CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 748

_id 7e01
authors Earl Mark
year 2000
title A Prospectus on Computers Throughout the Design Curriculum
doi https://doi.org/10.52842/conf.ecaade.2000.077
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 77-83
summary Computer aided architectural design has spread throughout architecture schools in the United States as if sown upon the wind. Yet, the proliferation alone may not be a good measure of the computer’s impact on the curriculum or signify the true emergence of a digital design culture. The aura of a relatively new technology may blind us from understanding its actual place in the continuum of design education. The promise of the technology is to completely revolutionize design; however, the reality of change is perhaps rooted in an underlying connection to core design methods. This paper considers a transitional phase within a School reviewing its entire curriculum. Lessons may be found in the Bauhaus educational program at the beginning of the 20 th century and its response to the changing shape of society and industry.
keywords Pedagogy, Computer Based Visualization, Spatial and Data Analysis Methods, Interdisciplinary Computer Based Models
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 161c
authors Juroszek, Steven P.
year 1999
title Access, Instruction, Application: Towards a Universal Lab
doi https://doi.org/10.52842/conf.ecaade.1999.141
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 141-150
summary In January 1998, the Montana State University School of Architecture embarked upon an initiative to successfully integrate computer technology into its design curriculum. At that time only a handful of student computers could be found in the design studio. By January 1999 over 95 students have and use computers in their courses. The increase in computer access and use is occurring through a five-phase initiative called the Universal Lab-a school-wide commitment to the full integration of computer technology into all design studios, support courses and architectural electives. The Universal Lab uses the areas of Access, Instruction and Application as the vehicles for appropriate placement and usage of digital concepts within the curriculum. The three-pronged approach allows each instructor to integrate technology using one, two or all three areas with varying degrees of intensity. This paper presents the current status of the Universal Lab-Phase I and Phase II-and describes the effect of this program on student work, course design and faculty instruction.
keywords Design, Access, Instruction, Application, Integration
series eCAADe
email
last changed 2022/06/07 07:52

_id ac16
authors Kokosalakis, Jen
year 2000
title Researching Local Architect Preferences of Mode of CPD Learning
doi https://doi.org/10.52842/conf.ecaade.2000.073
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 73-76
summary Curriculum development of a new learning/training package to encourage greater use of computers to architects in NorthWest England will be founded on research to identify what is needed and the most effective way to deliver and disseminate the learning material. Employing the research technique of "Focus Groups" local architects (the consumers) will identify the way they prefer to learn. This approach, emergent background to local CAAD usage and attitudes and early indications of learning mode preference is presented here.
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:51

_id a25e
authors Loy, Hollis A.
year 1999
title Foundation for a Thorough CAAD Education
doi https://doi.org/10.52842/conf.ecaade.1999.301
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 301-308
summary The birth and development of computing is considered by most as one of the greatest technological achievements of the twentieth century. Since the integration of computers in the built environment, over two decades ago, computing methods developed into efficient designing and calculating tools. In contrast, accelerating advancements in computing technology have created generation gaps amongst architects. There are inexperienced, novice, intermediate and advanced computer-capable architects. If each group was asked to define CAAD, some would still describe it as a computer program for technical draughting. Others may define CAAD (Computer Aided Architectural Design) as a vast array of digital media in CAD, multimedia and DTP, assisting architects in compiling visual presentations. Currently, most architectural schools are capable of instructing most, if not all, facets of CAAD (2D & 3D CAD, model rendering, photo montage, brochure layouts, etc.). However, this knowledge is accumulated at random throughout the course of study. "Computer Graphics for Architects" is the latest educational development in Europe bridging generation gaps with senior architects and serving as an introductory CAAD seminar to beginning architecture students. This book and lecture presents a gallery of recent architectural CAD, multimedia, and DTP presentations practiced in Europe´s second largest architectural firm. The terminology is user-friendly and its content concentrates on responding to the most often posed questions by CAAD beginners relating to: (1) Terminology (2) Appearance (3) Time Consumption (4) Cost Techniques introduced are independent of any platform. The goal is to summarize quickly and effectively the countless possibilities of presentations applicable in architecture practice. "Computer Graphics for Architects" provides a direction for future presentations and motivates students to excel in CAAD.
series eCAADe
email
last changed 2022/06/07 07:59

_id 5f73
authors Yen-wen Cheng, Nancy
year 2000
title Web-based Teamwork in Design Education
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 24-26
summary Web-enhanced collaborations can be used throughout the design curriculum to increase interaction and critical thinking. Several kinds of architectural projects are well suited for Internet sharing: 1) case studies, 2) site analyses and 3) component sharing. Through these projects, students learn to work cooperatively while contributing to class resources and research efforts. Web template pages for the projects set standards for presentation and shape content organization. The visible nature of a class web page highlights early examples and publicizes achievements and difficulties. The collective class effort provides an accessible source for comparison, development of evaluation criteria and identification of exemplars. When students are encouraged to build on each others’ work, they reward strong efforts by their selections. Through careful planning of teamwork organization and technical preparations, Internet exercises can maximize cooperative learning.
series SIGRADI
email
last changed 2016/03/10 10:03

_id ae61
authors Af Klercker, Jonas
year 1999
title CAAD - Integrated with the First Steps into Architecture
doi https://doi.org/10.52842/conf.ecaade.1999.266
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 266-272
summary How and when should CAAD be introduced in the curriculum of the School of Architecture? This paper begins with some arguments for starting CAAD education at the very beginning. At the School of Architecture in Lund teachers in the first year courses have tried to integrate CAAD with the introduction to architectural concepts and techniques. Traditionally the first year is divided by several subjects running courses separatly without any contact for coordination. From the academic year 96/97 the teachers of Aplied aestetics, Building Science, Architectural design and CAAD have decided to colaborate as much as possible to make the role of our different fields as clear as possible to the students. Therefore integrating CAAD was a natural step in the academic year 98/99. The computer techniques were taught one step in advance so that the students can practise their understanding of the programs in their tasks in the other subjects. The results were surprisingly good! The students have quickly learned to mix the manual and computer techniques to make expressive and interesting visual presentations of their ideas. Some students with antipaty to computers have overcome this handicap. Some interesting observations are discussed.
keywords Curriculum, First Year Studies, Integration, CAAD, Modelling
series eCAADe
email
last changed 2022/06/07 07:54

_id ff1d
authors Barki, José
year 2000
title Representação Digital e Projeto de Arquitetura (Digital Representation and Architectural Design)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 120-122
summary The paper is focused around a critical discussion of the digital representation and the architectural design process. Digital technology is now widely accepted and computers are causing a profound impact in the way reality and artificial objects are described and represented. Computers are now transforming skills, design processes, production processes and organizations. However, the evidence suggests that there are no fundamental changes in the architectural design process. It is acknowledged that the design process in architecture goes through representations and entails two altering phases: one generating tentative possibilities and hypothesis, and another of testing and evaluation. Based on this discussion a new way of using digital technology in architectural conception and design is suggested.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 1f5c
authors Beesley, Philip and Seebohm, Thomas
year 2000
title Digital Tectonic Design
doi https://doi.org/10.52842/conf.ecaade.2000.287
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 287-290
summary Digital tectonic design is a fresh approach to architectural design methodology. Tectonics means a focus on assemblies of construction elements. Digital tectonics is an evolving methodology that integrates use of design software with traditional construction methods. We see digital tectonic design as a systematic use of geometric and spatial ordinances, used in combination with details and components directly related to contemporary construction. The current approach will, we hope, lead to an architectural curriculum based on generative form making where the computer can be used to produce systems of forms algorithmically. Digital design has tended to remain abstract, emphasizing visual and spatial arrangements often at the expense of materials and construction. Our pursuit is translation of these methods into more fully realized physical qualities. This method offers a rigorous approach based on close study of geometry and building construction elements. Giving a context for this approach, historical examples employing systematic tectonic design are explored in this paper. The underlying geometric ordinance systems and the highly tuned relationships between the details in these examples offer design vocabularies for use within the studio curriculum. The paper concludes with a detailed example from a recent studio project demonstrating particular qualities developed within the method. The method involves a wide range of scales, relating large-scale gestural and schematic studies to detailed assembly systems. Designing in this way means developing geometric strategies and, in parallel, producing detailed symbols or objects to be inserted. These details are assembled into a variety of arrays and groups. The approach is analogous to computer-aided designÕs tradition of shape grammars in which systems of spatial relationships are used to control the insertion of shapes within a space. Using this approach, a three-dimensional representation of a building is iteratively refined until the final result is an integrated, systematically organized complex of symbols representing physical building components. The resulting complex offers substantial material qualities. Strategies of symbol insertions and hierarchical grouping of elements are familiar in digital design practice. However these strategies are usually used for automated production of preconceived designs. In contrast to thsse normal approaches this presentation focuses on emergent qualities produced directly by means of the complex arrays of symbol insertions. The rhyth
keywords 3D CAD Systems, Design Practice, 3D Design Strategies
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 3f35
authors Bermudez, Julio and King, Kevin
year 2000
title Media interaction and design process: establishing a knowledge base
source Automation in Construction 9 (1) (2000) pp. 37-56
summary Integrating computers in architectural design means to negotiate between centuries-old analog design methods and the new digital systems of production. Analog systems of architectural production use tracing paper, vellum, graphite and ink, clipboard, clay, balsa wood, plastic, metal, etc. Analog systems have also been termed "handmade", "manual", "material" or "physical". Digital systems of architectural production use scanning, image manipulation, visualization, solid modeling, computer aided drafting, animation, rendering, etc. Digital systems have also been called "electronic", "computer-aided", "virtual", etc. The difficulty lies in the underdeveloped state of the necessary methods, techniques, and theories to relate traditional and new media. Recent investigations on the use of multiple iterations between manual and electronic systems to advance architectural work show promising results. However, these experiments have not been sufficiently codified, cross-referenced and third party tested to conform a reliable knowledge base. This paper addresses this shortcoming by bringing together reported experiences from diverse researchers over the past decade. This summary is informed by more than three years of continuous investigation in the impacts of analog-digital conversations in the design process. The goal is to establish a state-of-the-art common foundation that permits instructors, researchers and practitioners to refer to, utilize, test, criticize and develop. An appendix is included providing support for the paper's arguments.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 9bc4
authors Bhavnani, S.K. and John, B.E.
year 2000
title The Strategic Use of Complex Computer Systems
source Human-Computer Interaction 15 (2000), 107-137
summary Several studies show that despite experience, many users with basic command knowledge do not progress to an efficient use of complex computer applications. These studies suggest that knowledge of tasks and knowledge of tools are insufficient to lead users to become efficient. To address this problem, we argue that users also need to learn strategies in the intermediate layers of knowledge lying between tasks and tools. These strategies are (a) efficient because they exploit specific powers of computers, (b) difficult to acquire because they are suggested by neither tasks nor tools, and (c) general in nature having wide applicability. The above characteristics are first demonstrated in the context of aggregation strategies that exploit the iterative power of computers.Acognitive analysis of a real-world task reveals that even though such aggregation strategies can have large effects on task time, errors, and on the quality of the final product, they are not often used by even experienced users. We identify other strategies beyond aggregation that can be efficient and useful across computer applications and show how they were used to develop a new approach to training with promising results.We conclude by suggesting that a systematic analysis of strategies in the intermediate layers of knowledge can lead not only to more effective ways to design training but also to more principled approaches to design systems. These advances should lead users to make more efficient use of complex computer systems.
series other
email
last changed 2003/11/21 15:16

_id 4e0a
authors Bouchlaghem, N., Sher, W. and Beacham, N.
year 2000
title Computer Imagery and Visualization in Civil Engineering Education
source Journal of Computing in Civil Engineering, Vol. 14, No. 2, April 2000, pp. 134-140
summary Higher education institutions in the United Kingdom have invested significantly in the implementation of communication and information technology in teaching, learning, and assessment of civil and building engineering—with mixed results. This paper focuses on the use of digital imagery and visualization materials to improve student understanding. It describes ways in which these materials are being used in the civil and building engineering curriculum, and, in particular, how distributed performance support systems (DPSS) can be applied to make more effective use of digital imagery and visualization material. This paper centers on the extent to which DPSS can be used in a civil and building vocational and continuing professional development context by tutors in the form of an electronic course delivery tool and by students in the form of an open-access student information system. This paper then describes how a DPSS approach to education is being adopted at Loughborough University as part of the CAL-Visual project. After highlighting the main aims and objectives of the project and describing the system, this paper discusses some of the issues encountered during the design and implementation of a DPSS and presents some preliminary results from initial trials.
keywords Computer Aided Instruction; Engineering Education; Imaging Techniques; Information Systems; Professional Development
series journal paper
last changed 2003/05/15 21:45

_id cef3
authors Bridges, Alan H.
year 1992
title Computing and Problem Based Learning at Delft University of Technology Faculty of Architecture
doi https://doi.org/10.52842/conf.ecaade.1992.289
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 289-294
summary Delft University of Technology, founded in 1842, is the oldest and largest technical university in the Netherlands. It provides education for more than 13,000 students in fifteen main subject areas. The Faculty of Architecture, Housing, Urban Design and Planning is one of the largest faculties of the DUT with some 2000 students and over 500 staff members. The course of study takes four academic years: a first year (Propaedeuse) and a further three years (Doctoraal) leading to the "ingenieur" qualification. The basic course material is delivered in the first two years and is taken by all students. The third and fourth years consist of a smaller number of compulsory subjects in each of the department's specialist areas together with a wide range of option choices. The five main subject areas the students may choose from for their specialisation are Architecture, Building and Project Management, Building Technology, Urban Design and Planning, and Housing.

The curriculum of the Faculty has been radically revised over the last two years and is now based on the concept of "Problem-Based Learning". The subject matter taught is divided thematically into specific issues that are taught in six week blocks. The vehicles for these blocks are specially selected and adapted case studies prepared by teams of staff members. These provide a focus for integrating specialist subjects around a studio based design theme. In the case of second year this studio is largely computer-based: many drawings are produced by computer and several specially written computer applications are used in association with the specialist inputs.

This paper describes the "block structure" used in second year, giving examples of the special computer programs used, but also raises a number of broader educational issues. Introduction of the block system arose as a method of curriculum integration in response to difficulties emerging from the independent functioning of strong discipline areas in the traditional work groups. The need for a greater level of selfdirected learning was recognised as opposed to the "passive information model" of student learning in which the students are seen as empty vessels to be filled with knowledge - which they are then usually unable to apply in design related contexts in the studio. Furthermore, the value of electives had been questioned: whilst enabling some diversity of choice, they may also be seen as diverting attention and resources from the real problems of teaching architecture.

series eCAADe
email
last changed 2022/06/07 07:54

_id aef9
id aef9
authors Brown, A., Knight, M. and Berridge, P. (Eds.)
year 1999
title Architectural Computing from Turing to 2000 [Conference Proceedings]
doi https://doi.org/10.52842/conf.ecaade.1999
source eCAADe Conference Proceedings / ISBN 0-9523687-5-7 / Liverpool (UK) 15-17 September 1999, 773 p.
summary The core theme of this book is the idea of looking forward to where research and development in Computer Aided Architectural Design might be heading. The contention is that we can do so most effectively by using the developments that have taken place over the past three or four decades in Computing and Architectural Computing as our reference point; the past informing the future. The genesis of this theme is the fact that a new millennium is about to arrive. If we are ruthlessly objective the year 2000 holds no more significance than any other year; perhaps we should, instead, be preparing for the year 2048 (2k). In fact, whatever the justification, it is now timely to review where we stand in terms of the development of Architectural Computing. This book aims to do that. It is salutary to look back at what writers and researchers have said in the past about where they thought that the developments in computing were taking us. One of the common themes picked up in the sections of this book is the developments that have been spawned by the global linkup that the worldwide web offers us. In the past decade the scale and application of this new medium of communication has grown at a remarkable rate. There are few technological developments that have become so ubiquitous, so quickly. As a consequence there are particular sections in this book on Communication and the Virtual Design Studio which reflect the prominence of this new area, but examples of its application are scattered throughout the book. In 'Computer-Aided Architectural Design' (1977), Bill Mitchell did suggest that computer network accessibility from expensive centralised locations to affordable common, decentralised computing facilities would become more commonplace. But most pundits have been taken by surprise by just how powerful the explosive cocktail of networks, email and hypertext has proven to be. Each of the ingredients is interesting in its own right but together they have presented us with genuinely new ways of working. Perhaps, with foresight we can see what the next new explosive cocktail might be.
series eCAADe
email
more http://www.ecaade.org
last changed 2022/06/07 07:49

_id 7da6
authors Campbell, Dace A.
year 2000
title Architectural construction documents on the web: VRML as a case study
source Automation in Construction 9 (1) (2000) pp. 129-138
summary The Virtual Reality Modeling Language (VRML) and the World Wide Web (WWW) offer new opportunities to communicate an architect's design intent throughout the design process. We have investigated the use of VRML in the production and communication of construction documents, the final phase of architectural building design. A prototype, experimental Web site was set up and used to disseminate design data as VRML models and HTML text to the design client, contractor, and fabricators. In this paper, we discuss the way our construction documents were developed in VRML, the issues we faced implementing it, and critical feedback from the users of the Web space/site. We analyze the usefulness of VRML as a communication tool for the design and construction industries. Finally, we discuss technical, social, and legal issues the AEC industry faces as it shifts to embrace widespread use of a "paperless" Web-based communications infrastructure for design documentation.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 3e51
authors Cerulli, C., Peng, C. and Lawson, B.
year 2001
title Capturing Histories of Design Processes for Collaborative Building Design Development. Field Trial of the ADS Prototype
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 427-437
summary The ADS Project - Advanced Design Support for the Construction Design Process - builds on the technological results of the previous COMMIT Project to exploit and demonstrate the benefits of a CAD based Design Decision Support System. COMMIT provides a system for storing knowledge about knowledge within the design process. It records design decisions, the actors who take them and the roles they play when doing so. ADS links COMMIT to an existing object-oriented CAD system, MicroStation/J from Bentley Systems. The project focuses on tackling the problem of managing design information without intruding too much on the design process itself. It provides the possibility to effectively link design decisions back to requirements, to gather rationale information for later stages of the building lifecycle, and to gather knowledge of rationale for later projects. The system enables members of the project team, including clients and constructors, to browse and search the recorded project history of decision making both during and after design development. ADS aims to facilitate change towards a more collaborative process in construction design, to improve the effectiveness of decision-making throughout the construction project and to provide clients with the facility to relate design outcomes to design briefs across the whole building life cycle. In this paper we will describe the field trials of the ADS prototype carried out over a three-month period at the Building Design Partnership (BDP) Manchester office. The objective of these trials is to assess the extent, to which the approach underlying ADS enhances the design process, and to gather and document the views and experiences of practitioners. The ADS prototype was previously tested with historical data of real project (Peng, Cerulli et al. 2000). To gather more valuable knowledge about how a Decision Support System like ADS can be used in practice, the testing and evaluation will be extended to a real project, while it is still ongoing. The live case study will look at some phases of the design of a mixed residential and retail development in Leeds, UK, recording project information while it is created. The users’ feedback on the system usability will inform the continuous redevelopment process that will run in parallel to the live case study. The ADS and COMMIT Projects were both funded by EPSRC.
keywords Design Rationale, Design Support Systems, Usability Evaluation
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 9a1e
authors Clayton, Mark J. and Vasquez de Velasco, Guillermo
year 1999
title Stumbling, Backtracking, and Leapfrogging: Two Decades of Introductory Architectural Computing
doi https://doi.org/10.52842/conf.ecaade.1999.151
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 151-158
summary Our collective concept of computing and its relevance to architecture has undergone dramatic shifts in emphasis. A review of popular texts from the past reveals the biases and emphases that were current. In the seventies, architectural computing was generally seen as an elective for data processing specialists. In the early eighties, personal computers and commercial CAD systems were widely adopted. Architectural computing diverged from the "batch" world into the "interactive" world. As personal computing matured, introductory architectural computing courses turned away from a foundation in programming toward instruction in CAD software. By the late eighties, Graphic User Interfaces and windowing operating systems had appeared, leading to a profusion of architecturally relevant applications that needed to be addressed in introductory computing. The introduction of desktop 3D modeling in the early nineties led to increased emphasis upon rendering and animation. The past few years have added new emphases, particularly in the area of network communications, the World Wide Web and Virtual Design Studios. On the horizon are topics of electronic commerce and knowledge markets. This paper reviews these past and current trends and presents an outline for an introductory computing course that is relevant to the year 2000.
keywords Computer-Aided Architectural Design, Computer-Aided Design, Computing Education, Introductory Courses
series eCAADe
email
last changed 2022/06/07 07:56

_id 65b0
authors De Souza e Silva, Adriana
year 2000
title Habitar o Digital (To Inhabit the Digital)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 307-309
summary This paper analyzes the graphic digital interfaces of multiuser environments. Throughout the analysis of several graphic interfaces existing on the web - textual, 2D graphics and 3D graphics - and the role of the avatars (the body interface), the goal is to rethink the role of these interfaces in the contemporary time, just like a way to represent a subject (and a world) that is fragmented, multiple and deconstructed. After the birth of the www, the graphic interface of the computer, which was used to design graphic pages, turned also to be a tool to design digital environments. With the emergence of multiuser environments, the graphic interface should not only mediate the relationship man / machine, but also interface the relationship man / man. In this context, some questions, as the presence, the activity and the identity on the web should be graphically solved. What does online conversations look like?
series SIGRADI
email
last changed 2016/03/10 09:50

_id 53c8
authors Donath, Dirk and Lömker, Thorsten Michael
year 2000
title Illusion, Frustration and Vision in Computer-Aided Project Planning: A Reflection and Outlook on the Use of Computing in Architecture
doi https://doi.org/10.52842/conf.acadia.2000.003
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 3-9
summary This paper examines the progressive and pragmatic use of computers and CAAD systems in the architectural practice. With the aid of three scenarios, this paper will illustrate gainful implementation of computer aided project planning in architecture. The first scenario describes an actual situation of implementation and describes conceptual abortive developments in office organization as well as in software technology. Scenario two outlines the essential features of an integrated building design system and the efforts involved in its implementation in the architectural practice. It clearly defines preconditions for implementation and focuses on feasible concepts for the integration of different database management systems. A glance at paradigms of conceptual work currently under development will be taken. The third scenario deals with the structure and integration of innovative concepts and the responsibility the architect will bear with regard to necessary alterations in office and workgroup organization. A future-oriented building design system will be described that distinguishes itself from existing programs because of its modular, net-based structure. With reference to today’s situation in architectural offices and according to realizable improvements, this article will demonstrate courses for future IT-support on the basis of an ongoing research project. The presented project is part of the special research area 524 “Materials and Constructions for the Revitalization of Existing Buildings” which is funded by the Deutsche Forschungsgemeinschaft. It deals with the integration of various parties that are involved in the revitalization process of existing buildings as well as with the provision of adequate information within the planning process resting upon the survey of existing building substance. Additional concepts that might change the way an architect’s work is organized will also be presented. “Case-based-reasoning” methods will make informal knowledge available, leading to a digital memory of preservable solutions.
series ACADIA
email
last changed 2022/06/07 07:55

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_857159 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002