CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 747

_id fa1b
authors Haapasalo, H.
year 2000
title Creative computer aided architectural design An internal approach to the design process
source University of Oulu (Finland)
summary This survey can be seen as quite multidisciplinary research. The basis for this study has been inapplicability of different CAD user interfaces in architectural design. The objective of this research is to improve architectural design from the creative problem-solving viewpoint, where the main goal is to intensify architectural design by using information technology. The research is linked to theory of methods, where an internal approach to design process means studying the actions and thinking of architects in the design process. The research approach has been inspired by hermeneutics. The human thinking process is divided into subconscious and conscious thinking. The subconscious plays a crucial role in creative work. The opposite of creative work is systematic work, which attempts to find solutions by means of logical inference. Both creative and systematic problem solving have had periods of predominance in the history of Finnish architecture. The perceptions in the present study indicate that neither method alone can produce optimal results. Logic is one of the tools of creativity, since the analysis and implementation of creative solutions require logical thinking. The creative process cannot be controlled directly, but by creating favourable work conditions for creativity, it can be enhanced. Present user interfaces can make draughting and the creation of alternatives quicker and more effective in the final stages of designing. Only two thirds of the architects use computers in working design, even the CAD system is being acquired in greater number of offices. User interfaces are at present inflexible in sketching. Draughting and sketching are the basic methods of creative work for architects. When working with the mouse, keyboard and screen the natural communication channel is impaired, since there is only a weak connection between the hand and the line being drawn on the screen. There is no direct correspondence between hand movements and the lines that appear on the screen, and the important items cannot be emphasized by, for example, pressing the pencil more heavily than normally. In traditional sketching the pen is a natural extension of the hand, as sketching can sometimes be controlled entirely by the unconscious. Conscious efforts in using the computer shift the attention away from the actual design process. However, some architects have reached a sufficiently high level of skill in the use of computer applications in order to be able to use them effectively in designing without any harmful effect on the creative process. There are several possibilities in developing CAD systems aimed at architectural design, but the practical creative design process has developed during a long period of time, in which case changing it in a short period of time would be very difficult. Although CAD has had, and will have, some evolutionary influences on the design process of architects as an entity, the future CAD user interface should adopt its features from the architect's practical and creative design process, and not vice versa.
keywords Creativity, Systematicism, Sketching
series thesis:PhD
email
more http://herkules.oulu.fi/isbn9514257545/
last changed 2003/02/12 22:37

_id d438
authors Moloney, Jules
year 1999
title Charcoal, Bits and Balsa: Cross Media Tactics in the Foundation Design Studio
doi https://doi.org/10.52842/conf.ecaade.1999.110
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 110-115
summary This paper investigates the space between the computer and traditional design media. The focus is the identification of strategies for extending creativity in the foundation year design studio via tactics of cross media working. The integration of computers into the design studio are described within a particular drawing culture at the University of Auckland. Creativity is related to a pedagogy of 'pattern' developed by M. Linzey. The cross media tactics are based on practical adaptation of the advantages of computing to the context of the foundation design studio (12 weeks / 80 students / 24 computers)
keywords Education, Media, Studio, Creativity
series eCAADe
email
last changed 2022/06/07 07:58

_id avocaad_2001_09
id avocaad_2001_09
authors Yu-Tung Liu, Yung-Ching Yeh, Sheng-Cheng Shih
year 2001
title Digital Architecture in CAD studio and Internet-based competition
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Architectural design has been changing because of the vast and creative use of computer in different ways. From the viewpoint of designing itself, computer has been used as drawing tools in the latter phase of design (Mitchell 1977; Coyne et al. 1990), presentation and simulation tools in the middle phase (Liu and Bai 2000), and even critical media which triggers creative thinking in the very early phase (Maher et al. 2000; Liu 1999; Won 1999). All the various roles that computer can play have been adopted in a number of professional design corporations and so-called computer-aided design (CAD) studio in schools worldwide (Kvan 1997, 2000; Cheng 1998). The processes and outcomes of design have been continuously developing to capture the movement of the computer age. However, from the viewpoint of social-cultural theories of architecture, the evolvement of design cannot be achieved solely by designers or design processes. Any new idea of design can be accepted socially, culturally and historically only under one condition: The design outcomes could be reviewed and appreciated by critics in the field at the time of its production (Csikszentmihalyi 1986, 1988; Schon and Wiggins 1992; Liu 2000). In other words, aspects of design production (by designers in different design processes) are as critical as those of design appreciation (by critics in different review processes) in the observation of the future trends of architecture.Nevertheless, in the field of architectural design with computer and Internet, that is, so-called computer-aided design computer-mediated design, or internet-based design, most existing studies pay more attentions to producing design in design processes as mentioned above. Relatively few studies focus on how critics act and how they interact with designers in the review processes. Therefore, this study intends to investigate some evolving phenomena of the interaction between design production and appreciation in the environment of computer and Internet.This paper takes a CAD studio and an Internet-based competition as examples. The CAD studio includes 7 master's students and 2 critics, all from the same countries. The Internet-based competition, held in year 2000, includes 206 designers from 43 counties and 26 critics from 11 countries. 3 students and the 2 critics in the CAD studio are the competition participating designers and critics respectively. The methodological steps are as follows: 1. A qualitative analysis: observation and interview of the 3 participants and 2 reviewers who join both the CAD studio and the competition. The 4 analytical criteria are the kinds of presenting media, the kinds of supportive media (such as verbal and gesture/facial data), stages of the review processes, and interaction between the designer and critics. The behavioral data are acquired by recording the design presentation and dialogue within 3 months. 2. A quantitative analysis: statistical analysis of the detailed reviewing data in the CAD studio and the competition. The four 4 analytical factors are the reviewing time, the number of reviewing of the same project, the comparison between different projects, and grades/comments. 3. Both the qualitative and quantitative data are cross analyzed and discussed, based on the theories of design thinking, design production/appreciation, and the appreciative system (Goodman 1978, 1984).The result of this study indicates that the interaction between design production and appreciation during the review processes could differ significantly. The review processes could be either linear or cyclic due to the influences from the kinds of media, the environmental discrepancies between studio and Internet, as well as cognitive thinking/memory capacity. The design production and appreciation seem to be more linear in CAD studio whereas more cyclic in the Internet environment. This distinction coincides with the complementary observations of designing as a linear process (Jones 1970; Simon 1981) or a cyclic movement (Schon and Wiggins 1992). Some phenomena during the two processes are also illustrated in detail in this paper.This study is merely a starting point of the research in design production and appreciation in the computer and network age. The future direction of investigation is to establish a theoretical model for the interaction between design production and appreciation based on current findings. The model is expected to conduct using revised protocol analysis and interviews. The other future research is to explore how design computing creativity emerge from the process of producing and appreciating.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id b0e7
authors Ahmad Rafi, M.E. and Karboulonis, P.
year 2000
title The Re-Convergence of Art and Science: A Vehicle for Creativity
doi https://doi.org/10.52842/conf.caadria.2000.491
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 491-500
summary Ever-increasing complexity in product design and the need to deliver a cost-effective solution that benefits from a dynamic approach requires the employment and adoption of innovative design methods which ensure that products are of the highest quality and meet or exceed customers' expectations. According to Bronowski (1976) science and art were originally two faces of the same human creativity. However, as civilisation advances and works became specialised, the dichotomy of science and art gradually became apparent. Hence scientists and artists were born, and began to develop work that was polar opposite. The sense of beauty itself became separated from science and was confined within the field of art. This dichotomy existed through mankind's efforts in advancing civilisation to its present state. This paper briefly examines the relationship between art and science through the ages and discusses their relatively recent re-convergence. Based on this hypothesis, this paper studies the current state of the convergence between arts and sciences and examines the current relationship between the two by considering real world applications and products. The study of such products and their successes and impact they had in the marketplace due to their designs and aesthetics rather than their advanced technology that had partially failed them appears to support this argument. This text further argues that a re-convergence between art and science is currently occurring and highlights the need for accelerating this process. It is suggested that re-convergence is a result of new technologies which are adopted by practitioners that include effective visualisation and communication of ideas and concepts. Such elements are widely found today in multimedia and Virtual Environments (VEs) where such tools offer increased power and new abilities to both scientists and designers as both venture in each other's domains. This paper highlights the need for the employment of emerging computer based real-time interactive technologies that are expected to enhance the design process through real-time prototyping and visualisation, better decision-making, higher quality communication and collaboration, lessor error and reduced design cycles. Effective employment and adoption of innovative design methods that ensure products are delivered on time, and within budget, are of the highest quality and meet customer expectations are becoming of ever increasing importance. Such tools and concepts are outlined and their roles in the industries they currently serve are identified. Case studies from differing fields are also studied. It is also suggested that Virtual Reality interfaces should be used and given access to Computer Aided Design (CAD) model information and data so that users may interrogate virtual models for additional information and functionality. Adoption and appliance of such integrated technologies over the Internet and their relevance to electronic commerce is also discussed. Finally, emerging software and hardware technologies are outlined and case studies from the architecture, electronic games, and retail industries among others are discussed, the benefits are subsequently put forward to support the argument. The requirements for adopting such technologies in financial, skills required and process management terms are also considered and outlined.
series CAADRIA
email
last changed 2022/06/07 07:54

_id 28f3
authors Alvarado, R.G., Vildósola, G.V., Parra, J.C. and Jara, M.R.
year 2000
title Creacion/Creatividad: Evaluando Diseños Arquitectónicos con Realidad Virtual (Creation/Creativity: Evaluating Architectural Designs by means of Virtual Reality)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 243-246
summary ¿Can the computer improves the architectural creativity? This question is explored through a Virtual-Reality system developed for the modeling of timber structures, based on parametric elements, constructive programming and immersive visualization on real-time. Making experiences of evaluation with advanced students of architecture, whose use the system in the beginning of projects, compared with other group use not the system. This research faces the possibilities to rationalizate part of the creative process in architecture, broading the role of computer and its contribution to quality of design, and extending the possibilities to teach and share the creation of project. It is argue that major potential in this field is the swiftness, formal variety and spatial living of design, challenging the differences between objective and subjective.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 5007
authors Elezkurtaj, Tomor and Franck, Georg
year 1999
title Genetic Algorithms in Support of Creative Architectural Design
doi https://doi.org/10.52842/conf.ecaade.1999.645
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 645-651
summary The functions supported by commercial CAAD software are drawing, construction and presentation. Up to now few programs supporting the creative part of architectural problem solving have become available. The grand hopes of symbolic AI to program creative architectural design have been disappointing. In the meantime, methods called referred to as New AI have become available. Such methods includegenetic algorithms (GA). But GA, though successfully applied in other fields of engineering, still waits to be applied broadly in architectural design. A main problem lies in defining function in architecture. It is much harder to define the function of a building than that of a machine. Without specifying the function of the artifact, the fitness function of the design variants participating in the survival game of artificial evolution remains undetermined. It is impossible to fully specify the fitness function of architecture. The approach presented is one of circumventing a full specification through dividing labor between the GA software and its user. The fitness function of architectural ground plans is typically defined in terms only of the proportions of the room to be accommodated and certain topological relations between them. The rest is left to the human designer who interactively intervenes in the evolution game as displayed on the screen.
keywords Genetic Algorithms, Creative Architectural Design
series eCAADe
email
last changed 2022/06/07 07:55

_id f91f
authors Elezkurtaj, Tomor and Franck, Georg
year 2000
title Geometry and Topology. A User-Interface to Artificial Evolution in Architectural Design
doi https://doi.org/10.52842/conf.ecaade.2000.309
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 309-312
summary The paper presents a system that supports architectural floor plan design interactively. The method of problem solving implemented is a combination of an evolutionary strategy (ES) and a genetic algorithm (GA). The problem to be solved consists of fitting a number of rooms (n) into an outline by observing functional requirements. The rooms themselves are specified concerning size, function and preferred proportion. The functional requirements entering the fitness functions are expressed in terms of the proportions of the rooms and the neighbourhood relations between them. The system is designed to deal with one of the core problems of computer supported creativity in architecture. For architecture, form not only, but also function is relevant. Without specifying the function that a piece of architecture is supposed to fulfil, it is hard to support its design by computerised methods of problem solving and optimisation. In architecture, however, function relates to comfort, easiness of use, and aesthetics as well. Since it is extraordinary hard, if not impossible, to operationalise aesthetics, computer aided support of creative architectural design is still in its infancy.
keywords New AI, Genetic Algorithms, Artificial Evolution, creative Architectural Design, Interactive Design, Topology
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id gerardgabriel_phd
id gerardgabriel_phd
authors Gabriel, Gerard Caesar
year 2000
title COMPUTER-MEDIATED COMMUNICATION IN DESIGN
source PhD Thesis, Faculty of Architecture, University of Sydney
summary Up till now, architects collaborating with other colleagues did so mostly face-to-face (FTF). They had to be in the same space (co-located) at the same time. Communication was ‘spontaneous’ and ideas were represented, whether verbal or nonverbal, by talking and using ‘traditional drawing tools’. If they were geographically displaced, the interaction was then space affected as well as the probability of being time affected. In this case communication was usually mediated through the telephone, and graphically represented ideas were sent by Fax or posted documents. Recently, some architectural firms started using modems and Internet connections to exchange information, by transferring CAD drawings as well as design information, through e-mail and file transfer protocol (FTP). Discussing ideas in architecture, as a more abstract notion, is different from discussing other more concrete arguments using video conferencing. It is more important to ‘see’ what is being discussed at hand than ‘watch’ the other person(s) involved in the discussion. In other words the data being conveyed might be of more importance than the mode of communication. Taking into consideration recent developments in computer and communication technologies this thesis investigates different communication channels utilised in architectural collaboration through Computer Mediated Collaborative Design (CMCD) sessions as opposed to FTF sessions. This thesis investigates the possible effects these different channels have on collaborative design in general and collaborative design communication in particular. We argue that successful CMCD does not necessarily mean emulating close proximity environments. Excluding certain communication channels in a CMCD environment might affect the flow and quantity of synchronous collaborative communication, but not necessarily the quality and content of mutually communicated and represented design ideas. Therefore different communication channels might affect the type of communication and not necessarily the content of the communication. We propose that audio and video are not essential communication channels in CMCD environments. We posit that architects will collaborate and communicate design representations effectively although with some differences, since those two channels might cause interruptions and successful collaborative sessions can take place without them. For this purpose we conducted twenty-four one-hour experiments involving final year architecture students all working to the same design brief. The experiments were divided into three categories, FTF, full computer mediated collaborative design sessions (CMCD-a; audio-video conferencing plus whiteboard as a shared drawing space) and limited computer mediated collaborative design sessions (CMCD-b; with Lambda MOO used as a chat medium plus whiteboard as a shared drawing space). The experiments were video and audio taped, transcribed and coded into a custom developed coding scheme. The results of the analysed coded data and observations of the videotapes provided evidence that there were noticeable differences between the three categories. There was more design communication and less communication control in the CMCD-b category compared to the FTF and CMCD-a categories. Verbal communication became shorter and straight to the point in CMCD-b as opposed to spontaneous non-stop chat in the other two categories. Moreover in CMCD-b the subjects were observed to be more reflective as well as choosing and re-examining their words to explain ideas to their partners. At times they were seen scrolling back through the text of the conversation in order to re-analyse or interpret the design ideas at hand. This was impossible in FTF and CMCD-a sessions, since the subjects were more spontaneous and audio representations were lost as soon as they were uttered. Also the video channel in the CMCD-a category was ignored and hardly used except for the first few minutes of the experiments, for a brief exchange of light humour on the appearance of each subject. The results obtained from analysing the experiments helped us conclude that different communication channels produce different collaborative environments. The three categories of communication for architectural collaboration explored in our experiments are indicative of the alternatives available to architects now. What is not clear to architects is why they would choose one category over another. We propose that each category has its own strengths and difficulties for architectural collaboration, and therefore should be selected on the basis of the type of communication considered to be most effective for the stage and tasks of the design project.
series thesis:PhD
type normal paper
email
last changed 2005/09/09 13:02

_id fcb5
authors Lee, Yuan-Jang
year 2000
title The Relationship between Problem-Finding and Computing Media in Design Creativity
doi https://doi.org/10.52842/conf.caadria.2000.277
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 277-285
summary Designing is defined as a process of problem-finding and problem-solving. According to studies, the problem-finding during the early period of designing is the key point for influencing creativity, and the study also indicates that the computer originally used for presenting during the late period of designing can also be used during the early stage, but now we lack studies about creativity and computers. This study uses protocol analysis as an experimental methodology. We hope to clarify the relationship between computers and problem-solving, and to compare the differences between traditional materials and computers when used to discover problems.
series CAADRIA
email
last changed 2022/06/07 07:52

_id ddssar0019
id ddssar0019
authors Madrazo, Leandro
year 2000
title Networking: media, representation and architecture
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary In this paper we present a pedagogic work, carried out in a third year architecture course, focused on the relationship between teaching content and media. The subject-matter of the course is the concept of representation; an eminently philosophical issue which transcends the limits of a particular discipline. The media that have been used are mostly the web, along with other standard programs to process text and images, create models and animations. The core of this research work is the course ‘Sistemas de Representación’, which has taken place for the first time in the academic year 1999/00. The course is structured in six themes, each one standing for a system of representation: TEXT, FIGURE, OBJECT, IMAGE, SPACE and LIGHT. Within every system, a variety of topics dealing with the concept of representation are addressed in an interdisciplinary manner. A web based learning environment named NETWORKING has been created especially for the course. This environment allows students to perform a variety of collaborative works: drawing visual and linguistic relationships, developing further the works of other students, and participating in collective processes of form generation and space perception.
series DDSS
last changed 2003/08/07 16:36

_id e6fb
authors McFadzean, Jeanette
year 1999
title Computational Sketch Analyser (CSA): Extending the Boundaries of Knowledge in CAAD
doi https://doi.org/10.52842/conf.ecaade.1999.503
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 503-510
summary This paper focuses on the cognitive problem-solving strategies of professional architectural designers and their use of external representations for the production of creative ideas. Using a new form of protocol analysis (Computational Sketch Analysis), the research has analysed five architects' verbal descriptions of their cognitive reasoning strategies during conceptual designing. It compares these descriptions to a computational analysis of the architects' sketches and sketching behaviour. The paper describes how the current research is establishing a comprehensive understanding of the mapping between conceptualisation, cognition, drawing, and complex problem solving. The paper proposes a new direction for Computer Aided Architectural Design tools (CAAD). It suggests that in order to extend the boundaries of knowledge in CAAD an understanding of the complex nature of architectural conceptual problem-solving needs to be incorporated into and supported by future conceptual design tools.
keywords Computational Sketch Analysis, Conceptual Design
series eCAADe
email
last changed 2022/06/07 07:58

_id ga0014
id ga0014
authors McGuire, Kevin
year 2000
title Controlling Chaos: a Simple Deterministic System for Creating Complex Organic Shapes
source International Conference on Generative Art
summary It is difficult and frustrating to create complex organic shapes using the current set of computer graphic programs. One reason is because the geometry of nature is different from that of our tools. Its self-similarity and fine detail are derived from growth processes that are very different from the working process imposed by drawing programs. This mismatch makesit difficult to create natural looking artifacts. Drawing programs provide a palette of shapes that may be manipulated in a variety ways, but the palette is limited and based on a cold Euclidean geometry. Clouds, rivers, and rocks are not lines or circles. Paint programs provide interesting filters and effects, but require great skill and effort. Always, the details must be arduously managed by the artist. This limits the artist's expressive power. Fractals have stunning visual richness, but the artist's techniques are limited to those of choosing colours and searching the fractal space. Genetic algorithms provide a powerful means for exploring a space of variations, but the artist's skill is limited by the very difficult ability to arrive at the correct fitness function. It is hard to get the picture you wanted. Ideally, the artist should have macroscopic control over the creation while leaving the computer to manage the microscopic details. For the result to feel organic, the details should be rich, consistent and varied, cohesive but not repetitious. For the results to be reproducible, the system should be deterministic. For it to be expressive there should be a cause-effect relationship between the actions in the program and change in the resulting picture. Finally, it would be interesting if the way we drew was more closely related to the way things grew. We present a simple drawing program which provides this mixture of macroscopic control with free microscopic detail. Through use of an accretion growth model, the artist controls large scale structure while varied details emerge naturally from senstive dependence in the system. Its algorithms are simple and deterministic, so its results are predictable and reproducible. The overall resulting structure can be anticipated, but it can also surprise. Despite its simplicity, it has been used to generate a surprisingly rich assortment of complex organic looking pictures.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga0010
id ga0010
authors Moroni, A., Zuben, F. Von and Manzolli, J.
year 2000
title ArTbitrariness in Music
source International Conference on Generative Art
summary Evolution is now considered not only powerful enough to bring about the biological entities as complex as humans and conciousness, but also useful in simulation to create algorithms and structures of higher levels of complexity than could easily be built by design. In the context of artistic domains, the process of human-machine interaction is analyzed as a good framework to explore creativity and to produce results that could not be obtained without this interaction. When evolutionary computation and other computational intelligence methodologies are involved, every attempt to improve aesthetic judgement we denote as ArTbitrariness, and is interpreted as an interactive iterative optimization process. ArTbitrariness is also suggested as an effective way to produce art through an efficient manipulation of information and a proper use of computational creativity to increase the complexity of the results without neglecting the aesthetic aspects [Moroni et al., 2000]. Our emphasis will be in an approach to interactive music composition. The problem of computer generation of musical material has received extensive attention and a subclass of the field of algorithmic composition includes those applications which use the computer as something in between an instrument, in which a user "plays" through the application's interface, and a compositional aid, which a user experiments with in order to generate stimulating and varying musical material. This approach was adopted in Vox Populi, a hybrid made up of an instrument and a compositional environment. Differently from other systems found in genetic algorithms or evolutionary computation, in which people have to listen to and judge the musical items, Vox Populi uses the computer and the mouse as real-time music controllers, acting as a new interactive computer-based musical instrument. The interface is designed to be flexible for the user to modify the music being generated. It explores evolutionary computation in the context of algorithmic composition and provides a graphical interface that allows to modify the tonal center and the voice range, changing the evolution of the music by using the mouse[Moroni et al., 1999]. A piece of music consists of several sets of musical material manipulated and exposed to the listener, for example pitches, harmonies, rhythms, timbres, etc. They are composed of a finite number of elements and basically, the aim of a composer is to organize those elements in an esthetic way. Modeling a piece as a dynamic system implies a view in which the composer draws trajectories or orbits using the elements of each set [Manzolli, 1991]. Nonlinear iterative mappings are associated with interface controls. In the next page two examples of nonlinear iterative mappings with their resulting musical pieces are shown.The mappings may give rise to attractors, defined as geometric figures that represent the set of stationary states of a non-linear dynamic system, or simply trajectories to which the system is attracted. The relevance of this approach goes beyond music applications per se. Computer music systems that are built on the basis of a solid theory can be coherently embedded into multimedia environments. The richness and specialty of the music domain are likely to initiate new thinking and ideas, which will have an impact on areas such as knowledge representation and planning, and on the design of visual formalisms and human-computer interfaces in general. Above and bellow, Vox Populi interface is depicted, showing two nonlinear iterative mappings with their resulting musical pieces. References [Manzolli, 1991] J. Manzolli. Harmonic Strange Attractors, CEM BULLETIN, Vol. 2, No. 2, 4 -- 7, 1991. [Moroni et al., 1999] Moroni, J. Manzolli, F. Von Zuben, R. Gudwin. Evolutionary Computation applied to Algorithmic Composition, Proceedings of CEC99 - IEEE International Conference on Evolutionary Computation, Washington D. C., p. 807 -- 811,1999. [Moroni et al., 2000] Moroni, A., Von Zuben, F. and Manzolli, J. ArTbitration, Las Vegas, USA: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program – GECCO, 143 -- 145, 2000.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id bf19
id bf19
authors Rafi, A
year 2001
title Design computing: A new challenge for creative synergy
source In Saito, N. (Ed.), Creative digital media: Its impact on the new century (pp. 132-136), Japan: Keio University Press
summary As content becomes increasingly significant in giving ‘face’ to information technology (IT), the need to train and produce content designers has also become more and more important. The development of powerful computer technologies and the complexity of design have demanded designers to re-examine the design process and consider the adaptation of tools that will provide for creativity, improve the overall design process and, at the same time, reveal new insights (Rafi and Karboulonis, 2000). This paper gives an overview of the relationship between art and science through the ages, and discusses their relatively recent re-convergence. This text further argues that a re-convergence between art and science is currently occurring, highlighting the need to accelerate the process. It is suggested that re-convergence is a result of new technologies being researched, namely related to effective visualisation and communication of ideas and concepts, subsequently adopted by practitioners. Such elements, with tools that offer increased power and new abilities, are widely found today in the multimedia and the Virtual Environment (VE) as scientists and designers venture into each other’s domain. This paper also argues that content designers of the future must not only be both artist and technologist, but artist and technologist that are aware of the context in which content is being developed. The presentation will be a showcase of our exploration at the Faculty of Creative Multimedia, Multimedia University for the last 4 years, in integrating design and computer skills – the synergy that we called DESIGN COMPUTING.
keywords design computing, creativity, content, design
series book
type normal paper
email
last changed 2007/09/13 03:43

_id 3888
authors Reffat, Rabee M.
year 2000
title Computational Situated Learning in Designing - Application to Architectural Shape Semantics
source The University of Sydney, Faculty of Architecture
summary Learning the situatedness (applicability conditions), of design knowledge recognised from design compositions is the central tenet of the research presented in this thesis. This thesis develops and implements a computational system of situated learning and investigates its utility in designing. Situated learning is based on the concept that "knowledge is contextually situated and is fundamentally influenced by its situation". In this sense learning is tuned to the situations within which "what you do when you do matters". Designing cannot be predicted and the results of designing are not based on actions independent of what is being designed or independent of when, where and how it was designed. Designers' actions are situation dependent (situated), such that designers work actively with the design environment within the specific conditions of the situation where neither the goal state nor the solution space is completely predetermined. In designing, design solutions are fluid and emergent entities generated by dynamic and situated activities instead of fixed design plans. Since it is not possible in advance to know what knowledge to use in relation to any situation we need to learn knowledge in relation to its situation, i.e. learn the applicability conditions of knowledge. This leads towards the notion of the situation as having the potential role of guiding the use of knowledge.

Situated Learning in Designing (SLiDe) is developed and implemented within the domain of architectural shape composition (in the form of floor plans), to construct the situatedness of shape semantics. An architectural shape semantic is a set of characteristics with a semantic meaning based on a particular view of a shape such as reflection symmetry, adjacency, rotation and linearity. Each shape semantic has preconditions without which it cannot be recognised. Such preconditions indicate nothing about the situation within which this shape semantic was recognised. The situatedness or the applicability conditions of a shape semantic is viewed as, the interdependent relationships between this shape semantic as the design knowledge in focus, and other shape semantics across the observations of a design composition. While designing, various shape semantics and relationships among them emerge in different representations of a design composition. Multiple representations of a design composition by re-interpretation have been proposed to serve as a platform for SLiDe. Multiple representations provide the opportunity for different shape semantics and relationships among them to be found from a single design composition. This is important if these relationships are to be used later because it is not known in advance which of the possible relationships could be constructed are likely to be useful. Hence, multiple representations provide a platform for different situations to be encountered. A symbolic representation of shape and shape semantics is used in which the infinite maximal lines form the representative primitives of the shape.

SLiDe is concerned with learning the applicability conditions (situatedness), of shape semantics locating them in relation to situations within which they were recognised (situation dependent), and updating the situatedness of shape semantics in response to new observations of the design composition. SLiDe consists of three primary modules: Generator, Recogniser and Incremental Situator. The Generator is used by the designer to develop a set of multiple representations of a design composition. This set of representations forms the initial design environment of SLiDe. The Recogniser detects shape semantics in each representation and produces a set of observations, each of which is comprised of a group of shape semantics recognised at each corresponding representation. The Incremental Situator module consists of two sub-modules, Situator and Restructuring Situator, and utilises an unsupervised incremental clustering mechanism not affected by concept drift. The Situator module locates recognised shape semantics in relation to their situations by finding regularities of relationships among them across observations of a design composition and clustering them into situational categories organised in a hierarchical tree structure. Such relationships change over time due to the changes taken place in the design environment whenever further representations are developed using the Generator module and new observations are constructed by the Recogniser module. The Restructuring Situator module updates previously learned situational categories and restructures the hierarchical tree accordingly in response to new observations.

Learning the situatedness shape semantics may play a crucial role in designing if designers pursue further some of these shape semantics. This thesis illustrates an approach in which SLiDe can be utilised in designing to explore the shapes in a design composition in various ways; bring designers! attention to potentially hidden features and shape semantics of their designs; and maintain the integrity of the design composition by using the situatedness of shape semantics. The thesis concludes by outlining future directions for this research to learn and update the situatedness of design knowledge within the context of use; considering the role of functional knowledge while learning the situatedness of design knowledge; and developing an autonomous situated agent-based designing system.

series thesis:PhD
email
last changed 2003/05/06 11:34

_id 9c96
authors Szalapaj, Peter and Chang, David C.
year 1999
title Computer Architectural Representation - Applying the VOIDs Framework to a Bridge Design Scheme
doi https://doi.org/10.52842/conf.ecaade.1999.387
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 387-394
summary A virtual environment presents sensory information and visual feedback to the user in order to give convincing illusion of an artificial world. In the architectural profession, the spatio-temporal metaphor in itself constitutes significant information retrieval, because we understand architecture by seeing it. This paper attempts to understand, and then to analyse the characteristics of representation of architectural models in virtual environments. We will examine the use and creativity of current computer generated architectural presentation in virtual environments. Our observations will be applied to the modelling of a bridge in Castlefield, Manchester, and evaluated by a group of students within the School of Architecture at Sheffield University. The conclusion of this paper will be the presentation of a conceptual structure for representing architectural models in virtual environments. This paper also explores the tension between the correspondence and constructivist views of representation. The correspondence view of representation relies on the idea that a representation corresponds to what is out there in the world. The constructivist view of representation advocates that any actual interpretation would depend on the context of their social and cultural backgrounds. However, the authors believe there should be a combination of these two views for architectural representation in virtual environments, and a framework developed by the authors - VOIDs will be presented.
keywords Virtual Environment, Architectural Representation, VOIDs, Correspondence, Constructivist
series eCAADe
email
last changed 2022/06/07 07:56

_id 1eac
authors Garner, S.
year 2000
title Is Sketching Still Relevant in Virtual Design Studios?
source Proceedings of DCNet, Sydney
summary Sketching, as a particular subset of drawing, has for a long time, been valued within design activity. Although they can appear rough, inaccurate or incomplete, sketches have been presented as both valuable output from, and evidence of, essential activity in designing by individuals and groups. This paper reflects on this value and asks whether sketching is relevant today, given the advances in computing and communications technology seen in modern virtual design environments. Is it time to let go of the metaphor of drawing or can this ancient human capability still tell us something relevant for the improvement of the virtual design studio? While freehand line drawings may not have the same importance in current virtual design studios the support of incompleteness, ambiguity and shared meaning in solution-focused and problem-focused thinking remains essential. The paper proposes that attention to 'graphic acts' has improved our understanding of sketching within collaborative designing. A particular type of fast, transitory 'thumbnail' sketch would appear to be important. If this is so then attention to its modern counterpart in the latest 3D, multi-user, immersive virtual design studios is overdue if they are to support the cognitive processes of creativity vital to design.
series other
last changed 2003/04/23 15:50

_id ddssar0016
id ddssar0016
authors Koutamanis, Alexander and Mitossi, Vicky
year 2000
title Grammatical and syntactic properties of CAAD representations for the early design stages
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary CAAD representations for the early design stages have traditionally focused on aspects apparently relating to design creativity, such as flexible, effortless and rich geometric modelling. However, modelling capabilities are generally unconnected to the control and analysis of design constraints that affect the further development of the design. These usually refer to functional and spatial aspects that are only implicit in a CAAD representation of design ‘solids’. Moreover, the stability and reliability of control and analysis rely on the grammatical and syntactic quality of the representation. In particular, (a) the grammatical well-formedness of spatial and building primitives, and (b) the syntactic completeness and unambiguity of spatial relations are essential prerequisites to any meaningful analysis of aspects such as fulfilment of programmatic requirements, indoor climate, lighting or human interaction with the built environment. The paper describes a dual spatial and building element representation implemented on top of a standard drawing system. The representation attempts to minimize input requirements, while at the same time providing feedback on the grammatical and syntactic quality of the design description.
series DDSS
last changed 2003/08/07 16:36

_id 55ca
authors Mase, Jitsuro
year 2000
title Moderato: 3D Sketch CAD with Quick Positioned Working Plane and Texture Modelling
doi https://doi.org/10.52842/conf.ecaade.2000.269
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 269-272
summary The lack of computer systems that can be easily used during the early stages of the architectural design process has been discussed for many years. The usual argument starts with the recognition that hand drawn sketches are an important tool in the early stage of both professional and student design because they can be used to visualise the designer’s ideas quickly and have the flexibility to handle any shape the designer imagines. Research has then mostly focused on using computer based sketch recognition to directly produce three dimensional models from hand drawn sketches. However sketch recognition still has certain problems that require the drawing action of users to be constrained in some way in order to be solved. If sketch recognition is still imperfect, the possibility of directly sketching within digital 3D space should be considered. Some systems allowing user to sketch in digital 3D space have been developed which do not depend on sketch recognition. Although Piranesi does not aim to support sketch design, it does allow the user to paint in the Z-buffer space - an unique idea termed "interactive rendering." SketchVRML tries to generate 3D geometrical data automatically from 2D hand drawn sketches by adding the depth value to the drawn lines according to the strength of line strokes. SketchBoX provides translucent surfaces in digital 3D space which can be glued onto existing objects or arranged anywhere in space. These surfaces have texture map data which can be modified by painting onto the texture. Transparent textures can be painted onto the surfaces to create see-through portions. Moderato also uses this technique to model a polygonÕs shape.
keywords Sketch, Early Stage, Interface, 3D Modelling
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:59

_id 6800
authors Stellingwerff, Martijn
year 1999
title SketchBoX
doi https://doi.org/10.52842/conf.ecaade.1999.491
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 491-497
summary Most Computer Aided Architectural Design software suits the engineered aspects of design quite well but is lacking as a design medium. As far as sketching is concerned, many architects still rely on traditional media such as pen and paper and scale models. This paper presents a theory concerning design media and the application of typical media aspects in a spatial sketch program. SketchBoX is conceived as an experimental 3D version of a sketchbook. It can be used for the notation of primary forms and structures in 'architectural' space. The program consists of several transparent drawing surfaces that can be placed in relation to each other and in relation to models of design or different design contexts. Thus architects and students in architecture might be able to explore more adequately the spatial configuration of the built environment and they can comment within the models of their designs. Architectural group discussions and collaborative work can be enhanced by SketchBoX because visual annotations can be made directly in relation to a 3D model. This paper describes the consequent design considerations and expected use of the SketchBoX program.
keywords Exploration, Sketching, Commenting, Media, Creativity
series eCAADe
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_551997 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002