CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 739

_id ga0007
id ga0007
authors Coates, Paul and Miranda, Pablo
year 2000
title Swarm modelling. The use of Swarm Intelligence to generate architectural form
source International Conference on Generative Art
summary .neither the human purposes nor the architect's method are fully known in advance. Consequently, if this interpretation of the architectural problem situation is accepted, any problem-solving technique that relies on explicit problem definition, on distinct goal orientation, on data collection, or even on non-adaptive algorithms will distort the design process and the human purposes involved.' Stanford Anderson, "Problem-Solving and Problem-Worrying". The works concentrates in the use of the computer as a perceptive device, a sort of virtual hand or "sense", capable of prompting an environment. From a set of data that conforms the environment (in this case the geometrical representation of the form of the site) this perceptive device is capable of differentiating and generating distinct patterns in its behavior, patterns that an observer has to interpret as meaningful information. As Nicholas Negroponte explains referring to the project GROPE in his Architecture Machine: 'In contrast to describing criteria and asking the machine to generate physical form, this exercise focuses on generating criteria from physical form.' 'The onlooking human or architecture machine observes what is "interesting" by observing GROPE's behavior rather than by receiving the testimony that this or that is "interesting".' The swarm as a learning device. In this case the work implements a Swarm as a perceptive device. Swarms constitute a paradigm of parallel systems: a multitude of simple individuals aggregate in colonies or groups, giving rise to collaborative behaviors. The individual sensors can't learn, but the swarm as a system can evolve in to more stable states. These states generate distinct patterns, a result of the inner mechanics of the swarm and of the particularities of the environment. The dynamics of the system allows it to learn and adapt to the environment; information is stored in the speed of the sensors (the more collisions, the slower) that acts as a memory. The speed increases in the absence of collisions and so providing the system with the ability to forget, indispensable for differentiation of information and emergence of patterns. The swarm is both a perceptive and a spatial phenomenon. For being able to Interact with an environment an observer requires some sort of embodiment. In the case of the swarm, its algorithms for moving, collision detection, and swarm mechanics conform its perceptive body. The way this body interacts with its environment in the process of learning and differentiation of spatial patterns constitutes also a spatial phenomenon. The enactive space of the Swarm. Enaction, a concept developed by Maturana and Varela for the description of perception in biological terms, is the understanding of perception as the result of the structural coupling of an environment and an observer. Enaction does not address cognition in the currently conventional sense as an internal manipulation of extrinsic 'information' or 'signals', but as the relation between environment and observer and the blurring of their identities. Thus, the space generated by the swarm is an enactive space, a space without explicit description, and an invention of the swarm-environment structural coupling. If we consider a gestalt as 'Some property -such as roundness- common to a set of sense data and appreciated by organisms or artefacts' (Gordon Pask), the swarm is also able to differentiate space 'gestalts' or spaces of some characteristics, such as 'narrowness', or 'fluidness' etc. Implicit surfaces and the wrapping algorithm. One of the many ways of describing this space is through the use of implicit surfaces. An implicit surface may be imagined as an infinitesimally thin band of some measurable quantity such as color, density, temperature, pressure, etc. Thus, an implicit surface consists of those points in three-space that satisfy some particular requirement. This allows as to wrap the regions of space where a difference of quantity has been produced, enclosing the spaces in which some particular events in the history of the Swarm have occurred. The wrapping method allows complex topologies, such as manifoldness in one continuous surface. It is possible to transform the information generated by the swarm in to a landscape that is the result of the particular reading of the site by the swarm. Working in real time. Because of the complex nature of the machine, the only possible way to evaluate the resulting behavior is in real time. For this purpose specific applications had to be developed, using OpenGL for the Windows programming environment. The package consisted on translators from DXF format to a specific format used by these applications and viceversa, the Swarm "engine", a simulated parallel environment, and the Wrapping programs, to generate the implicit surfaces. Different versions of each had been produced, in different stages of development of the work.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
doi https://doi.org/10.52842/conf.acadia.2020.1.574
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id 735b
authors Tolone, W.J.
year 2000
title Virtual situation rooms: connecting people across enterprises for supply-chain agility
source Computer-Aided Design, Vol. 32 (2) (2000) pp. 109-117
summary Agility and time-based manufacturing are critical success factors for today's manufacturing enterprise. To be competitive, enterprises must integrate their supply chains moreeffectively and forge close memberships with customers and suppliers more quickly. Consequently, technologies must be developed that enable enterprises to respond toconsumer demand more quickly, integrate with suppliers more effectively, adapt to market variations more efficiently and evolve product designs with manufacturing practicesmore seamlessly. The mission of the Extended-Enterprise Coalition for Integrated Collaborative Manufacturing Systems coalition is to research, develop, and demonstratetechnologies to enable the integration of manufacturing applications in a multi-company supply chain planning and execution environment. We believe real-time andasynchronous collaboration technology will play a critical role in allowing manufacturers to increase their supply chain agility. We are realizing our efforts through our VirtualSituation Room (VSR) technology. The primary goal of the VSR technology is to enhance current ad-hoc, limited methods and mechanisms for spontaneous, real-timecommunication using feature-rich, industry standards-based building blocks and network protocols. VSR technology is being designed to find and engage quickly all relevantmembers of a problem solving team supported by highly interactive, conversational access to information and control and enabled by business processes, security policies andtechnologies, intelligence, and integration tools.
keywords Collaborative Systems, Supply Chain Integration, Real-Time Conferencing
series journal paper
email
last changed 2003/05/15 21:33

_id 2190
authors Yan-chuen, L., Phil, M. and Gilleard, John D.
year 2000
title Refurbishment of building services engineering systems under a collaborative design environment
source Automation in Construction 9 (2) (2000) pp. 185-196
summary In this paper hypermedia is suggested as a suitable paradigm to represent the design processes associated with a shopping center refurbishment project. In addition, by adopting a collaborative design model, the paper makes reference to such factors as synchronous vs. asynchronous and active vs. passive modeling. Concepts in complex problem solving are also explored such as the soft system methodology as well as the application of agent-based decision support systems. Identification of primary information elements and analysis of the relations between these elements indicates that the flow of design information may be readily represented in hypermedia which features nonlinear characteristics in organizing information. The justification of developing a hypermedia tool to cope with changing conditions of a complex design problem instead of providing a solution for a predetermined problem is also argued. The paper illustrates the complex nature of collaborative design process with reference to a case study associated with the building services systems design for a Hong Kong Housing Authority refurbishment project.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 449f
authors Aish, Robert
year 2000
title Collaborative Design using Long Transactions and "Change Merge"
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 107-111
doi https://doi.org/10.52842/conf.ecaade.2000.107
summary If our goal is implement collaborative engineering across temporal, spatial and discipline dimensions, then it is suggested that we first have to address the necessary pre-requisites, which include both the deployment of "enterprise computing" and an understanding of the computing concepts on which such enterprise systems are based. This paper will consider the following computing concepts and the related concepts in the world of design computing, and discuss how these concepts have been realised in Bentley SystemsŐ ProjectBank collaborative engineering data repository: Computing Concept Related Design Concept Normalisation Model v. Report (or Drawing) Transaction Consistency of Design Long Transaction Parallelisation of Design Change Merge Coordination (synchronisation) Revisions Coordination (synchronisation) While we are most probably familiar with the applications of existing datadase concepts (such as Normalisation and Transaction Management) to the design process, the intent of this paper to focus
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id a136
authors Blaise, J.Y., Dudek, I. and Drap, P.
year 1998
title Java collaborative interface for architectural simulations A case study on wooden ceilings of Krakow
source International Conference On Conservation - Krakow 2000, 23-24 November 1998, Krakow, Poland
summary Concern for the architectural and urban preservation problems has been considerably increasing in the past decades, and with it the necessity to investigate the consequences and opportunities opened for the conservation discipline by the development of computer-based systems. Architectural interventions on historical edifices or in preserved urban fabric face conservationists and architects with specific problems related to the handling and exchange of a variety of historical documents and representations. The recent development of information technologies offers opportunities to favour a better access to such data, as well as means to represent architectural hypothesis or design. Developing applications for the Internet also introduces a greater capacity to exchange experiences or ideas and to invest on low-cost collaborative working platforms. In the field of the architectural heritage, our research addresses two problems: historical data and documentation of the edifice, methods of representation (knowledge modelling and visualisation) of the edifice. This research is connected with the ARKIW POLONIUM co-operation program that links the MAP-GAMSAU CNRS laboratory (Marseilles, France) and the Institute HAiKZ of Kraków's Faculty of Architecture. The ARKIW programme deals with questions related to the use of information technologies in the recording, protection and studying of the architectural heritage. Case studies are chosen in order to experience and validate a technical platform dedicated to the formalisation and exchange of knowledge related to the architectural heritage (architectural data management, representation and simulation tools, survey methods, ...). A special focus is put on the evolution of the urban fabric and on the simulation of reconstructional hypothesis. Our contribution will introduce current ARKIW internet applications and experiences: The ARPENTEUR architectural survey experiment on Wieża Ratuszowa (a photogrammetrical survey based on an architectural model). A Gothic and Renaissance reconstruction of the Ratusz Krakowski using a commercial modelisation and animation software (MAYA). The SOL on line documentation interface for Kraków's Rynek G_ówny. Internet analytical approach in the presentation of morphological informations about Kraków's Kramy Bogate Rynku Krakowskiego. Object-Orientation approach in the modelling of the architectural corpus. The VALIDEUR and HUBLOT Virtual Reality modellers for the simulation and representation of reconstructional hypothesis and corpus analysis.
series other
last changed 2003/04/23 15:14

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 3fd1
authors Cybis Pereira, A.T., Tissiani, G. and Bocianoski, I.
year 2000
title Design de Interfaces para Ambientes Virtuais: como Obter Usabilidade em 3D (Interface Design for Virtual Environments: How to obtain use of 3-D space.)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 313-315
summary The paper presents part of a research developed close to LRV, Laboratory of Virtual Reality of the program of Post-Graduation of the Engineering of production of UFSC. The research aims to answer the approaches for the design of Human-Computer Interfaces, called HCI, for virtual media. Being considered VR the more advanced computer interface technology, at least by the point of view of the interactivity, how come guarantee its usability and at the same time draw graphic interfaces that possess aesthetic and functional value? Besides, in virtual space with or without immersion, how can the design of the interface contribute to stimulate the user’s interactivity with the system in VR? These and other subjects are essential for those who work with interface design for computer systems, and that comes across the need of presenting medias that use virtual reality technology. Through this article a study is presented on the design techniques, the used tools, the recommendations and the necessary requirements of visual communication for HCI for virtual spaces.
series SIGRADI
email
last changed 2016/03/10 09:49

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

_id ddssar0009
id ddssar0009
authors Findlay, Robert A. and Haugen, S. Lee
year 2000
title From individual inquiry and attention to cohorts to a "collaborative critique": the use of student groups to support individual designers
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary This study explores learning settings and strategies related to design collaboration and critical thinking. To this end, theories of education and of cognitive learning were assembled to describe learning design collaboration. Student perceptions of their learning experiences were then gathered in structured interviews and focus groups, and were analyzed qualitatively for concepts, tendencies, and trends. The study also concerns the effects of collaboration on individual learning. An emphasis of the investigation has been on the context in which a person's mind learns. The activity of learning has been enriched by being in a context in which students can participate in the social construction of knowledge, in this way enhancing the processes of developing knowledge, decision-making, and design. We discovered that a "collaborative critique" evolves during the course of activity of groups of students as they shift from the protective behavior of individual competition, through bargaining away ideas in compromise or subduing differences in consensus building, to critical ideation and the constructive behavior of the "collaborative critique".
series DDSS
last changed 2003/08/07 16:36

_id 10e9
authors Heylighen, Ann and Neuckermans, Herman
year 2000
title DYNAMO in Action - Development and Use of a Web-Based Design Tool
source J. Pohl & T. Fowler (eds.), Proceedings of the Focus Symposium on Advances in Computer-Based and Web-Based Collaborative Systems - InterSymp-2000 International Conference On Systems Research, Informatics and Cybernetics, Baden-Baden (Germany), July 31 - Aug 4, 2000 (ISBN 0-921836-88-0), pp. 233-242
summary Addressing the subject of Case-Based Design (CBD), the paper describes the development and use of a Web-based design tool called DYNAMO. The tool is firmly rooted in the Dynamic Memory Theory underlying the CBD approach. Yet, rather than adopting it as such, we have tried to enrich this approach by extrapolating it beyond the individual. This extrapolation stimulates and intensifies several modes of interaction. Doing so, DYNAMO tries to kill two birds with one stone. At short notice, it provides architects and architecture students with a rich source of inspiration, ideas and design knowledge for their present design task, as it is filled with a permanently growing collection of design cases that is accessible on-line. Its long-term objective is to initiate and nurture the life-long process of learning from (design) experience as suggested by the cognitive model underlying CBD, and Case-Based Reasoning in general. DYNAMO is therefore conceived as an (inter-)active workhouse rather than a passive warehouse: it is interactively developed by and actively develops the user's design knowledge. Whereas previous papers have focused on the theoretical ideas of DYNAMO, this paper points out how Web technology enables us to implement these ideas as a working prototype. Furthermore, an annotated scenario of the system in use is described.
keywords Case-Based Design, Web Technology, Architectural Design
series journal paper
email
last changed 2002/11/22 14:50

_id 0014
authors Hsu, W. and Liu, B.
year 2000
title Conceptual design: issues and challenges
source Computer-Aided Design, Vol. 32 (14) (2000) pp. 849-850
summary Decisions made during conceptual design have significant influence on the cost, performance, reliability, safety and environmental impact of a product. It has been estimated that design decisions account for more than 75% of final product costs. It is, therefore, vital that designers have access to the right tools to support such design activities. In the early 1980s, researchers began to realize the impact of design decisions on downstream activities. As a result, different methodologies such as design for assembly, design for manufacturing and concurrent engineering, have been proposed. Software tools that implement these methodologies have also been developed. However, most of these tools are only applicable in the detailed design phase. Yet, even the highest standard of detailed design cannot compensate for a poor design concept formulated at the conceptual design phase. In spite of this, few CAD tools have been developed to support conceptual design activities. This is because knowledge of the design requirements and constraints during this early phase of a product's life cycle is usually imprecise and incomplete, making it difficult to utilize computer-based systems or prototypes. However, recent advances in fields such as fuzzy logic, computational geometry, constraints programming and so on have now made it possible for researchers to tackle some of the challenging issues in dealing with conceptual design activities. In this special issue, we have gathered together discussions on various aspects of conceptual design phase: from the capturing of the designer's intent, to modelling design constraints and solving them in an efficient manner, to verifying the correctness of the design.
series journal paper
email
last changed 2003/05/15 10:54

_id 1a59
authors Jeng, Taysheng
year 2000
title Towards a Process-Centric, Asynchronous Collaborative Design Environment
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 15-24
doi https://doi.org/10.52842/conf.caadria.2000.015
summary The objective of this paper is to develop an effective multi-user computer environment supporting design collaboration. As design teams are distributed in different positions in time-space, coordination becomes a challenging problem for any collaborative projects. This paper addresses the coordination problem by modeling the dependencies between activities. The prototype of a future generation of collaborative design systems is presented. It concentrates on establishing a software infrastructure towards a process-centric, asynchronous collaborative environment.
series CAADRIA
email
last changed 2022/06/07 07:52

_id ddssar0023
id ddssar0023
authors Jens Pohl, Art Chapman, and Kym Jason Pohl
year 2000
title Computer-aided design systems for the 21st century: some design guidelines
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary This paper proposes nine design principles for a new generation of computer-aided design (CAD) systems that actively support the decision making and problem solving activities of environmental design. Foremost among these are: a meaningful internal object-based representation of the artifact being designed within its environmental context; a collaborative problem solving paradigm in which the human designer and the computer form a complementary partnership; and, the notion of decision-support tools rather than predefined solutions. Two prototype computer-aided design systems implemented by the CAD Research Center that embody most of these concepts are described. ICADS (Intelligent Computer-Aided Design System) incorporates multiple expert agents in domains such as natural and artificial lighting, noise control, structural system selection, climatic determinants, and energy conservation. Given a particular building design context, the agents in ICADS draw upon their own expertise and several knowledgebases as they monitor the actions of the human designer and collaborate opportunistically. KOALA (Knowledge-Based Object-Agent Collaboration) builds on the multi-agent concepts embodied in ICADS by the addition of two kinds of agents. Mentor agents represent the interests of selected objects within the ontology of the design environment. In the implemented KOALA system building spaces are represented by agents capable of collaborating with each other, with domain agents for the provision of expert services, and with the human designer. Facilitator agents listen in on the communications among mentor agents to detect conflicts and moderate arguments. While both of these prototype systems are limited in scope by focussing on the earliest design stages and restricted in their understanding of the inherent complexity of a design state, they nevertheless promise a paradigm shift in computer-aided design.
series DDSS
last changed 2003/08/07 16:36

_id 06e8
authors Knight, Michael W. and Brown, Andre G.P.
year 2000
title Interfaces for Virtual Environments; A Review Recent Developments and Potential Ways forward
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 215-219
doi https://doi.org/10.52842/conf.ecaade.2000.215
summary The physical and visual nature of the interface devices and media that enable the human agent to interact with a virtual world have evolved over the past few years. In this paper we consider the different lines of development that have taken place in the refinement of these interfaces and summarise what has been learned about the appropriate nature of the interface for such interaction. In terms of the physical aspects we report on the kind of devices that have been used to enable the human agent to operate within the computer generated environment. We point out the successes and failures in the systems that have been tried out in recent years. Likewise we consider the kinds of software generated interface that have been used to represent virtual worlds. Again, we review the efficacy of the environments that have been devised; the quality of the Cyberplace. Our aim is to be able to comment on the effectiveness of the systems that have been devised from a number of points of view. We consider the physical and software-based aids for navigation; the nature of the representation of architectural worlds; strengthening “groundedness”; the inclusion of “otherness”; and reinforcement of the idea of “presence”
keywords Virtual Environments, Games Engines, Collaborative Design, Navigation Metaphors
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:51

_id ga0008
id ga0008
authors Koutamanis, Alexander
year 2000
title Redirecting design generation in architecture
source International Conference on Generative Art
summary Design generation has been the traditional culmination of computational design theory in architecture. Motivated either by programmatic and functional complexity (as in space allocation) or by the elegance and power of representational analyses (shape grammars, rectangular arrangements), research has produced generative systems capable of producing new designs that satisfied certain conditions or of reproducing exhaustively entire classes (such as all possible Palladian villas), comprising known and plausible new designs. Most generative systems aimed at a complete spatial design (detailing being an unpopular subject), with minimal if any intervention by the human user / designer. The reason for doing so was either to give a demonstration of the elegance, power and completeness of a system or simply that the replacement of the designer with the computer was the fundamental purpose of the system. In other words, the problem was deemed either already resolved by the generative system or too complex for the human designer. The ongoing democratization of the computer stimulates reconsideration of the principles underlying existing design generation in architecture. While the domain analysis upon which most systems are based is insightful and interesting, jumping to a generative conclusion was almost always based on a very sketchy understanding of human creativity and of the computer's role in designing and creativity. Our current perception of such matters suggests a different approach, based on the augmentation of intuitive creative capabilities with computational extensions. The paper proposes that architectural generative design systems can be redirected towards design exploration, including the development of alternatives and variations. Human designers are known to follow inconsistent strategies when confronted with conflicts in their designs. These strategies are not made more consistent by the emerging forms of design analysis. The use of analytical means such as simulation, couple to the necessity of considering a rapidly growing number of aspects, means that the designer is confronted with huge amounts of information that have to be processed and integrated in the design. Generative design exploration that can combine the analysis results in directed and responsive redesigning seems an effective method for the early stages of the design process, as well as for partial (local) problems in later stages. The transformation of generative systems into feedback support and background assistance for the human designer presupposes re-orientation of design generation with respect to the issues of local intelligence and autonomy. Design generation has made extensive use of local intelligence but has always kept it subservient to global schemes that tended to be holistic, rigid or deterministic. The acceptance of local conditions as largely independent structures (local coordinating devices) affords a more flexible attitude that permits not only the emergence of internal conflicts but also the resolution of such conflicts in a transparent manner. The resulting autonomy of local coordinating devices can be expanded to practically all aspects and abstraction levels. The ability to have intelligent behaviour built in components of the design representation, as well as in the spatial and building elements they signify, means that we can create the new, sharper tools required by the complexity resulting from the interpretation of the built environment as a dynamic configuration of co-operating yet autonomous parts that have to be considered independently and in conjunction with each other.   P.S. The content of the paper will be illustrated by a couple of computer programs that demonstrate the princples of local intelligence and autonomy in redesigning. It is possible that these programs could be presented as independent interactive exhibits but it all depends upon the time we can make free for the development of self-sufficient, self-running demonstrations until December.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ddssar0019
id ddssar0019
authors Madrazo, Leandro
year 2000
title Networking: media, representation and architecture
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary In this paper we present a pedagogic work, carried out in a third year architecture course, focused on the relationship between teaching content and media. The subject-matter of the course is the concept of representation; an eminently philosophical issue which transcends the limits of a particular discipline. The media that have been used are mostly the web, along with other standard programs to process text and images, create models and animations. The core of this research work is the course ‘Sistemas de Representación’, which has taken place for the first time in the academic year 1999/00. The course is structured in six themes, each one standing for a system of representation: TEXT, FIGURE, OBJECT, IMAGE, SPACE and LIGHT. Within every system, a variety of topics dealing with the concept of representation are addressed in an interdisciplinary manner. A web based learning environment named NETWORKING has been created especially for the course. This environment allows students to perform a variety of collaborative works: drawing visual and linguistic relationships, developing further the works of other students, and participating in collective processes of form generation and space perception.
series DDSS
last changed 2003/08/07 16:36

_id ga0010
id ga0010
authors Moroni, A., Zuben, F. Von and Manzolli, J.
year 2000
title ArTbitrariness in Music
source International Conference on Generative Art
summary Evolution is now considered not only powerful enough to bring about the biological entities as complex as humans and conciousness, but also useful in simulation to create algorithms and structures of higher levels of complexity than could easily be built by design. In the context of artistic domains, the process of human-machine interaction is analyzed as a good framework to explore creativity and to produce results that could not be obtained without this interaction. When evolutionary computation and other computational intelligence methodologies are involved, every attempt to improve aesthetic judgement we denote as ArTbitrariness, and is interpreted as an interactive iterative optimization process. ArTbitrariness is also suggested as an effective way to produce art through an efficient manipulation of information and a proper use of computational creativity to increase the complexity of the results without neglecting the aesthetic aspects [Moroni et al., 2000]. Our emphasis will be in an approach to interactive music composition. The problem of computer generation of musical material has received extensive attention and a subclass of the field of algorithmic composition includes those applications which use the computer as something in between an instrument, in which a user "plays" through the application's interface, and a compositional aid, which a user experiments with in order to generate stimulating and varying musical material. This approach was adopted in Vox Populi, a hybrid made up of an instrument and a compositional environment. Differently from other systems found in genetic algorithms or evolutionary computation, in which people have to listen to and judge the musical items, Vox Populi uses the computer and the mouse as real-time music controllers, acting as a new interactive computer-based musical instrument. The interface is designed to be flexible for the user to modify the music being generated. It explores evolutionary computation in the context of algorithmic composition and provides a graphical interface that allows to modify the tonal center and the voice range, changing the evolution of the music by using the mouse[Moroni et al., 1999]. A piece of music consists of several sets of musical material manipulated and exposed to the listener, for example pitches, harmonies, rhythms, timbres, etc. They are composed of a finite number of elements and basically, the aim of a composer is to organize those elements in an esthetic way. Modeling a piece as a dynamic system implies a view in which the composer draws trajectories or orbits using the elements of each set [Manzolli, 1991]. Nonlinear iterative mappings are associated with interface controls. In the next page two examples of nonlinear iterative mappings with their resulting musical pieces are shown.The mappings may give rise to attractors, defined as geometric figures that represent the set of stationary states of a non-linear dynamic system, or simply trajectories to which the system is attracted. The relevance of this approach goes beyond music applications per se. Computer music systems that are built on the basis of a solid theory can be coherently embedded into multimedia environments. The richness and specialty of the music domain are likely to initiate new thinking and ideas, which will have an impact on areas such as knowledge representation and planning, and on the design of visual formalisms and human-computer interfaces in general. Above and bellow, Vox Populi interface is depicted, showing two nonlinear iterative mappings with their resulting musical pieces. References [Manzolli, 1991] J. Manzolli. Harmonic Strange Attractors, CEM BULLETIN, Vol. 2, No. 2, 4 -- 7, 1991. [Moroni et al., 1999] Moroni, J. Manzolli, F. Von Zuben, R. Gudwin. Evolutionary Computation applied to Algorithmic Composition, Proceedings of CEC99 - IEEE International Conference on Evolutionary Computation, Washington D. C., p. 807 -- 811,1999. [Moroni et al., 2000] Moroni, A., Von Zuben, F. and Manzolli, J. ArTbitration, Las Vegas, USA: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program – GECCO, 143 -- 145, 2000.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id f7e2
authors Noriega, Farid Mokhtar
year 2000
title Activities Oriented Environments. A Conceptual Model for Building Advanced CAAD Systems
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 131-134
doi https://doi.org/10.52842/conf.ecaade.2000.131
summary The Activities Oriented Design Environments, is a collection of proposals that will introduce important changes in the interaction procedures and integration mechanisms, in the design of CAAD software and the operating environments that support them. We will discuss how this environment uses the architectural activities as a reference for his organizational scheme, and the structural rules that control it’s operations.
keywords CAAD, CAAD Design Pradigms, CAAD User Interfaces, Architectural Design Management
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:58

_id ddssar0022
id ddssar0022
authors Peng, C., Cerulli, C., Lawson, B., Cooper, G., Rezqui, Y. and Jackson, M.
year 2000
title Recording and managing design decision-making processes through an object-oriented framework
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary In this paper we describe our current research into an object-oriented approach to the recording and managing of design decision-making in the processes of building design. The Advanced Design Support for the Construction Design Process (ADS) project, funded under the Innovative Manufacturing Initiative by the UK Engineering and Physical Sciences Research Council (EPSRC), aims to exploit and demonstrate the benefits of a CAD-based Design Decision Support System. The research focuses on how to provide designers with tools for recording and managing the group dynamics of design decision making in a project's life time without intruding too much on the design process itself. In collaboration with Building Design Partnership, a large multidisciplinary construction design practice, we look at design projects that require decision-making on an extraordinarily wide range of complex issues, and many different professional consultants were involved in making and approving these decisions. We are interested in developing an advanced CAD tool that will facilitate capturing designers' rationales underlying their design decision making throughout the project. The system will also enable us to explore how a recorded project history of decision-making can be searched and browsed by members of the project team during and after design development.
series DDSS
last changed 2003/08/07 16:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 36HOMELOGIN (you are user _anon_574859 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002