CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 747

_id ga0010
id ga0010
authors Moroni, A., Zuben, F. Von and Manzolli, J.
year 2000
title ArTbitrariness in Music
source International Conference on Generative Art
summary Evolution is now considered not only powerful enough to bring about the biological entities as complex as humans and conciousness, but also useful in simulation to create algorithms and structures of higher levels of complexity than could easily be built by design. In the context of artistic domains, the process of human-machine interaction is analyzed as a good framework to explore creativity and to produce results that could not be obtained without this interaction. When evolutionary computation and other computational intelligence methodologies are involved, every attempt to improve aesthetic judgement we denote as ArTbitrariness, and is interpreted as an interactive iterative optimization process. ArTbitrariness is also suggested as an effective way to produce art through an efficient manipulation of information and a proper use of computational creativity to increase the complexity of the results without neglecting the aesthetic aspects [Moroni et al., 2000]. Our emphasis will be in an approach to interactive music composition. The problem of computer generation of musical material has received extensive attention and a subclass of the field of algorithmic composition includes those applications which use the computer as something in between an instrument, in which a user "plays" through the application's interface, and a compositional aid, which a user experiments with in order to generate stimulating and varying musical material. This approach was adopted in Vox Populi, a hybrid made up of an instrument and a compositional environment. Differently from other systems found in genetic algorithms or evolutionary computation, in which people have to listen to and judge the musical items, Vox Populi uses the computer and the mouse as real-time music controllers, acting as a new interactive computer-based musical instrument. The interface is designed to be flexible for the user to modify the music being generated. It explores evolutionary computation in the context of algorithmic composition and provides a graphical interface that allows to modify the tonal center and the voice range, changing the evolution of the music by using the mouse[Moroni et al., 1999]. A piece of music consists of several sets of musical material manipulated and exposed to the listener, for example pitches, harmonies, rhythms, timbres, etc. They are composed of a finite number of elements and basically, the aim of a composer is to organize those elements in an esthetic way. Modeling a piece as a dynamic system implies a view in which the composer draws trajectories or orbits using the elements of each set [Manzolli, 1991]. Nonlinear iterative mappings are associated with interface controls. In the next page two examples of nonlinear iterative mappings with their resulting musical pieces are shown.The mappings may give rise to attractors, defined as geometric figures that represent the set of stationary states of a non-linear dynamic system, or simply trajectories to which the system is attracted. The relevance of this approach goes beyond music applications per se. Computer music systems that are built on the basis of a solid theory can be coherently embedded into multimedia environments. The richness and specialty of the music domain are likely to initiate new thinking and ideas, which will have an impact on areas such as knowledge representation and planning, and on the design of visual formalisms and human-computer interfaces in general. Above and bellow, Vox Populi interface is depicted, showing two nonlinear iterative mappings with their resulting musical pieces. References [Manzolli, 1991] J. Manzolli. Harmonic Strange Attractors, CEM BULLETIN, Vol. 2, No. 2, 4 -- 7, 1991. [Moroni et al., 1999] Moroni, J. Manzolli, F. Von Zuben, R. Gudwin. Evolutionary Computation applied to Algorithmic Composition, Proceedings of CEC99 - IEEE International Conference on Evolutionary Computation, Washington D. C., p. 807 -- 811,1999. [Moroni et al., 2000] Moroni, A., Von Zuben, F. and Manzolli, J. ArTbitration, Las Vegas, USA: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program – GECCO, 143 -- 145, 2000.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga0007
id ga0007
authors Coates, Paul and Miranda, Pablo
year 2000
title Swarm modelling. The use of Swarm Intelligence to generate architectural form
source International Conference on Generative Art
summary .neither the human purposes nor the architect's method are fully known in advance. Consequently, if this interpretation of the architectural problem situation is accepted, any problem-solving technique that relies on explicit problem definition, on distinct goal orientation, on data collection, or even on non-adaptive algorithms will distort the design process and the human purposes involved.' Stanford Anderson, "Problem-Solving and Problem-Worrying". The works concentrates in the use of the computer as a perceptive device, a sort of virtual hand or "sense", capable of prompting an environment. From a set of data that conforms the environment (in this case the geometrical representation of the form of the site) this perceptive device is capable of differentiating and generating distinct patterns in its behavior, patterns that an observer has to interpret as meaningful information. As Nicholas Negroponte explains referring to the project GROPE in his Architecture Machine: 'In contrast to describing criteria and asking the machine to generate physical form, this exercise focuses on generating criteria from physical form.' 'The onlooking human or architecture machine observes what is "interesting" by observing GROPE's behavior rather than by receiving the testimony that this or that is "interesting".' The swarm as a learning device. In this case the work implements a Swarm as a perceptive device. Swarms constitute a paradigm of parallel systems: a multitude of simple individuals aggregate in colonies or groups, giving rise to collaborative behaviors. The individual sensors can't learn, but the swarm as a system can evolve in to more stable states. These states generate distinct patterns, a result of the inner mechanics of the swarm and of the particularities of the environment. The dynamics of the system allows it to learn and adapt to the environment; information is stored in the speed of the sensors (the more collisions, the slower) that acts as a memory. The speed increases in the absence of collisions and so providing the system with the ability to forget, indispensable for differentiation of information and emergence of patterns. The swarm is both a perceptive and a spatial phenomenon. For being able to Interact with an environment an observer requires some sort of embodiment. In the case of the swarm, its algorithms for moving, collision detection, and swarm mechanics conform its perceptive body. The way this body interacts with its environment in the process of learning and differentiation of spatial patterns constitutes also a spatial phenomenon. The enactive space of the Swarm. Enaction, a concept developed by Maturana and Varela for the description of perception in biological terms, is the understanding of perception as the result of the structural coupling of an environment and an observer. Enaction does not address cognition in the currently conventional sense as an internal manipulation of extrinsic 'information' or 'signals', but as the relation between environment and observer and the blurring of their identities. Thus, the space generated by the swarm is an enactive space, a space without explicit description, and an invention of the swarm-environment structural coupling. If we consider a gestalt as 'Some property -such as roundness- common to a set of sense data and appreciated by organisms or artefacts' (Gordon Pask), the swarm is also able to differentiate space 'gestalts' or spaces of some characteristics, such as 'narrowness', or 'fluidness' etc. Implicit surfaces and the wrapping algorithm. One of the many ways of describing this space is through the use of implicit surfaces. An implicit surface may be imagined as an infinitesimally thin band of some measurable quantity such as color, density, temperature, pressure, etc. Thus, an implicit surface consists of those points in three-space that satisfy some particular requirement. This allows as to wrap the regions of space where a difference of quantity has been produced, enclosing the spaces in which some particular events in the history of the Swarm have occurred. The wrapping method allows complex topologies, such as manifoldness in one continuous surface. It is possible to transform the information generated by the swarm in to a landscape that is the result of the particular reading of the site by the swarm. Working in real time. Because of the complex nature of the machine, the only possible way to evaluate the resulting behavior is in real time. For this purpose specific applications had to be developed, using OpenGL for the Windows programming environment. The package consisted on translators from DXF format to a specific format used by these applications and viceversa, the Swarm "engine", a simulated parallel environment, and the Wrapping programs, to generate the implicit surfaces. Different versions of each had been produced, in different stages of development of the work.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ddssar0011
id ddssar0011
authors Hartog, J.P. den, Koutamanis, A. and Luscuere, P.G.
year 2000
title Possibilities and limitations of CFD simulation for indoor climate analysis
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary With the democratization of information and communication technologies, simulation techniques that used to be computationally expensive and time-consuming are becoming feasible instruments for the analysis of architectural design. Simulation is an indispensable ingredient of the descriptive design approach, which provides the designer with precise and accurate projections of the performance and behavior of a design. The paper describes the application of a particular class of simulation techniques, computational fluid dynamics (CFD), to the analysis and evaluation of indoor climate. Using two different CFD systems as representatives of the class, we describe: relevant computational possibilities and limitations of CFD simulation; the accessibility of CFD simulation for architects, especially concerning the handling of simulation variables; the compatibility of CFD representations of built space with similar representations in standard CAD and modeling systems, including possibilities for feedback; The relations between geometric representation and accuracy / precision in CFD simulation. We propose that CFD simulation can become an operational instrument for the designer, provided that CFD simulation does not become a trial and error game trying to master computational techniques. A promising solution to this problem is the use of case based reasoning. A case base of analyzed, evaluated and verified buildings provides a flexible source of information (guidance and examples) for both the CFD simulation and the designer.
series DDSS
last changed 2003/08/07 16:36

_id ddssar0022
id ddssar0022
authors Peng, C., Cerulli, C., Lawson, B., Cooper, G., Rezqui, Y. and Jackson, M.
year 2000
title Recording and managing design decision-making processes through an object-oriented framework
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary In this paper we describe our current research into an object-oriented approach to the recording and managing of design decision-making in the processes of building design. The Advanced Design Support for the Construction Design Process (ADS) project, funded under the Innovative Manufacturing Initiative by the UK Engineering and Physical Sciences Research Council (EPSRC), aims to exploit and demonstrate the benefits of a CAD-based Design Decision Support System. The research focuses on how to provide designers with tools for recording and managing the group dynamics of design decision making in a project's life time without intruding too much on the design process itself. In collaboration with Building Design Partnership, a large multidisciplinary construction design practice, we look at design projects that require decision-making on an extraordinarily wide range of complex issues, and many different professional consultants were involved in making and approving these decisions. We are interested in developing an advanced CAD tool that will facilitate capturing designers' rationales underlying their design decision making throughout the project. The system will also enable us to explore how a recorded project history of decision-making can be searched and browsed by members of the project team during and after design development.
series DDSS
last changed 2003/08/07 16:36

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 9a1e
authors Clayton, Mark J. and Vasquez de Velasco, Guillermo
year 1999
title Stumbling, Backtracking, and Leapfrogging: Two Decades of Introductory Architectural Computing
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 151-158
doi https://doi.org/10.52842/conf.ecaade.1999.151
summary Our collective concept of computing and its relevance to architecture has undergone dramatic shifts in emphasis. A review of popular texts from the past reveals the biases and emphases that were current. In the seventies, architectural computing was generally seen as an elective for data processing specialists. In the early eighties, personal computers and commercial CAD systems were widely adopted. Architectural computing diverged from the "batch" world into the "interactive" world. As personal computing matured, introductory architectural computing courses turned away from a foundation in programming toward instruction in CAD software. By the late eighties, Graphic User Interfaces and windowing operating systems had appeared, leading to a profusion of architecturally relevant applications that needed to be addressed in introductory computing. The introduction of desktop 3D modeling in the early nineties led to increased emphasis upon rendering and animation. The past few years have added new emphases, particularly in the area of network communications, the World Wide Web and Virtual Design Studios. On the horizon are topics of electronic commerce and knowledge markets. This paper reviews these past and current trends and presents an outline for an introductory computing course that is relevant to the year 2000.
keywords Computer-Aided Architectural Design, Computer-Aided Design, Computing Education, Introductory Courses
series eCAADe
email
last changed 2022/06/07 07:56

_id 8805
authors Flemming, U., Erhan, H.I. and Ozkaya, I.
year 2001
title Object-Oriented Application Development in CAD
source Technical Report 48-01-01. Pittsburgh, PA: Carnegie Mellon University, Institute of Complex Engineered Systems
summary This report describes a graduate interdisciplinary course offered to students in the graduate program of the School of Architecture at Carnegie Mellon and related departments in fall 2000. The motivation was the realization that when commercial CAD (Computer-Aided Design) systems recently switched from procedural application programming languages to object-oriented ones, third-party application must undergo a significant cognitive retooling"; i. e. they must know more than the syntax and semantics of the new programming language to be used and must be able to employ appropriate software development strategies that are appropriate for the new paradigm. especially with respect to the importance of modeling, a distinguishing characteristic of object-oriented programming. The goal of the course was (a) to introduce and test strategies of object-oriented application development in general and in the context of MicroStation, a state-of-the-art commercial CAD package; (b) to develop-as a course team project-an interesting application that gives students practice with these strategies and team work; and (c) to document our approach and findings so that others can learn from them. The strategies introduced were the use-case approach of Jacobson et al. and the complementary object-modeling tools of Rumbaugh that were recently integrated into the Unified Modeling Language UML. The software platform supporting the course comprised MicroStation, JMDL (a superset of Java) and ProjectBank on the CAD side and RationalRose on the modeling side. The application developed by students in the course supports the generation of drawings for remodeling projects from a set of dgn files describing the existing state of the building to be remodeled. The course was supported by a grant and in-kind contributions from Bentley with matching funds from the Pennsylvania Infrastructure Technology Alliance (PITA)."
series report
email
last changed 2003/04/23 15:50

_id 3f51
authors Streich, B., Oxman, R. and Fritz, O.
year 2000
title Computer-Simulated Growth Processes in Urban Planning and Architecture
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 233-237
doi https://doi.org/10.52842/conf.acadia.2000.233
summary Urban structures, developed and grown over a period of time, are created by processes that, due to the number of influential factors, are not longer comprehensible as a whole. Their development is very complex and depends on a big number of reciprocal factors that even architects or planners sometimes cannot recognize the formal, functional and rational processes of thinking behind it. The involved mechanisms however are particularly obvious in historical urban structures that came to exist over a period of centuries. The planned relationships within these conglomerates are governed by nearly indiscernible rules and show similarities in form and shape to living and non-living forms in nature. They are clearly analogous to fractals or systems with chaotic behavior. In the course of the research project “media experimental design”, financed by the German Research Foundation, algorithms are sought that are able to simulate urban analogous structures digitally. To this effect the main rules of growth processes are researched and extracted. Then, by following these rules, virtual structures are developed and shown by using powerful three-dimensional techniques. The developed mechanisms allow urban planning to be process-oriented, interactive and flexible for permanently changing parameters. With an implemented set of rules the computer is able to create a design and to react to changing situations. In several experimental studies structures were successfully generated which have different forms and qualities depending on their set of rules. For example, structures were programmed which are similar to a big city while other look like a village in hilly landscape. Diverse rules and strategies have been used in order to reduce them to shape specific factors. The rules for growth are administered by a specifically developed databank with sophisticated search mechanisms using the Issue-Concept- Form tool as case-based-reasoning method.
keywords Simulation, Urban Growth-Processes, Virtual Reality
series ACADIA
email
last changed 2022/06/07 07:56

_id 2190
authors Yan-chuen, L., Phil, M. and Gilleard, John D.
year 2000
title Refurbishment of building services engineering systems under a collaborative design environment
source Automation in Construction 9 (2) (2000) pp. 185-196
summary In this paper hypermedia is suggested as a suitable paradigm to represent the design processes associated with a shopping center refurbishment project. In addition, by adopting a collaborative design model, the paper makes reference to such factors as synchronous vs. asynchronous and active vs. passive modeling. Concepts in complex problem solving are also explored such as the soft system methodology as well as the application of agent-based decision support systems. Identification of primary information elements and analysis of the relations between these elements indicates that the flow of design information may be readily represented in hypermedia which features nonlinear characteristics in organizing information. The justification of developing a hypermedia tool to cope with changing conditions of a complex design problem instead of providing a solution for a predetermined problem is also argued. The paper illustrates the complex nature of collaborative design process with reference to a case study associated with the building services systems design for a Hong Kong Housing Authority refurbishment project.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 84c2
authors Hetem, V.
year 2000
title Communication: computer aided engineering in the next millennium
source Computer-Aided Design, Vol. 32 (5-6) (2000) pp. 389-394
summary The next generation of computer aided tools should address the traditional role of engineering within a manufacturing organization, i.e. accurate communication ofmanufacturing specifications. Communication is the business of manufacturing engineering: translating design specifications into process plans and information such asestimating time and cost, process geometry creation and tolerance charting, determining tooling, and the recording of best practices. The integration of the product andprocess geometry with manufacturing knowledge is evolving through the use of computer aided process modeling and best practice sharing, to better serve production,which in turn delivers quality product at the right cost and tempo. These computer aided systems will have easy accessibility, inherent configuration control, and a"manufacturing language."
keywords Process Modeling, Variant Planning, Manufacturing Engineering
series journal paper
last changed 2003/05/15 21:33

_id 6645
authors Ozel, Filiz
year 2000
title Architectural Knowledge and Database Management Systems
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 135-138
doi https://doi.org/10.52842/conf.ecaade.2000.135
summary Although the theory and practice of using database management systems in managing information has been a well recognized area of research in other disciplines such as business, urban planning, and engineering, architectural researchers have only occasionally explored the implications of these tools in structuring architectural knowledge. Among these are studies that look at facilities management aspects of databases as well as project management aspects mostly focusing on document management issues 6 . While visual databases have been the focus of other work, the term "database" has been used in architectural research sometimes to indicate any set of underlying data and at other times to indicate an actual relational database management system. Inconsistent use of terminology has led to difficulties in developing established theory regarding the use and development of database management systems for architectural problems. While such systems can be very powerful in structuring design knowledge, in architectural education the only place where their potential has been recognized is in the digitizing of slide libraries with the intention to make them accessible through electronic retrieval and viewing systems, which has mostly been seen within the purview of slide librarians with little interest from the faculty.
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 08:00

_id 735b
authors Tolone, W.J.
year 2000
title Virtual situation rooms: connecting people across enterprises for supply-chain agility
source Computer-Aided Design, Vol. 32 (2) (2000) pp. 109-117
summary Agility and time-based manufacturing are critical success factors for today's manufacturing enterprise. To be competitive, enterprises must integrate their supply chains moreeffectively and forge close memberships with customers and suppliers more quickly. Consequently, technologies must be developed that enable enterprises to respond toconsumer demand more quickly, integrate with suppliers more effectively, adapt to market variations more efficiently and evolve product designs with manufacturing practicesmore seamlessly. The mission of the Extended-Enterprise Coalition for Integrated Collaborative Manufacturing Systems coalition is to research, develop, and demonstratetechnologies to enable the integration of manufacturing applications in a multi-company supply chain planning and execution environment. We believe real-time andasynchronous collaboration technology will play a critical role in allowing manufacturers to increase their supply chain agility. We are realizing our efforts through our VirtualSituation Room (VSR) technology. The primary goal of the VSR technology is to enhance current ad-hoc, limited methods and mechanisms for spontaneous, real-timecommunication using feature-rich, industry standards-based building blocks and network protocols. VSR technology is being designed to find and engage quickly all relevantmembers of a problem solving team supported by highly interactive, conversational access to information and control and enabled by business processes, security policies andtechnologies, intelligence, and integration tools.
keywords Collaborative Systems, Supply Chain Integration, Real-Time Conferencing
series journal paper
email
last changed 2003/05/15 21:33

_id 9403
authors De Carvalho, Silvana Sá
year 2000
title A Telemática e o Meio Técnico- Científico-Informacional: Um Olhar sobre o Urbano (Telematics and Technical Scientific-Information Environment: An Urban View)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 160-162
summary The instantaneous nature of globalized information has brought places closer together and homogenized space, eliminating regional differences. Contemporary urban architecture and the technical-scientific- informational quality of the human-made environment innovates the rationality of the dominant actors in society. The field of telecommunications has developed substantially in the last 30 years, and today we are participants in a digital era, that has not only shortened distances but revolutionized the concepts of time and space. Telematics is a fundamental element of cities at the end of the millennium and has become a new instrument of social control. Electronic vigilance systems, as an application of telematics, are now widely used in cities, and a new urban space is being configured based on this dynamic. This paper is an introductory essay on the topic, which is essential in the understanding of urban spatial dynamics, and its objective is to point out fields for future research.
series SIGRADI
email
last changed 2016/03/10 09:50

_id d11a
authors Den Hartog, J. P. and Koutamanis, A.
year 2000
title Teaching design simulation
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 197-200
doi https://doi.org/10.52842/conf.ecaade.2000.197
summary The democratization of information and communication technologies (ICT) has promoted integration of computing in the design studio and of design activities in the CAAD courses. In addition it has also shifted the focus of CAAD courses from technical skills and general theoretical issues to current, specific design issues, such as the relationship between geometric modeling and construction, design communication and design analysis. CAAD courses (especially advanced ones) increasingly attempt to introduce these issues and corresponding advanced ICT in a design context that outlines the possibilities of these technologies and the underlying computational design methodology and bring research closer to teaching. One such issue is design analysis, especially in the early design stages when many fundamental decisions are taken on the basis of incomplete and insecure information. Simulation provides the computational means for projecting building behaviour and performance. The paper describes the application of a specific simulation technique, computational fluid dynamics (CFD), for the analysis of airflow in and around buildings in the context of an advanced CAAD course. In this course students are required to design a multifunctional exposition building. Even though students are unfamiliar with the particular CFD system, as well as with part of the simulation subject matter, they are able to produce descriptions of their designs with effectiveness and efficiency.
keywords Design Analysis, Simulation, CFD, Airflow
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 4c4b
authors Gavin, Lesley
year 2000
title 3D Online Learning in Multi-User Environments
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 187-191
doi https://doi.org/10.52842/conf.ecaade.2000.187
summary Over the last 2 years the MSc Virtual Environments course in the Bartlett School of Graduate Studies has used a 3-dimensional on-line multi-user environment to explore the possibilities for the architectural design of virtual environments. The "Bartlett" virtual world is established as the environment where students undertake group design projects. After an initial computer based face-toface workshop, students work from terminals at home and around the university. Using avatar representations of themselves, tutors and students meet in the on-line environment. The environment is used for student group discussions and demonstrations, tutorials and as the virtual "siteÕ for their design projects. The "Bartlett" world is currently open to every internet user and so often has "visitors". These visitors often engage in discussions with the students resulting in interesting dynamics in the teaching pattern. This project has been very successful and is particularly popular with the students. Observations made over the 2 years the project has been running have resulted in interesting reflections on both the role of architectural design in virtual environments and the use of such environments to extend the pedagogical structure used in traditional studio teaching. This paper will review the educational experience gained by the project and propose the ideal software environment for further development. We are now examining similar types of environments currently on the market with a view to adapting them for use as a distance learning medium.
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:51

_id d8df
authors Naticchia, Berardo
year 1999
title Physical Knowledge in Patterns: Bayesian Network Models for Preliminary Design
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 611-619
doi https://doi.org/10.52842/conf.ecaade.1999.611
summary Computer applications in design have pursued two main development directions: analytical modelling and information technology. The former line has produced a large number of tools for reality simulation (i.e. finite element models), the latter is producing an equally large amount of advances in conceptual design support (i.e. artificial intelligence tools). Nevertheless we can trace rare interactions between computation models related to those different approaches. This lack of integration is the main reason of the difficulty of CAAD application to the preliminary stage of design, where logical and quantitative reasoning are closely related in a process that we often call 'qualitative evaluation'. This paper briefly surveys the current development of qualitative physical models applied in design and propose a general approach for modelling physical behaviour by means of Bayesian network we are employing to develop a tutoring and coaching system for natural ventilation preliminary design of halls, called VENTPad. This tool explores the possibility of modelling the causal mechanism that operate in real systems in order to allow a number of integrated logical and quantitative inference about the fluid-dynamic behaviour of an hall. This application could be an interesting connection tool between logical and analytical procedures in preliminary design aiding, able to help students or unskilled architects, both to guide them through the analysis process of numerical data (i.e. obtained with sophisticate Computational Fluid Dynamics software) or experimental data (i.e. obtained with laboratory test models) and to suggest improvements to the design.
keywords Qualitative Physical Modelling, Preliminary Design, Bayesian Networks
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
doi https://doi.org/10.52842/conf.acadia.2020.1.574
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id edd9
authors Zerefos, S.C., Kotsiopoulos, A.M. and Pombortsis, A.
year 2000
title Responsive Architecture: An Integrated Approach for the Future
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 245-249
doi https://doi.org/10.52842/conf.acadia.2000.245
summary An integrated approach towards a responsive architecture is presented. This new direction in architecture is based on recent scientific advances and on available technology in materials, telecommunications, electronics and sustainability principles. The integrated responsive architecture is not confined to offices or housing, but may well extend to intelligent neighborhoods and to intelligent cities. The dynamics of these future systems focus on security, comfort and health for the inhabitants.
series ACADIA
last changed 2022/06/07 07:57

_id 456a
authors Alvarado, R.G., Parra, J.C., Vergara, R.L. and Chateau, H.B.
year 2000
title Architectural References to Virtual Environments Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 151-155
doi https://doi.org/10.52842/conf.ecaade.2000.151
summary Based on a comparison between the perception of digital and real construction, the development of virtual systems and the review of additional sources, this paper states some differences between the design of virtual environments and architectural spaces. Virtual-reality technologies provide advanced capabilities to simulate real situations, and also to create digital worlds not referred to physical places, such as imaginary landscapes or environments devoted to electronic activities, like entertainment, learning or commerce. Some on-line services already use 3D-stages, resembling building halls and domestic objects, and several authors have mentioned virtual modeling as a job opportunity to architects. But it will argue in this paper that the design of those environments should consider their own digital characteristics. Besides, the use of virtual installations on networks impells a convergence with global media, like Internet or TV. Virtual environments can be a 3Devolution of communicational technologies, which have an increasing participation in culture, reaching a closer relationship to contemporary architecture.
keywords Virtual Environments, Spatial Perception, Design Methodology
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 1f5c
authors Beesley, Philip and Seebohm, Thomas
year 2000
title Digital Tectonic Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 287-290
doi https://doi.org/10.52842/conf.ecaade.2000.287
summary Digital tectonic design is a fresh approach to architectural design methodology. Tectonics means a focus on assemblies of construction elements. Digital tectonics is an evolving methodology that integrates use of design software with traditional construction methods. We see digital tectonic design as a systematic use of geometric and spatial ordinances, used in combination with details and components directly related to contemporary construction. The current approach will, we hope, lead to an architectural curriculum based on generative form making where the computer can be used to produce systems of forms algorithmically. Digital design has tended to remain abstract, emphasizing visual and spatial arrangements often at the expense of materials and construction. Our pursuit is translation of these methods into more fully realized physical qualities. This method offers a rigorous approach based on close study of geometry and building construction elements. Giving a context for this approach, historical examples employing systematic tectonic design are explored in this paper. The underlying geometric ordinance systems and the highly tuned relationships between the details in these examples offer design vocabularies for use within the studio curriculum. The paper concludes with a detailed example from a recent studio project demonstrating particular qualities developed within the method. The method involves a wide range of scales, relating large-scale gestural and schematic studies to detailed assembly systems. Designing in this way means developing geometric strategies and, in parallel, producing detailed symbols or objects to be inserted. These details are assembled into a variety of arrays and groups. The approach is analogous to computer-aided designÕs tradition of shape grammars in which systems of spatial relationships are used to control the insertion of shapes within a space. Using this approach, a three-dimensional representation of a building is iteratively refined until the final result is an integrated, systematically organized complex of symbols representing physical building components. The resulting complex offers substantial material qualities. Strategies of symbol insertions and hierarchical grouping of elements are familiar in digital design practice. However these strategies are usually used for automated production of preconceived designs. In contrast to thsse normal approaches this presentation focuses on emergent qualities produced directly by means of the complex arrays of symbol insertions. The rhyth
keywords 3D CAD Systems, Design Practice, 3D Design Strategies
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_7118 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002