process of projection and dimensional-reduction methods we can locate real-world airport images in the generative latent space and vice-versa. With this capability we can perform comparative “neighbour” analysis at scale based on spatial similarity of features like airfield configuration, and surrounding context. Using this low-dimensional 3D ‘airport designs space’ with meaningful markers provided by existing airports allows for ‘what if’ modelling, such as visualizing an airport on a site without one, modifying an existing airport towards another target airport, or exploring changes in terrain, such as due to climate change or urban development. We present this method a new way to undertake case study, site identification and analysis, as well as undertake speculative design powered by typology informed ML generation, which can be applied to any typologies which could use aerial images to categorize them.
keywords Airport Development, Machine Learning, GAN, High Dimensional Analysis, Parametric Space Exploration, tSNE, Latent Space Exploration, Data Driven Planning
series eCAADe
email
last changed 2023/12/10 10:49

_id dba1
authors Hirschberg, Urs and Wenz, Florian
year 2000
title Phase(x) - memetic engineering for architecture
source Automation in Construction 9 (4) (2000) pp. 387-392
summary Phase(x) was a successful teaching experiment we made in our entry level CAAD course in the Wintersemester 1996/1997. The course was entirely organized by means of a central database that managed all the students' works through different learning phases. This set-up allowed that the results of one phase and one author be taken as the starting point for the work in the next phase by a different author. As students could choose which model they wanted to work with, the whole of Phase(x) could be viewed as an organism where, as in a genetic system, only the "fittest" works survived. While some discussion of the technical set-up is necessary as a background, the main topics addressed in this paper will be the structuring in phases of the course, the experiences we had with collective authorship, and the observations we made about the memes2 that developed and spread in the students' works. Finally we'll draw some conclusions in how far Phase(x) is relevant also in a larger context, which is not limited to teaching CAAD. Since this paper was first published in 1997, we have continued to explore the issues described here in various projects3 together with a growing number of other interested institutions worldwide. While leaving the paper essentially in its original form, we added a section at the end, in which we outline some of these recent developments.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

No more hits.

HOMELOGIN (you are user _anon_181286 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002