CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 743

_id ddssar0001
id ddssar0001
authors Achten, Henri and Leeuwen, Jos van
year 2000
title Towards generic representations of designs formalised as features
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary Feature-Based Modelling (FBM) is an information modelling technique that allows the formalisation of design concepts and using these formal definitions in design modelling. The dynamic nature of design and design information calls for a specialised approach to FBM that takes into account flexibility and extensibility of Feature Models of designs. Research work in Eindhoven has led to a FBM framework and implementation that can be used to support design.. Feature models of a design process has demonstrated the feasibility of using this information modelling technique. To develop the work on FBM in design, three tracks are initiated: Feature model descriptions of design processes, automated generic representation recognition in graphic representations, and Feature models of generic representations. The paper shows the status of the work in the first two tracks, and present the results of the research work.
series DDSS
last changed 2003/11/21 15:15

_id 958e
authors Coppola, Carlo and Ceso, Alessandro
year 2000
title Computer Aided Design and Artificial Intelligence in Urban and Architectural Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 301-307
doi https://doi.org/10.52842/conf.ecaade.2000.301
summary In general, computer-aided design is still limited to a rather elementary use of the medium, as it is mainly used for the representation/simulation of a design idea w an electronic drawing-table. hich is not computer-generated. The procedures used to date have been basically been those of an electronic drawing-table. At the first stage of development the objective was to find a different and better means of communication, to give form to an idea so as to show its quality. The procedures used were 2D design and 3D simulation models, usually used when the design was already defined. The second stage is when solid 3D modelling is used to define the formal design at the conception stage, using virtual models instead of study models in wood, plastic, etc. At the same time in other connected fields the objective is to evaluate the feasibility of the formal idea by means of structural and technological analysis. The third stage, in my opinion, should aim to develop procedures capable of contributing to both the generation of the formal idea and the simultaneous study of technical feasibility by means of a decision-making support system aided by an Artificial Intelligence procedure which will lead to what I would describe as the definition of the design in its totality. The approach to architectural and urban design has been strongly influenced by the first two stages, though these have developed independently and with very specific objectives. It is my belief that architectural design is now increasingly the result of a structured and complex process, not a simple act of pure artistic invention. Consequently, I feel that the way forward is a procedure able to virtually represent all the features of the object designed, not only in its definitive configuration but also and more importantly in the interactions which determine the design process as it develops. Thus A.I. becomes the means of synthesis for models which are hierarchically subordinated which together determine the design object in its developmental process, supporting decision-making by applying processing criteria which generative modelling has already identified. This trend is currently being experimented, giving rise to interesting results from process design in the field of industrial production.
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:56

_id db00
authors Espina, Jane J.B.
year 2002
title Base de datos de la arquitectura moderna de la ciudad de Maracaibo 1920-1990 [Database of the Modern Architecture of the City of Maracaibo 1920-1990]
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 133-139
summary Bases de datos, Sistemas y Redes 134The purpose of this report is to present the achievements obtained in the use of the technologies of information andcommunication in the architecture, by means of the construction of a database to register the information on the modernarchitecture of the city of Maracaibo from 1920 until 1990, in reference to the constructions located in 5 of Julio, Sectorand to the most outstanding planners for its work, by means of the representation of the same ones in digital format.The objective of this investigation it was to elaborate a database for the registration of the information on the modernarchitecture in the period 1920-1990 of Maracaibo, by means of the design of an automated tool to organize the it datesrelated with the buildings, parcels and planners of the city. The investigation was carried out considering three methodologicalmoments: a) Gathering and classification of the information of the buildings and planners of the modern architectureto elaborate the databases, b) Design of the databases for the organization of the information and c) Design ofthe consultations, information, reports and the beginning menu. For the prosecution of the data files were generated inprograms attended by such computer as: AutoCAD R14 and 2000, Microsoft Word, Microsoft PowerPoint and MicrosoftAccess 2000, CorelDRAW V9.0 and Corel PHOTOPAINT V9.0.The investigation is related with the work developed in the class of Graphic Calculation II, belonging to the Departmentof Communication of the School of Architecture of the Faculty of Architecture and Design of The University of the Zulia(FADLUZ), carried out from the year 1999, using part of the obtained information of the works of the students generatedby means of the CAD systems for the representation in three dimensions of constructions with historical relevance in themodern architecture of Maracaibo, which are classified in the work of The Other City, generating different types ofisometric views, perspectives, representations photorealistics, plants and facades, among others.In what concerns to the thematic of this investigation, previous antecedents are ignored in our environment, and beingthe first time that incorporates the digital graph applied to the work carried out by the architects of “The Other City, thegenesis of the oil city of Maracaibo” carried out in the year 1994; of there the value of this research the field of thearchitecture and computer science. To point out that databases exist in the architecture field fits and of the design, alsoweb sites with information has more than enough architects and architecture works (Montagu, 1999).In The University of the Zulia, specifically in the Faculty of Architecture and Design, they have been carried out twoworks related with the thematic one of database, specifically in the years 1995 and 1996, in the first one a system wasdesigned to visualize, to classify and to analyze from the architectural point of view some historical buildings of Maracaiboand in the second an automated system of documental information was generated on the goods properties built insidethe urban area of Maracaibo. In the world environment it stands out the first database developed in Argentina, it is the database of the Modern andContemporary Architecture “Datarq 2000” elaborated by the Prof. Arturo Montagú of the University of Buenos Aires. The general objective of this work it was the use of new technologies for the prosecution in Architecture and Design (MONTAGU, Ob.cit). In the database, he intends to incorporate a complementary methodology and alternative of use of the informationthat habitually is used in the teaching of the architecture. When concluding this investigation, it was achieved: 1) analysis of projects of modern architecture, of which some form part of the historical patrimony of Maracaibo; 2) organized registrations of type text: historical, formal, space and technical data, and graph: you plant, facades, perspectives, pictures, among other, of the Moments of the Architecture of the Modernity in the city, general data and more excellent characteristics of the constructions, and general data of the Planners with their more important works, besides information on the parcels where the constructions are located, 3)construction in digital format and development of representations photorealistics of architecture projects already built. It is excellent to highlight the importance in the use of the Technologies of Information and Communication in this investigation, since it will allow to incorporate to the means digital part of the information of the modern architecturalconstructions that characterized the city of Maracaibo at the end of the XX century, and that in the last decades they have suffered changes, some of them have disappeared, destroying leaves of the modern historical patrimony of the city; therefore, the necessity arises of to register and to systematize in digital format the graphic information of those constructions. Also, to demonstrate the importance of the use of the computer and of the computer science in the representation and compression of the buildings of the modern architecture, to inclination texts, images, mapping, models in 3D and information organized in databases, and the relevance of the work from the pedagogic point of view,since it will be able to be used in the dictation of computer science classes and history in the teaching of the University studies of third level, allowing the learning with the use in new ways of transmission of the knowledge starting from the visual information on the part of the students in the elaboration of models in three dimensions or electronic scalemodels, also of the modern architecture and in a future to serve as support material for virtual recoveries of some buildings that at the present time they don’t exist or they are almost destroyed. In synthesis, the investigation will allow to know and to register the architecture of Maracaibo in this last decade, which arises under the parameters of the modernity and that through its organization and visualization in digital format, it will allow to the students, professors and interested in knowing it in a quicker and more efficient way, constituting a contribution to theteaching in the history area and calculation. Also, it can be of a lot of utility for the development of future investigation projects related with the thematic one and restoration of buildings of the modernity in Maracaibo.
keywords database, digital format, modern architecture, model, mapping
series SIGRADI
email
last changed 2016/03/10 09:51

_id ddssar0023
id ddssar0023
authors Jens Pohl, Art Chapman, and Kym Jason Pohl
year 2000
title Computer-aided design systems for the 21st century: some design guidelines
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary This paper proposes nine design principles for a new generation of computer-aided design (CAD) systems that actively support the decision making and problem solving activities of environmental design. Foremost among these are: a meaningful internal object-based representation of the artifact being designed within its environmental context; a collaborative problem solving paradigm in which the human designer and the computer form a complementary partnership; and, the notion of decision-support tools rather than predefined solutions. Two prototype computer-aided design systems implemented by the CAD Research Center that embody most of these concepts are described. ICADS (Intelligent Computer-Aided Design System) incorporates multiple expert agents in domains such as natural and artificial lighting, noise control, structural system selection, climatic determinants, and energy conservation. Given a particular building design context, the agents in ICADS draw upon their own expertise and several knowledgebases as they monitor the actions of the human designer and collaborate opportunistically. KOALA (Knowledge-Based Object-Agent Collaboration) builds on the multi-agent concepts embodied in ICADS by the addition of two kinds of agents. Mentor agents represent the interests of selected objects within the ontology of the design environment. In the implemented KOALA system building spaces are represented by agents capable of collaborating with each other, with domain agents for the provision of expert services, and with the human designer. Facilitator agents listen in on the communications among mentor agents to detect conflicts and moderate arguments. While both of these prototype systems are limited in scope by focussing on the earliest design stages and restricted in their understanding of the inherent complexity of a design state, they nevertheless promise a paradigm shift in computer-aided design.
series DDSS
last changed 2003/08/07 16:36

_id ga0008
id ga0008
authors Koutamanis, Alexander
year 2000
title Redirecting design generation in architecture
source International Conference on Generative Art
summary Design generation has been the traditional culmination of computational design theory in architecture. Motivated either by programmatic and functional complexity (as in space allocation) or by the elegance and power of representational analyses (shape grammars, rectangular arrangements), research has produced generative systems capable of producing new designs that satisfied certain conditions or of reproducing exhaustively entire classes (such as all possible Palladian villas), comprising known and plausible new designs. Most generative systems aimed at a complete spatial design (detailing being an unpopular subject), with minimal if any intervention by the human user / designer. The reason for doing so was either to give a demonstration of the elegance, power and completeness of a system or simply that the replacement of the designer with the computer was the fundamental purpose of the system. In other words, the problem was deemed either already resolved by the generative system or too complex for the human designer. The ongoing democratization of the computer stimulates reconsideration of the principles underlying existing design generation in architecture. While the domain analysis upon which most systems are based is insightful and interesting, jumping to a generative conclusion was almost always based on a very sketchy understanding of human creativity and of the computer's role in designing and creativity. Our current perception of such matters suggests a different approach, based on the augmentation of intuitive creative capabilities with computational extensions. The paper proposes that architectural generative design systems can be redirected towards design exploration, including the development of alternatives and variations. Human designers are known to follow inconsistent strategies when confronted with conflicts in their designs. These strategies are not made more consistent by the emerging forms of design analysis. The use of analytical means such as simulation, couple to the necessity of considering a rapidly growing number of aspects, means that the designer is confronted with huge amounts of information that have to be processed and integrated in the design. Generative design exploration that can combine the analysis results in directed and responsive redesigning seems an effective method for the early stages of the design process, as well as for partial (local) problems in later stages. The transformation of generative systems into feedback support and background assistance for the human designer presupposes re-orientation of design generation with respect to the issues of local intelligence and autonomy. Design generation has made extensive use of local intelligence but has always kept it subservient to global schemes that tended to be holistic, rigid or deterministic. The acceptance of local conditions as largely independent structures (local coordinating devices) affords a more flexible attitude that permits not only the emergence of internal conflicts but also the resolution of such conflicts in a transparent manner. The resulting autonomy of local coordinating devices can be expanded to practically all aspects and abstraction levels. The ability to have intelligent behaviour built in components of the design representation, as well as in the spatial and building elements they signify, means that we can create the new, sharper tools required by the complexity resulting from the interpretation of the built environment as a dynamic configuration of co-operating yet autonomous parts that have to be considered independently and in conjunction with each other.   P.S. The content of the paper will be illustrated by a couple of computer programs that demonstrate the princples of local intelligence and autonomy in redesigning. It is possible that these programs could be presented as independent interactive exhibits but it all depends upon the time we can make free for the development of self-sufficient, self-running demonstrations until December.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ddssar0019
id ddssar0019
authors Madrazo, Leandro
year 2000
title Networking: media, representation and architecture
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary In this paper we present a pedagogic work, carried out in a third year architecture course, focused on the relationship between teaching content and media. The subject-matter of the course is the concept of representation; an eminently philosophical issue which transcends the limits of a particular discipline. The media that have been used are mostly the web, along with other standard programs to process text and images, create models and animations. The core of this research work is the course ‘Sistemas de Representación’, which has taken place for the first time in the academic year 1999/00. The course is structured in six themes, each one standing for a system of representation: TEXT, FIGURE, OBJECT, IMAGE, SPACE and LIGHT. Within every system, a variety of topics dealing with the concept of representation are addressed in an interdisciplinary manner. A web based learning environment named NETWORKING has been created especially for the course. This environment allows students to perform a variety of collaborative works: drawing visual and linguistic relationships, developing further the works of other students, and participating in collective processes of form generation and space perception.
series DDSS
last changed 2003/08/07 16:36

_id 1f5c
authors Beesley, Philip and Seebohm, Thomas
year 2000
title Digital Tectonic Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 287-290
doi https://doi.org/10.52842/conf.ecaade.2000.287
summary Digital tectonic design is a fresh approach to architectural design methodology. Tectonics means a focus on assemblies of construction elements. Digital tectonics is an evolving methodology that integrates use of design software with traditional construction methods. We see digital tectonic design as a systematic use of geometric and spatial ordinances, used in combination with details and components directly related to contemporary construction. The current approach will, we hope, lead to an architectural curriculum based on generative form making where the computer can be used to produce systems of forms algorithmically. Digital design has tended to remain abstract, emphasizing visual and spatial arrangements often at the expense of materials and construction. Our pursuit is translation of these methods into more fully realized physical qualities. This method offers a rigorous approach based on close study of geometry and building construction elements. Giving a context for this approach, historical examples employing systematic tectonic design are explored in this paper. The underlying geometric ordinance systems and the highly tuned relationships between the details in these examples offer design vocabularies for use within the studio curriculum. The paper concludes with a detailed example from a recent studio project demonstrating particular qualities developed within the method. The method involves a wide range of scales, relating large-scale gestural and schematic studies to detailed assembly systems. Designing in this way means developing geometric strategies and, in parallel, producing detailed symbols or objects to be inserted. These details are assembled into a variety of arrays and groups. The approach is analogous to computer-aided designŐs tradition of shape grammars in which systems of spatial relationships are used to control the insertion of shapes within a space. Using this approach, a three-dimensional representation of a building is iteratively refined until the final result is an integrated, systematically organized complex of symbols representing physical building components. The resulting complex offers substantial material qualities. Strategies of symbol insertions and hierarchical grouping of elements are familiar in digital design practice. However these strategies are usually used for automated production of preconceived designs. In contrast to thsse normal approaches this presentation focuses on emergent qualities produced directly by means of the complex arrays of symbol insertions. The rhyth
keywords 3D CAD Systems, Design Practice, 3D Design Strategies
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 9384
authors Burry, M., Datta, S. and Anson, S.
year 2000
title Introductory Computer Programming as a Means for Extending Spatial and Temporal Understanding
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 129-135
doi https://doi.org/10.52842/conf.acadia.2000.129
summary Should computer programming be taught within schools of architecture? Incorporating even low-level computer programming within architectural education curricula is a matter of debate but we have found it useful to do so for two reasons: as an introduction or at least a consolidation of the realm of descriptive geometry and in providing an environment for experimenting in morphological time-based change. Mathematics and descriptive geometry formed a significant proportion of architectural education until the end of the 19th century. This proportion has declined in contemporary curricula, possibly at some cost for despite major advances in automated manufacture, Cartesian measurement is still the principal ‘language’ with which to describe building for construction purposes. When computer programming is used as a platform for instruction in logic and spatial representation, the waning interest in mathematics as a basis for spatial description can be readdressed using a left-field approach. Students gain insights into topology, Cartesian space and morphology through programmatic form finding, as opposed to through direct manipulation. In this context, it matters to the architect-programmer how the program operates more than what it does. This paper describes an assignment where students are given a figurative conceptual space comprising the three Cartesian axes with a cube at its centre. Six Phileban solids mark the Cartesian axial limits to the space. Any point in this space represents a hybrid of one, two or three transformations from the central cube towards the various Phileban solids. Students are asked to predict the topological and morphological outcomes of the operations. Through programming, they become aware of morphogenesis and hybridisation. Here we articulate the hypothesis above and report on the outcome from a student group, whose work reveals wider learning opportunities for architecture students in computer programming than conventionally assumed.
series ACADIA
email
last changed 2022/06/07 07:54

_id ddssar0006
id ddssar0006
authors Ciftcioglu, Ö., Durmisevic, S. and Sariyildiz, S.
year 2000
title Multi-objective design for space layout topology
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary A novel method to produce space layout topologies for architectural design is described. From the uniformly distributed design solutions in the solution space the corresponding design requirements are computed according to a given norm and metric function. The system is based on graph representation of the layout so that the desired relations between the pairs of nodes are considered to be independent variables of appropriate series of multivariable functions mapping the requirements into the solution space. The system so established is used as a knowledge-base for robust layout design where knowledge base having been established, the layout design requirements are introduced to the system as design constraints and the output is identified in the multidimensional solution space by means of interpolation. Since the smoothness of the interpolation is guaranteed, robust design layout, in the form of node locations, is obtained.
series DDSS
last changed 2003/08/07 16:36

_id 389b
authors Do, Ellen Yi-Luen
year 2000
title Sketch that Scene for Me: Creating Virtual Worlds by Freehand Drawing
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 265-268
doi https://doi.org/10.52842/conf.ecaade.2000.265
summary With the Web people can now view virtual threedimensional worlds and explore virtual space. Increasingly, novice users are interested in creating 3D Web sites. Virtual Reality Modeling Language gained ISO status in 1997, although it is being supplanted by the compatible Java3D API and alternative 3D Web technologies compete. Viewing VRML scenes is relatively straightforward on most hardware platforms and browsers, but currently there are only two ways to create 3D virtual scenes: One is to code the scene directly using VRML. The other is to use existing CAD and modeling software, and save the world in VRML format or convert to VRML from some other format. Both methods are time consuming, cumbersome, and have steep learning curves. Pen-based user interfaces, on the other hand, are for many an easy and intuitive method for graphics input. Not only are people familiar with the look and feel of paper and pencil, novice users also find it less intimidating to draw what they want, where they want it instead of using a complicated tool palette and pull-down menus. Architects and designers use sketches as a primary tool to generate design ideas and to explore alternatives, and numerous computer-based interfaces have played on the concept of "sketch". However, we restrict the notion of sketch to freehand drawing, which we believe helps people to think, to envision, and to recognize properties of the objects with which they are working. SKETCH employs a pen interface to create three-dimensional models, but it uses a simple language of gestures to control a three-dimensional modeler; it does not attempt to interpret freehand drawings. In contrast, our support of 3D world creation using freehand drawing depend on users’ traditional understanding of a floor plan representation. Igarashi et al. used a pen interface to drive browsing in a 3D world, by projecting the user’s marks on the ground plane in the virtual world. Our Sketch-3D project extends this approach, investigating an interface that allows direct interpretation of the drawing marks (what you draw is what you get) and serves as a rapid prototyping tool for creating 3D virtual scenes.
keywords Freehand Sketching, Pen-Based User Interface, Interaction, VRML, Navigation
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 70c4
authors Gross, M.D., Do, E.Y.-L. and Johnson, B.R.
year 2000
title Beyond the low-hanging fruit: Information technology in architectural design past, present and future
source W. Mitchell and J. Fernandez (eds), ACSA Technology Conference, MIT Press, Cambridge MA
summary Today's commercial CAD software is the product of years of research that began in the 1960's and 1970's. These applications have found widespread use in the architectural marketplace; nevertheless they represent only the first fruits of research in computer aided design. New developments based on research in human-computer interaction (HCI), computer-supported collaborative work (CSCW), and virtual reality (VR) will result in a next generation of tools for architectural design. Although preliminary applications to design have been demonstrated in each of these areas, excellent opportunities remain to exploit new technologies and insights in service of better design software. In this paper we briefly examine each of these areas using examples from our own work to discuss the prospects for future research. We envision that future design technologies will develop from current and traditional conventions of practice combined with forward looking application of emerging technologies. In HCI, pen based interaction will allow architects to use the pencil again, without sacrificing the added power of computer aided design tools, and speech recognition will begin to play a role in capturing and retrieving design critique and discussion. In CSCW, a new generation of applications will address the needs of designers more closely than current general purpose meeting tools. In VR, applications are possible that use the technology not simply to provide a sense of three-dimensional presence, but that organize design information spatially, integrating it into the representation of artifacts and places.
series other
email
last changed 2003/04/23 15:50

_id ddssar0011
id ddssar0011
authors Hartog, J.P. den, Koutamanis, A. and Luscuere, P.G.
year 2000
title Possibilities and limitations of CFD simulation for indoor climate analysis
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary With the democratization of information and communication technologies, simulation techniques that used to be computationally expensive and time-consuming are becoming feasible instruments for the analysis of architectural design. Simulation is an indispensable ingredient of the descriptive design approach, which provides the designer with precise and accurate projections of the performance and behavior of a design. The paper describes the application of a particular class of simulation techniques, computational fluid dynamics (CFD), to the analysis and evaluation of indoor climate. Using two different CFD systems as representatives of the class, we describe: relevant computational possibilities and limitations of CFD simulation; the accessibility of CFD simulation for architects, especially concerning the handling of simulation variables; the compatibility of CFD representations of built space with similar representations in standard CAD and modeling systems, including possibilities for feedback; The relations between geometric representation and accuracy / precision in CFD simulation. We propose that CFD simulation can become an operational instrument for the designer, provided that CFD simulation does not become a trial and error game trying to master computational techniques. A promising solution to this problem is the use of case based reasoning. A case base of analyzed, evaluated and verified buildings provides a flexible source of information (guidance and examples) for both the CFD simulation and the designer.
series DDSS
last changed 2003/08/07 16:36

_id 9a6b
authors Hofmeyer, Herm Combined
year 2000
title Combined web crippling and bending moment failure of first-generation trapezoidal steel sheeting : experiments, finite element models, mechanical models
source Eindhoven University of Technology
summary Cold-formed trapezoidal sheeting of thin steel plate is a very popular product for building construction. It combines low weight and high strength and is economical in use. Current design rules, which predict sheeting failure for an interior support, do not provide sufficient insight into the sheeting behaviour, and can differ up to 40% in their predictions. To develop a new design rule, this thesis presents new experiments in which first-generation sheeting behaviour is studied for practical situations. The experiments show that after ultimate load, three different post-failure modes arise. Mechanical models have been developed for the three post-failure modes. These models can help to explain why a certain post-failure mode occurs. Finite element models were used to simulate the experiments. Studying stress distributions with finite element simulations, it can be seen that there are only two ultimate failure modes at ultimate load. One of these ultimate failure modes is not relevant for practice. A mechanical model has been developed for the other ultimate failure mode. This model performs as well as the current design rules, and it provides insight into the sheeting behaviour.
keywords Steelstructures; Constructive Design; Thin Walled Beams; Local Buckling; Steel Profiles
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 394a
authors Jabi, Wassim
year 2000
title WebOutliner: A Web-Based Tool for Collaborative Space Programming and Design
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 195-201
doi https://doi.org/10.52842/conf.acadia.2000.195
summary This paper discusses a web-based tool that allows members of a design team to collaboratively specify a hierarchical spatial program for an architectural project. Given its object orientation, the represented artifacts have built-in data and methods that allow them to respond to user actions and manage their own sub-artifacts. Given that these components are hierarchical allows users to filter information, analyze and compare design parameters and aggregate hierarchical amounts in realtime. Furthermore, the software goes beyond outlining functions to support synchronous collaborative design by linking each item in the spatial program to a detail page that allows file uploading, realtime group marking of images, and textual chat. Thus, the software offers a seamless transition from the largely asynchronous definition of an architectural program to synchronous collaboration. In addition, and in contrast to commercially available groupware, the software allows multiple collaboration sessions to run at the same time. These sessions are artifact-based in the sense that they get automatically initiated once participants visit the same architectural space in the program hierarchy. The software employs a three-tier object-oriented, web-based scheme for a richer representation of hierarchical artifacts coupled with a relational database for server-side storage. The prototype integrates this technology with Java-based tools for synchronous web-based collaboration.
series ACADIA
email
last changed 2022/06/07 07:51

_id avocaad_2001_22
id avocaad_2001_22
authors Jos van Leeuwen, Joran Jessurun
year 2001
title XML for Flexibility an Extensibility of Design Information Models
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The VR-DIS research programme aims at the development of a Virtual Reality – Design Information System. This is a design and decision support system for collaborative design that provides a VR interface for the interaction with both the geometric representation of a design and the non-geometric information concerning the design throughout the design process. The major part of the research programme focuses on early stages of design. The programme is carried out by a large number of researchers from a variety of disciplines in the domain of construction and architecture, including architectural design, building physics, structural design, construction management, etc.Management of design information is at the core of this design and decision support system. Much effort in the development of the system has been and still is dedicated to the underlying theory for information management and its implementation in an Application Programming Interface (API) that the various modules of the system use. The theory is based on a so-called Feature-based modelling approach and is described in the PhD thesis by [first author, 1999] and in [first author et al., 2000a]. This information modelling approach provides three major capabilities: (1) it allows for extensibility of conceptual schemas, which is used to enable a designer to define new typologies to model with; (2) it supports sharing of conceptual schemas, called type-libraries; and (3) it provides a high level of flexibility that offers the designer the opportunity to easily reuse design information and to model information constructs that are not foreseen in any existing typologies. The latter aspect involves the capability to expand information entities in a model with relationships and properties that are not typologically defined but applicable to a particular design situation only; this helps the designer to represent the actual design concepts more accurately.The functional design of the information modelling system is based on a three-layered framework. In the bottom layer, the actual design data is stored in so-called Feature Instances. The middle layer defines the typologies of these instances in so-called Feature Types. The top layer is called the meta-layer because it provides the class definitions for both the Types layer and the Instances layer; both Feature Types and Feature Instances are objects of the classes defined in the top layer. This top layer ensures that types can be defined on the fly and that instances can be created from these types, as well as expanded with non-typological properties and relationships while still conforming to the information structures laid out in the meta-layer.The VR-DIS system consists of a growing number of modules for different kinds of functionality in relation with the design task. These modules access the design information through the API that implements the meta-layer of the framework. This API has previously been implemented using an Object-Oriented Database (OODB), but this implementation had a number of disadvantages. The dependency of the OODB, a commercial software library, was considered the most problematic. Not only are licenses of the OODB library rather expensive, also the fact that this library is not common technology that can easily be shared among a wide range of applications, including existing applications, reduces its suitability for a system with the aforementioned specifications. In addition, the OODB approach required a relatively large effort to implement the desired functionality. It lacked adequate support to generate unique identifications for worldwide information sources that were understandable for human interpretation. This strongly limited the capabilities of the system to share conceptual schemas.The approach that is currently being implemented for the core of the VR-DIS system is based on eXtensible Markup Language (XML). Rather than implementing the meta-layer of the framework into classes of Feature Types and Feature Instances, this level of meta-definitions is provided in a document type definition (DTD). The DTD is complemented with a set of rules that are implemented into a parser API, based on the Document Object Model (DOM). The advantages of the XML approach for the modelling framework are immediate. Type-libraries distributed through Internet are now supported through the mechanisms of namespaces and XLink. The implementation of the API is no longer dependent of a particular database system. This provides much more flexibility in the implementation of the various modules of the VR-DIS system. Being based on the (supposed to become) standard of XML the implementation is much more versatile in its future usage, specifically in a distributed, Internet-based environment.These immediate advantages of the XML approach opened the door to a wide range of applications that are and will be developed on top of the VR-DIS core. Examples of these are the VR-based 3D sketching module [VR-DIS ref., 2000]; the VR-based information-modelling tool that allows the management and manipulation of information models for design in a VR environment [VR-DIS ref., 2000]; and a design-knowledge capturing module that is now under development [first author et al., 2000a and 2000b]. The latter module aims to assist the designer in the recognition and utilisation of existing and new typologies in a design situation. The replacement of the OODB implementation of the API by the XML implementation enables these modules to use distributed Feature databases through Internet, without many changes to their own code, and without the loss of the flexibility and extensibility of conceptual schemas that are implemented as part of the API. Research in the near future will result in Internet-based applications that support designers in the utilisation of distributed libraries of product-information, design-knowledge, case-bases, etc.The paper roughly follows the outline of the abstract, starting with an introduction to the VR-DIS project, its objectives, and the developed theory of the Feature-modelling framework that forms the core of it. It briefly discusses the necessity of schema evolution, flexibility and extensibility of conceptual schemas, and how these capabilities have been addressed in the framework. The major part of the paper describes how the previously mentioned aspects of the framework are implemented in the XML-based approach, providing details on the so-called meta-layer, its definition in the DTD, and the parser rules that complement it. The impact of the XML approach on the functionality of the VR-DIS modules and the system as a whole is demonstrated by a discussion of these modules and scenarios of their usage for design tasks. The paper is concluded with an overview of future work on the sharing of Internet-based design information and design knowledge.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ddssar0016
id ddssar0016
authors Koutamanis, Alexander and Mitossi, Vicky
year 2000
title Grammatical and syntactic properties of CAAD representations for the early design stages
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary CAAD representations for the early design stages have traditionally focused on aspects apparently relating to design creativity, such as flexible, effortless and rich geometric modelling. However, modelling capabilities are generally unconnected to the control and analysis of design constraints that affect the further development of the design. These usually refer to functional and spatial aspects that are only implicit in a CAAD representation of design ‘solids’. Moreover, the stability and reliability of control and analysis rely on the grammatical and syntactic quality of the representation. In particular, (a) the grammatical well-formedness of spatial and building primitives, and (b) the syntactic completeness and unambiguity of spatial relations are essential prerequisites to any meaningful analysis of aspects such as fulfilment of programmatic requirements, indoor climate, lighting or human interaction with the built environment. The paper describes a dual spatial and building element representation implemented on top of a standard drawing system. The representation attempts to minimize input requirements, while at the same time providing feedback on the grammatical and syntactic quality of the design description.
series DDSS
last changed 2003/08/07 16:36

_id 8b8e
authors Kvan, Th., Wong, J.T.H. and Vera, A.H.
year 2000
title Supporting Structural Activities in Design: A Multiple-Case Study
source Proceedings, Fifth International Conference on Computer Supported Cooperative Work in Design (CSCWD2000), Hong Kong, November 29 – December 2, 2000, pp. 116-120
summary This paper describes case studies in design teaching and their analysis; examining the role of structural activities and other solution searching activities in design learning and problem solving. The case studies follow students working on the same problem under two conditions – one group is taught using traditional face-to-face teaching while the other group is supported by a text-based web board. The design activities of two students were followed in each condition through a semester; followed by in-depth interviews at the end of semester. Interviews and logs were coded according to an activity-based model of design activity. The results show that cases with above average design work involved more structural activities than the mediocre cases. It also showed that design problem dissections are more organized in the better cases. These successful cases engaged in textual expression of their design solutions. Computer tools for design should therefore support textual representation in addition to graphic; video or audio.
keywords Collaborative Design; Computer Supported Collaborative Work; Structure Activities; Text
series other
email
last changed 2002/11/15 18:29

_id 625d
authors Liapi, Katherine A.
year 2001
title Geometric Configuration and Graphical Representation of Spherical Tensegrity Networks
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 258-267
doi https://doi.org/10.52842/conf.acadia.2001.258
summary The term “Tensegrity,” that describes mainly a structural concept, is used in building design to address a class of structures with very promising applications in architecture. Tensegrity structures are characterized by almost no separation between structural configuration and formal or architectural expression (Liapi 2000). In the last two decades structural and mechanical aspects in the design of these structures have been successfully addressed, while their intriguing morphology has inspired several artists and architects. Yet, very few real world applications of the tensegrity concept in architecture have been encountered. The geometric and topological complexity of tensegrity structures that is inherent to their structural and mechanical basis may account for significant difficulties in the study of their form and their limited application in building design. In this paper an efficient method for the generation of the geometry of spherical tensegrity networks is presented. The method is based on the integration of CAD tools with Descriptive Geometry procedures and allows designers to resolve and visualize the complex geometry of such structures.
keywords Tensegrity Networks, Visualization, Geometric Configuration
series ACADIA
email
last changed 2022/06/07 07:59

_id 03ad
authors Lottaz, C., Smith, I.F.C., Robert-Nicoud, Y. and Faltings, B.V.
year 2000
title Constraint-based support for negotiation in collaborative design
source Artificial Intelligence in Engineering, Vol: 14, Issue: 3, pp. 261-280.
summary Solution spaces are proposed, instead of single solutions only, to support collaborative tasks during design and construction. Currently, partners involved in construction projects typically assign single values for sub-sets of variables and then proceed, often after tedious negotiations with other partners, to integrate these partial solutions into more complete project descriptions. We suggest the use of constraint solving to express possibly large families of acceptable solutions in order to improve the negotiation process in two ways. On one hand, con ict detection can be performed in an automated manner. Through the constraints collaborators impose, they de ne large unfeasible areas where no solution to the problem at hand can be expected. An emty intersectidon of the solution spaces can thus point at a con ict of design goals of the di erent collaborators at an early stage of the design process. On the other hand, important decision support during negotiation is provided. When a solution space is found, collaborators know during negotiation that they are negotiating about feasible solutions. Negotiation is no longer a means to nd a solution to the problem but it takes place in order to nd a good or the best solution. Since the consistency of the design remains ensured, collaborators are expected to be less restrictive towards innovative ideas during negotiation. Moreover, constraint techniques using explicit representations of solution spaces can provide tools to visualize trade-o s and illustrate the impact of certain decisions on other parameters. Thus decision-making is improved during the negotiation. New algorithms have been developed at EPFL for solving multi-dimensional nonlinear inequality constraints on continuous variables. Together with intuitive user interfaces such constraint-based support leads to better change management and easier implementation of least commitment decision strategies. It is expected that the results of this research can improve both the e ciency of negotiation processes and the quality of the achieved results.
series journal paper
last changed 2003/04/23 15:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_337741 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002