CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 743

_id 449f
authors Aish, Robert
year 2000
title Collaborative Design using Long Transactions and "Change Merge"
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 107-111
doi https://doi.org/10.52842/conf.ecaade.2000.107
summary If our goal is implement collaborative engineering across temporal, spatial and discipline dimensions, then it is suggested that we first have to address the necessary pre-requisites, which include both the deployment of "enterprise computing" and an understanding of the computing concepts on which such enterprise systems are based. This paper will consider the following computing concepts and the related concepts in the world of design computing, and discuss how these concepts have been realised in Bentley SystemsŐ ProjectBank collaborative engineering data repository: Computing Concept Related Design Concept Normalisation Model v. Report (or Drawing) Transaction Consistency of Design Long Transaction Parallelisation of Design Change Merge Coordination (synchronisation) Revisions Coordination (synchronisation) While we are most probably familiar with the applications of existing datadase concepts (such as Normalisation and Transaction Management) to the design process, the intent of this paper to focus
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 03ad
authors Lottaz, C., Smith, I.F.C., Robert-Nicoud, Y. and Faltings, B.V.
year 2000
title Constraint-based support for negotiation in collaborative design
source Artificial Intelligence in Engineering, Vol: 14, Issue: 3, pp. 261-280.
summary Solution spaces are proposed, instead of single solutions only, to support collaborative tasks during design and construction. Currently, partners involved in construction projects typically assign single values for sub-sets of variables and then proceed, often after tedious negotiations with other partners, to integrate these partial solutions into more complete project descriptions. We suggest the use of constraint solving to express possibly large families of acceptable solutions in order to improve the negotiation process in two ways. On one hand, con ict detection can be performed in an automated manner. Through the constraints collaborators impose, they de ne large unfeasible areas where no solution to the problem at hand can be expected. An emty intersectidon of the solution spaces can thus point at a con ict of design goals of the di erent collaborators at an early stage of the design process. On the other hand, important decision support during negotiation is provided. When a solution space is found, collaborators know during negotiation that they are negotiating about feasible solutions. Negotiation is no longer a means to nd a solution to the problem but it takes place in order to nd a good or the best solution. Since the consistency of the design remains ensured, collaborators are expected to be less restrictive towards innovative ideas during negotiation. Moreover, constraint techniques using explicit representations of solution spaces can provide tools to visualize trade-o s and illustrate the impact of certain decisions on other parameters. Thus decision-making is improved during the negotiation. New algorithms have been developed at EPFL for solving multi-dimensional nonlinear inequality constraints on continuous variables. Together with intuitive user interfaces such constraint-based support leads to better change management and easier implementation of least commitment decision strategies. It is expected that the results of this research can improve both the e ciency of negotiation processes and the quality of the achieved results.
series journal paper
last changed 2003/04/23 15:50

_id c2e3
authors Wong, Wai Sang
year 2000
title A Virtual Reality Modeling Tool for Students of Architecture
source University of Hong Kong, Hong Kong
summary During a collaborative design session with other universities, several shortcomings, namely long communication response time, lack of common data format for design and ineffective discussion using static image of design, were observed. A solution was proposed by providing a design interface, a. viewing area of the design and a database to store designs and discussion dialogs. This thesis described a VR (virtual reality) modeling tool, the "VR Composer". With the "VR Composer", models are created directly in 3D. This is the design interface of the solution. The "VR Composer" is based on a commercially available VR software. With a head-mounted display, the "VR Composer" immerses the user into a VR environment. This provides a feeling of presence inside the VR environment. New functionality was added to allow user to create and modify objects in VR. There is no common definition for VR.. I have defined VR as Virtual reality is a human-computer interfiwe which allows a user to visualize and interact with the computer-generated three-dimensional environment intuitively. The students of Department of Architecture are requested to test the VR Composer. Although the VR Composer provided basic functionality as a modeling tool, it has to be improvement in many aspects to become an effective tool for modeling.
series thesis:MSc
last changed 2003/02/12 22:37

_id ecaade2023_205
id ecaade2023_205
authors Meeran, Ahmed and Joyce, Sam
year 2023
title Rethinking Airport Spatial Analysis and Design: A GAN based data driven approach using latent space exploration on aerial imagery for adaptive airport planning
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 501–510
doi https://doi.org/10.52842/conf.ecaade.2023.2.501
summary Airports require long term planning, balancing estimations of future demand against available airfield land and site constraints. This is becoming more critical with climate change and the transition to sustainable aviation fuelling infrastructure. This paper demonstrates a novel procedure using Satellite Imagery and Generative Learning to aid in the comparative analysis and early-stage airfield design. Our workflow uses a GAN trained on 2000 images of airports transforming them into a high-dimensional latent space capturing the typologies’ large-scale features. Using a process of projection and dimensional-reduction methods we can locate real-world airport images in the generative latent space and vice-versa. With this capability we can perform comparative “neighbour” analysis at scale based on spatial similarity of features like airfield configuration, and surrounding context. Using this low-dimensional 3D ‘airport designs space’ with meaningful markers provided by existing airports allows for ‘what if’ modelling, such as visualizing an airport on a site without one, modifying an existing airport towards another target airport, or exploring changes in terrain, such as due to climate change or urban development. We present this method a new way to undertake case study, site identification and analysis, as well as undertake speculative design powered by typology informed ML generation, which can be applied to any typologies which could use aerial images to categorize them.
keywords Airport Development, Machine Learning, GAN, High Dimensional Analysis, Parametric Space Exploration, tSNE, Latent Space Exploration, Data Driven Planning
series eCAADe
email
last changed 2023/12/10 10:49

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id a136
authors Blaise, J.Y., Dudek, I. and Drap, P.
year 1998
title Java collaborative interface for architectural simulations A case study on wooden ceilings of Krakow
source International Conference On Conservation - Krakow 2000, 23-24 November 1998, Krakow, Poland
summary Concern for the architectural and urban preservation problems has been considerably increasing in the past decades, and with it the necessity to investigate the consequences and opportunities opened for the conservation discipline by the development of computer-based systems. Architectural interventions on historical edifices or in preserved urban fabric face conservationists and architects with specific problems related to the handling and exchange of a variety of historical documents and representations. The recent development of information technologies offers opportunities to favour a better access to such data, as well as means to represent architectural hypothesis or design. Developing applications for the Internet also introduces a greater capacity to exchange experiences or ideas and to invest on low-cost collaborative working platforms. In the field of the architectural heritage, our research addresses two problems: historical data and documentation of the edifice, methods of representation (knowledge modelling and visualisation) of the edifice. This research is connected with the ARKIW POLONIUM co-operation program that links the MAP-GAMSAU CNRS laboratory (Marseilles, France) and the Institute HAiKZ of Kraków's Faculty of Architecture. The ARKIW programme deals with questions related to the use of information technologies in the recording, protection and studying of the architectural heritage. Case studies are chosen in order to experience and validate a technical platform dedicated to the formalisation and exchange of knowledge related to the architectural heritage (architectural data management, representation and simulation tools, survey methods, ...). A special focus is put on the evolution of the urban fabric and on the simulation of reconstructional hypothesis. Our contribution will introduce current ARKIW internet applications and experiences: The ARPENTEUR architectural survey experiment on Wieża Ratuszowa (a photogrammetrical survey based on an architectural model). A Gothic and Renaissance reconstruction of the Ratusz Krakowski using a commercial modelisation and animation software (MAYA). The SOL on line documentation interface for Kraków's Rynek G_ówny. Internet analytical approach in the presentation of morphological informations about Kraków's Kramy Bogate Rynku Krakowskiego. Object-Orientation approach in the modelling of the architectural corpus. The VALIDEUR and HUBLOT Virtual Reality modellers for the simulation and representation of reconstructional hypothesis and corpus analysis.
series other
last changed 2003/04/23 15:14

_id 3e51
authors Cerulli, C., Peng, C. and Lawson, B.
year 2001
title Capturing Histories of Design Processes for Collaborative Building Design Development. Field Trial of the ADS Prototype
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 427-437
summary The ADS Project - Advanced Design Support for the Construction Design Process - builds on the technological results of the previous COMMIT Project to exploit and demonstrate the benefits of a CAD based Design Decision Support System. COMMIT provides a system for storing knowledge about knowledge within the design process. It records design decisions, the actors who take them and the roles they play when doing so. ADS links COMMIT to an existing object-oriented CAD system, MicroStation/J from Bentley Systems. The project focuses on tackling the problem of managing design information without intruding too much on the design process itself. It provides the possibility to effectively link design decisions back to requirements, to gather rationale information for later stages of the building lifecycle, and to gather knowledge of rationale for later projects. The system enables members of the project team, including clients and constructors, to browse and search the recorded project history of decision making both during and after design development. ADS aims to facilitate change towards a more collaborative process in construction design, to improve the effectiveness of decision-making throughout the construction project and to provide clients with the facility to relate design outcomes to design briefs across the whole building life cycle. In this paper we will describe the field trials of the ADS prototype carried out over a three-month period at the Building Design Partnership (BDP) Manchester office. The objective of these trials is to assess the extent, to which the approach underlying ADS enhances the design process, and to gather and document the views and experiences of practitioners. The ADS prototype was previously tested with historical data of real project (Peng, Cerulli et al. 2000). To gather more valuable knowledge about how a Decision Support System like ADS can be used in practice, the testing and evaluation will be extended to a real project, while it is still ongoing. The live case study will look at some phases of the design of a mixed residential and retail development in Leeds, UK, recording project information while it is created. The users’ feedback on the system usability will inform the continuous redevelopment process that will run in parallel to the live case study. The ADS and COMMIT Projects were both funded by EPSRC.
keywords Design Rationale, Design Support Systems, Usability Evaluation
series CAAD Futures
email
last changed 2006/11/07 07:22

_id ga0007
id ga0007
authors Coates, Paul and Miranda, Pablo
year 2000
title Swarm modelling. The use of Swarm Intelligence to generate architectural form
source International Conference on Generative Art
summary .neither the human purposes nor the architect's method are fully known in advance. Consequently, if this interpretation of the architectural problem situation is accepted, any problem-solving technique that relies on explicit problem definition, on distinct goal orientation, on data collection, or even on non-adaptive algorithms will distort the design process and the human purposes involved.' Stanford Anderson, "Problem-Solving and Problem-Worrying". The works concentrates in the use of the computer as a perceptive device, a sort of virtual hand or "sense", capable of prompting an environment. From a set of data that conforms the environment (in this case the geometrical representation of the form of the site) this perceptive device is capable of differentiating and generating distinct patterns in its behavior, patterns that an observer has to interpret as meaningful information. As Nicholas Negroponte explains referring to the project GROPE in his Architecture Machine: 'In contrast to describing criteria and asking the machine to generate physical form, this exercise focuses on generating criteria from physical form.' 'The onlooking human or architecture machine observes what is "interesting" by observing GROPE's behavior rather than by receiving the testimony that this or that is "interesting".' The swarm as a learning device. In this case the work implements a Swarm as a perceptive device. Swarms constitute a paradigm of parallel systems: a multitude of simple individuals aggregate in colonies or groups, giving rise to collaborative behaviors. The individual sensors can't learn, but the swarm as a system can evolve in to more stable states. These states generate distinct patterns, a result of the inner mechanics of the swarm and of the particularities of the environment. The dynamics of the system allows it to learn and adapt to the environment; information is stored in the speed of the sensors (the more collisions, the slower) that acts as a memory. The speed increases in the absence of collisions and so providing the system with the ability to forget, indispensable for differentiation of information and emergence of patterns. The swarm is both a perceptive and a spatial phenomenon. For being able to Interact with an environment an observer requires some sort of embodiment. In the case of the swarm, its algorithms for moving, collision detection, and swarm mechanics conform its perceptive body. The way this body interacts with its environment in the process of learning and differentiation of spatial patterns constitutes also a spatial phenomenon. The enactive space of the Swarm. Enaction, a concept developed by Maturana and Varela for the description of perception in biological terms, is the understanding of perception as the result of the structural coupling of an environment and an observer. Enaction does not address cognition in the currently conventional sense as an internal manipulation of extrinsic 'information' or 'signals', but as the relation between environment and observer and the blurring of their identities. Thus, the space generated by the swarm is an enactive space, a space without explicit description, and an invention of the swarm-environment structural coupling. If we consider a gestalt as 'Some property -such as roundness- common to a set of sense data and appreciated by organisms or artefacts' (Gordon Pask), the swarm is also able to differentiate space 'gestalts' or spaces of some characteristics, such as 'narrowness', or 'fluidness' etc. Implicit surfaces and the wrapping algorithm. One of the many ways of describing this space is through the use of implicit surfaces. An implicit surface may be imagined as an infinitesimally thin band of some measurable quantity such as color, density, temperature, pressure, etc. Thus, an implicit surface consists of those points in three-space that satisfy some particular requirement. This allows as to wrap the regions of space where a difference of quantity has been produced, enclosing the spaces in which some particular events in the history of the Swarm have occurred. The wrapping method allows complex topologies, such as manifoldness in one continuous surface. It is possible to transform the information generated by the swarm in to a landscape that is the result of the particular reading of the site by the swarm. Working in real time. Because of the complex nature of the machine, the only possible way to evaluate the resulting behavior is in real time. For this purpose specific applications had to be developed, using OpenGL for the Windows programming environment. The package consisted on translators from DXF format to a specific format used by these applications and viceversa, the Swarm "engine", a simulated parallel environment, and the Wrapping programs, to generate the implicit surfaces. Different versions of each had been produced, in different stages of development of the work.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id d0aa
authors Colajanni, Benedetto, Concialdi, Salvatore and Pellitteri, Giuseppe
year 1999
title CoCoMa: a Collaborative Constraint Management System for the Collaborative Design
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 364-369
doi https://doi.org/10.52842/conf.ecaade.1999.364
summary Collaborative Design is a topic of particular current interest. Existing software allows a multiplicity of designers to work on the same project. What the software really allows is accessing to a part of the information of the project and changing it. Sometimes there is a hierarchical distribution of the power of change: some participants can be permitted to operate only on some limited layers of the object representation. In this case the changes they propose are to be accepted by a general manager of the design process. What is lacking in this kind of software is the explicit management on the reciprocal constraints posed by different participants. In this paper, an elementary Collaborative Design System is presented whose main concern is just the management of constraints. Each participant designs the part of the project of his/her concern instantiating objects comprised of geometric description, alphanumeric variables and constraints on both. Constraints can be of two types: absolute or defined by a range of allowed values of the constrained variable. A participant intervening later can accept the constraint, choosing a value in the permitted range, or decide to violate it. In this case the proposed violation is signalled to whom posed it.
keywords Collaborative Design, Design Process, Management System, Participant Designs, Constraints Violation
series eCAADe
email
last changed 2022/06/07 07:56

_id f586
authors Gabriel, G. and Maher, M.L.
year 2000
title Analysis of design communication with and without computer mediation
source Proceedings of Co-designing 2000, pp. 329-337
summary With recent developments in CAD and communication technologies, the way we visualise and communicate design representations is changing. A matter of great interest to architects, practitioners and researchers alike, is how computer technology might affect the way they think and work. The concern is not about the notion of 'support' alone, but about ensuring that computers do not disrupt the design process and collaborative activity already going on (Bannon and Schmidt, 1991). Designing new collaborative tools will then have to be guided by a better understanding of how collaborative work is accomplished and by understanding what resources the collaborators use and what hindrances they encounter in their work (Finholt et al., 1990). Designing, as a more abstract notion, is different than having a business meeting using video conferencing. In design it is more important to 'see' what is being discussed rather than 'watch' the other person(s) involved in the discussion. In other words the data being conveyed might be of more importance than the method with which it is communicated (See Kvan, 1994). Similarly, we believe that by using text instead of audio as a medium for verbal communication, verbal representations can then be recorded alongside graphical representations for later retrieval and use. In this paper we present the results of a study on collaborative design in three different environments: face-to-face (FTF), computer-mediated using video conferencing (CMCD-a), and computer-mediated using "talk by typing" (CMCD-b). The underlying aim is to establish a clearer notion of the collaborative needs of architects using computer-mediation. In turn this has the potential in assisting developers when designing new collaborative tools and in assisting designers when selecting an environment for a collaborative session.
series other
last changed 2003/04/23 15:50

_id gerardgabriel_phd
id gerardgabriel_phd
authors Gabriel, Gerard Caesar
year 2000
title COMPUTER-MEDIATED COMMUNICATION IN DESIGN
source PhD Thesis, Faculty of Architecture, University of Sydney
summary Up till now, architects collaborating with other colleagues did so mostly face-to-face (FTF). They had to be in the same space (co-located) at the same time. Communication was ‘spontaneous’ and ideas were represented, whether verbal or nonverbal, by talking and using ‘traditional drawing tools’. If they were geographically displaced, the interaction was then space affected as well as the probability of being time affected. In this case communication was usually mediated through the telephone, and graphically represented ideas were sent by Fax or posted documents. Recently, some architectural firms started using modems and Internet connections to exchange information, by transferring CAD drawings as well as design information, through e-mail and file transfer protocol (FTP). Discussing ideas in architecture, as a more abstract notion, is different from discussing other more concrete arguments using video conferencing. It is more important to ‘see’ what is being discussed at hand than ‘watch’ the other person(s) involved in the discussion. In other words the data being conveyed might be of more importance than the mode of communication. Taking into consideration recent developments in computer and communication technologies this thesis investigates different communication channels utilised in architectural collaboration through Computer Mediated Collaborative Design (CMCD) sessions as opposed to FTF sessions. This thesis investigates the possible effects these different channels have on collaborative design in general and collaborative design communication in particular. We argue that successful CMCD does not necessarily mean emulating close proximity environments. Excluding certain communication channels in a CMCD environment might affect the flow and quantity of synchronous collaborative communication, but not necessarily the quality and content of mutually communicated and represented design ideas. Therefore different communication channels might affect the type of communication and not necessarily the content of the communication. We propose that audio and video are not essential communication channels in CMCD environments. We posit that architects will collaborate and communicate design representations effectively although with some differences, since those two channels might cause interruptions and successful collaborative sessions can take place without them. For this purpose we conducted twenty-four one-hour experiments involving final year architecture students all working to the same design brief. The experiments were divided into three categories, FTF, full computer mediated collaborative design sessions (CMCD-a; audio-video conferencing plus whiteboard as a shared drawing space) and limited computer mediated collaborative design sessions (CMCD-b; with Lambda MOO used as a chat medium plus whiteboard as a shared drawing space). The experiments were video and audio taped, transcribed and coded into a custom developed coding scheme. The results of the analysed coded data and observations of the videotapes provided evidence that there were noticeable differences between the three categories. There was more design communication and less communication control in the CMCD-b category compared to the FTF and CMCD-a categories. Verbal communication became shorter and straight to the point in CMCD-b as opposed to spontaneous non-stop chat in the other two categories. Moreover in CMCD-b the subjects were observed to be more reflective as well as choosing and re-examining their words to explain ideas to their partners. At times they were seen scrolling back through the text of the conversation in order to re-analyse or interpret the design ideas at hand. This was impossible in FTF and CMCD-a sessions, since the subjects were more spontaneous and audio representations were lost as soon as they were uttered. Also the video channel in the CMCD-a category was ignored and hardly used except for the first few minutes of the experiments, for a brief exchange of light humour on the appearance of each subject. The results obtained from analysing the experiments helped us conclude that different communication channels produce different collaborative environments. The three categories of communication for architectural collaboration explored in our experiments are indicative of the alternatives available to architects now. What is not clear to architects is why they would choose one category over another. We propose that each category has its own strengths and difficulties for architectural collaboration, and therefore should be selected on the basis of the type of communication considered to be most effective for the stage and tasks of the design project.
series thesis:PhD
type normal paper
email
last changed 2005/09/09 13:02

_id 1eac
authors Garner, S.
year 2000
title Is Sketching Still Relevant in Virtual Design Studios?
source Proceedings of DCNet, Sydney
summary Sketching, as a particular subset of drawing, has for a long time, been valued within design activity. Although they can appear rough, inaccurate or incomplete, sketches have been presented as both valuable output from, and evidence of, essential activity in designing by individuals and groups. This paper reflects on this value and asks whether sketching is relevant today, given the advances in computing and communications technology seen in modern virtual design environments. Is it time to let go of the metaphor of drawing or can this ancient human capability still tell us something relevant for the improvement of the virtual design studio? While freehand line drawings may not have the same importance in current virtual design studios the support of incompleteness, ambiguity and shared meaning in solution-focused and problem-focused thinking remains essential. The paper proposes that attention to 'graphic acts' has improved our understanding of sketching within collaborative designing. A particular type of fast, transitory 'thumbnail' sketch would appear to be important. If this is so then attention to its modern counterpart in the latest 3D, multi-user, immersive virtual design studios is overdue if they are to support the cognitive processes of creativity vital to design.
series other
last changed 2003/04/23 15:50

_id 70c4
authors Gross, M.D., Do, E.Y.-L. and Johnson, B.R.
year 2000
title Beyond the low-hanging fruit: Information technology in architectural design past, present and future
source W. Mitchell and J. Fernandez (eds), ACSA Technology Conference, MIT Press, Cambridge MA
summary Today's commercial CAD software is the product of years of research that began in the 1960's and 1970's. These applications have found widespread use in the architectural marketplace; nevertheless they represent only the first fruits of research in computer aided design. New developments based on research in human-computer interaction (HCI), computer-supported collaborative work (CSCW), and virtual reality (VR) will result in a next generation of tools for architectural design. Although preliminary applications to design have been demonstrated in each of these areas, excellent opportunities remain to exploit new technologies and insights in service of better design software. In this paper we briefly examine each of these areas using examples from our own work to discuss the prospects for future research. We envision that future design technologies will develop from current and traditional conventions of practice combined with forward looking application of emerging technologies. In HCI, pen based interaction will allow architects to use the pencil again, without sacrificing the added power of computer aided design tools, and speech recognition will begin to play a role in capturing and retrieving design critique and discussion. In CSCW, a new generation of applications will address the needs of designers more closely than current general purpose meeting tools. In VR, applications are possible that use the technology not simply to provide a sense of three-dimensional presence, but that organize design information spatially, integrating it into the representation of artifacts and places.
series other
email
last changed 2003/04/23 15:50

_id 10e9
authors Heylighen, Ann and Neuckermans, Herman
year 2000
title DYNAMO in Action - Development and Use of a Web-Based Design Tool
source J. Pohl & T. Fowler (eds.), Proceedings of the Focus Symposium on Advances in Computer-Based and Web-Based Collaborative Systems - InterSymp-2000 International Conference On Systems Research, Informatics and Cybernetics, Baden-Baden (Germany), July 31 - Aug 4, 2000 (ISBN 0-921836-88-0), pp. 233-242
summary Addressing the subject of Case-Based Design (CBD), the paper describes the development and use of a Web-based design tool called DYNAMO. The tool is firmly rooted in the Dynamic Memory Theory underlying the CBD approach. Yet, rather than adopting it as such, we have tried to enrich this approach by extrapolating it beyond the individual. This extrapolation stimulates and intensifies several modes of interaction. Doing so, DYNAMO tries to kill two birds with one stone. At short notice, it provides architects and architecture students with a rich source of inspiration, ideas and design knowledge for their present design task, as it is filled with a permanently growing collection of design cases that is accessible on-line. Its long-term objective is to initiate and nurture the life-long process of learning from (design) experience as suggested by the cognitive model underlying CBD, and Case-Based Reasoning in general. DYNAMO is therefore conceived as an (inter-)active workhouse rather than a passive warehouse: it is interactively developed by and actively develops the user's design knowledge. Whereas previous papers have focused on the theoretical ideas of DYNAMO, this paper points out how Web technology enables us to implement these ideas as a working prototype. Furthermore, an annotated scenario of the system in use is described.
keywords Case-Based Design, Web Technology, Architectural Design
series journal paper
email
last changed 2002/11/22 14:50

_id 63b9
authors Jabi, Wassim
year 2000
title Visualizing and Investigating Architectural Space Using Spherical Panoramic Imaging
source Emerging Technologies and Design: The Intersection of Design and Technology, Proceedings of the 2000 ACSA Technology Conference, Massachusetts Institute of Technology, Cambridge, Massachusetts, July 14-17, 2000
summary This paper reports on the use of immersive spherical imaging techniques to document, visualize and investigate architectural space. This technology can be used in the classrooms and design studios to augment traditional instructional and design investigation tools. As opposed to cylindrical imaging found in the popular QuickTime VR format, spherical imaging provides a 360-degree view in all directions – horizontally and vertically. The ability to capture and display a full sphere can be crucial for many interior architectural spaces. Spherical panoramas can originate from real, synthetic or hybrid source images. In addition to the ability to embed links to web pages or other panoramas, a unique feature of this technology allows the viewer to navigate through a scene as well as pause at any point and view the space in all directions. In addition, the technology allows the user to sketch over the scene in an intelligent manner such that the sketched artifacts rotate correctly when the target view shifts. The software also integrates with collaborative tools to allow synchronous viewing of shared panoramas over the Internet. These features allow for a truly immersive and interactive experience of the space that can be quite useful in a design studio setting. Finally, this paper describes ongoing efforts to integrate this technology with an interactive web-based, databasedriven virtual slide tray system for the storage, sorting, and display of multimedia content.
keywords Spherical Panoramic Imaging
series other
email
last changed 2002/03/05 19:55

_id avocaad_2001_22
id avocaad_2001_22
authors Jos van Leeuwen, Joran Jessurun
year 2001
title XML for Flexibility an Extensibility of Design Information Models
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The VR-DIS research programme aims at the development of a Virtual Reality – Design Information System. This is a design and decision support system for collaborative design that provides a VR interface for the interaction with both the geometric representation of a design and the non-geometric information concerning the design throughout the design process. The major part of the research programme focuses on early stages of design. The programme is carried out by a large number of researchers from a variety of disciplines in the domain of construction and architecture, including architectural design, building physics, structural design, construction management, etc.Management of design information is at the core of this design and decision support system. Much effort in the development of the system has been and still is dedicated to the underlying theory for information management and its implementation in an Application Programming Interface (API) that the various modules of the system use. The theory is based on a so-called Feature-based modelling approach and is described in the PhD thesis by [first author, 1999] and in [first author et al., 2000a]. This information modelling approach provides three major capabilities: (1) it allows for extensibility of conceptual schemas, which is used to enable a designer to define new typologies to model with; (2) it supports sharing of conceptual schemas, called type-libraries; and (3) it provides a high level of flexibility that offers the designer the opportunity to easily reuse design information and to model information constructs that are not foreseen in any existing typologies. The latter aspect involves the capability to expand information entities in a model with relationships and properties that are not typologically defined but applicable to a particular design situation only; this helps the designer to represent the actual design concepts more accurately.The functional design of the information modelling system is based on a three-layered framework. In the bottom layer, the actual design data is stored in so-called Feature Instances. The middle layer defines the typologies of these instances in so-called Feature Types. The top layer is called the meta-layer because it provides the class definitions for both the Types layer and the Instances layer; both Feature Types and Feature Instances are objects of the classes defined in the top layer. This top layer ensures that types can be defined on the fly and that instances can be created from these types, as well as expanded with non-typological properties and relationships while still conforming to the information structures laid out in the meta-layer.The VR-DIS system consists of a growing number of modules for different kinds of functionality in relation with the design task. These modules access the design information through the API that implements the meta-layer of the framework. This API has previously been implemented using an Object-Oriented Database (OODB), but this implementation had a number of disadvantages. The dependency of the OODB, a commercial software library, was considered the most problematic. Not only are licenses of the OODB library rather expensive, also the fact that this library is not common technology that can easily be shared among a wide range of applications, including existing applications, reduces its suitability for a system with the aforementioned specifications. In addition, the OODB approach required a relatively large effort to implement the desired functionality. It lacked adequate support to generate unique identifications for worldwide information sources that were understandable for human interpretation. This strongly limited the capabilities of the system to share conceptual schemas.The approach that is currently being implemented for the core of the VR-DIS system is based on eXtensible Markup Language (XML). Rather than implementing the meta-layer of the framework into classes of Feature Types and Feature Instances, this level of meta-definitions is provided in a document type definition (DTD). The DTD is complemented with a set of rules that are implemented into a parser API, based on the Document Object Model (DOM). The advantages of the XML approach for the modelling framework are immediate. Type-libraries distributed through Internet are now supported through the mechanisms of namespaces and XLink. The implementation of the API is no longer dependent of a particular database system. This provides much more flexibility in the implementation of the various modules of the VR-DIS system. Being based on the (supposed to become) standard of XML the implementation is much more versatile in its future usage, specifically in a distributed, Internet-based environment.These immediate advantages of the XML approach opened the door to a wide range of applications that are and will be developed on top of the VR-DIS core. Examples of these are the VR-based 3D sketching module [VR-DIS ref., 2000]; the VR-based information-modelling tool that allows the management and manipulation of information models for design in a VR environment [VR-DIS ref., 2000]; and a design-knowledge capturing module that is now under development [first author et al., 2000a and 2000b]. The latter module aims to assist the designer in the recognition and utilisation of existing and new typologies in a design situation. The replacement of the OODB implementation of the API by the XML implementation enables these modules to use distributed Feature databases through Internet, without many changes to their own code, and without the loss of the flexibility and extensibility of conceptual schemas that are implemented as part of the API. Research in the near future will result in Internet-based applications that support designers in the utilisation of distributed libraries of product-information, design-knowledge, case-bases, etc.The paper roughly follows the outline of the abstract, starting with an introduction to the VR-DIS project, its objectives, and the developed theory of the Feature-modelling framework that forms the core of it. It briefly discusses the necessity of schema evolution, flexibility and extensibility of conceptual schemas, and how these capabilities have been addressed in the framework. The major part of the paper describes how the previously mentioned aspects of the framework are implemented in the XML-based approach, providing details on the so-called meta-layer, its definition in the DTD, and the parser rules that complement it. The impact of the XML approach on the functionality of the VR-DIS modules and the system as a whole is demonstrated by a discussion of these modules and scenarios of their usage for design tasks. The paper is concluded with an overview of future work on the sharing of Internet-based design information and design knowledge.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 0d08
authors Kaga, A., Nakahama, K., Yamaguchi, S., Jyozen, T., Oh, S. and> Sasada, T.
year 2000
title Collaborative Design System for Citizen Participation
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 35-44
doi https://doi.org/10.52842/conf.caadria.2000.035
summary Citizens are becoming increasingly aware of the issues involved in public utility projects. Therefore, it is becoming important for public works departments of local governments to obtain consent from the residents concerned. We established the collaborative design system for citizen participation with using computer graphics. With using the system we found that the related persons have some requirements about collaborative design system. It can be effectively done with network and multimedia technologies. This paper presents the requirements for new collaborative design system.
series CAADRIA
email
last changed 2022/06/07 07:52

_id 03af
authors Kvan, Th., Schmitt, G., Maher, M.L. and Cheng, N.
year 2000
title Teaching Architectural Design in Virtual Studios
source Computing in Civil and Building Engineering, Renate Fruchter, Feniosky Pena-Mora and W. M. Kim Roddis, ASCE 2000, pp. 162–169
summary Virtual studios have provided a valuable content in which to explore and test approaches to both collaborative design and pedagogy. While there has been extensive earlier experience in virtual campuses; not least that at The Open University in England; virtual design studios have explored a different nature of collaboration and interaction; shedding light on a new range of tasks and methods. These lessons have been applied in many fields. For example; the lessons have been used to understand the nature of collaboration. Most directly; they have been applied to the context of teaching design and understanding better how students learn to design. The change in technology can open up new opportunities in what is taught; not only how it is taught. Most broadly; they have been taken in to consideration in the creation of virtual campuses for broader university teaching. All these aspects are explored in this paper.
keywords Pedagogy; Learning; Virtual Studio; Collaboration
series journal paper
email
last changed 2002/11/15 18:29

_id 8b8e
authors Kvan, Th., Wong, J.T.H. and Vera, A.H.
year 2000
title Supporting Structural Activities in Design: A Multiple-Case Study
source Proceedings, Fifth International Conference on Computer Supported Cooperative Work in Design (CSCWD2000), Hong Kong, November 29 – December 2, 2000, pp. 116-120
summary This paper describes case studies in design teaching and their analysis; examining the role of structural activities and other solution searching activities in design learning and problem solving. The case studies follow students working on the same problem under two conditions – one group is taught using traditional face-to-face teaching while the other group is supported by a text-based web board. The design activities of two students were followed in each condition through a semester; followed by in-depth interviews at the end of semester. Interviews and logs were coded according to an activity-based model of design activity. The results show that cases with above average design work involved more structural activities than the mediocre cases. It also showed that design problem dissections are more organized in the better cases. These successful cases engaged in textual expression of their design solutions. Computer tools for design should therefore support textual representation in addition to graphic; video or audio.
keywords Collaborative Design; Computer Supported Collaborative Work; Structure Activities; Text
series other
email
last changed 2002/11/15 18:29

_id c97f
authors Kvan, Thomas and Candy, Linda
year 2000
title Designing Collaborative Environments for Strategic Knowledge in Design
source Knowledge-Based Systems, 13:6, November 2000, pp. 429-438
summary This paper considers aspects of strategic knowledge in design and some implications for designing in collaborative environments. Two key questions underline the concerns. First; how can strategic knowledge for collaborative design be taught and second; what kind of computer-based collaborative designing might best support the learning of strategic knowledge? We argue that the support of learning of strategic knowledge in collaborative design by computer-mediated means must be based upon empirical evidence about the nature of learning and design practice in the real world. This evidence suggests different ways of using computer-support for design learning and acquistion of strategic design knowledge. Examples of research by the authors that seeks to provide that evidence are described and an approach to computer system design and evaluation proposed.
keywords Collaborative Design; Strategic Knowledge; Empirical Studies; Computer Support
series journal paper
email
last changed 2002/11/15 18:29

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_83880 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002