CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 747

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 0beb
authors Koch, Volker and Russell, Peter
year 2000
title VuuA.Org: The Virtual Upperrhine University of Architecture
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 23-25
doi https://doi.org/10.52842/conf.ecaade.2000.023
summary In 1998, architecture schools in the three nation region of the upper Rhine came together to undertake a joint design studio. With the support of the Center for Entrepeneurship in Colmar, France, the schools worked on the reuse of the Kuenzer Mill situated near Herbolzheim, Germany. The students met jointly three times during the semester and then worked on the project at their home universities usng conventional methods. This project was essential to generating closer ties between the participating students, tutors and institutions and as such, the results were quite positive. So much so, that the organisers decided to repeat the exercise one year later. However, it became clear that although the students had met three times in large groups, the real success of a co-operative design studio would require mechanisms which allow far more intimate interaction among the participants, be they students, teachers or outside experts. The experiences from the Netzentwurf at the Institut für Industrielle Bauproduktion (ifib) showed the potential in a web based studio and the addition of ifib to the three nation group led to the development of the VuuA platform. The first project served to illuminate the the differences in teaching concepts among the partner institutions and their teaching staff as well as problems related to the integration of students from three countries with two languages and four different faculties: landscape architecture, interior design, architecture and urban planning. The project for the Fall of 1999 was the reuse of Fort Kléber in Wolfisheim by Strasbourg, France. The students again met on site to kick off the Semester but were also instructed to continue their cooperation and criticism using the VuuA platform.
keywords Virtual Design Studio, CSCW, International Cooperation, Planning Platform
series eCAADe
email
more http://www.vuua.org
last changed 2022/06/07 07:51

_id ca3d
authors Shakarchi, Ali Y.
year 2000
title Tools for Distributed Design Practice
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 89-92
doi https://doi.org/10.52842/conf.ecaade.2000.089
summary During collaboration designers jointly solve problems as well as interact for critical feedback. Today’s heterogeneous, distributed and global market demands of designers collaboration in both synchronous and asynchronous mode. The management and control of such projects is frequently geographical and temporally distributed. Increasingly, efficient communication is becoming a vital component in the design process, whether in managing the project data or controlling the compatibility of different inputs by design team members or minimizing the revision cycles. Paper presents and discuss iSPACE, the mature prototype software application developed to serve different scenarios of communication between the distributed design team members. The iSPACE is web based application that can deliver an interactive environment over low-bandwidth connections. Application of iSPACE in the educational environment is monitored and discussed. Giving the potential of this technology to enhance and to streamline complex tasks associated with the design process, the quality of the design product is changing. The new style of design practice can be now practically further modeled, supported and enhanced.
keywords Design Collaboration, Design Process, i-space, Digital Media
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:56

_id 976f
authors Cheng, Nancy and Kvan, Thomas
year 2000
title Design Collaboration Strategies
source Proceedings of the Fifth International Conference on Design and Decision Support Systems in Architecture, pp. 62-73
summary This paper explains the logistical and technical issues involved in design collaboration and how to address them strategically in projects for design, teaching and research. Five years of arranging projects, studying peer results and involving novices in exchanges point out the benefits and pitfalls of Internet partnering. Rather than a single universal technical solution, multiple solutions exist: Technical means must be tailored to specifics concerning the task and participants. The following factors need to be considered in finding the best fit between technology and group design: 1) Collaboratorsí profiles, 2) Mutual value of produced information, 3) Collaboration structure, and 4) Logistical opportunities. The success of a virtual studio depends upon clear task definition, aligned participant expectations and suitable engagement methods. We question the efforts required in the installation of expensive technologies for communication and visualization. Often technical systems support ancillary and non-beneficial activity.
series other
email
last changed 2003/05/15 10:29

_id caadria2000_000
id caadria2000_000
authors Tan, Beng-Kiang; Tan, Milton; Wong, Yunn-Chii (eds.)
year 2000
title CAADRIA 2000
source Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, 519 p.
doi https://doi.org/10.52842/conf.caadria.2000
summary Ever since the advent of computer graphics in the sixties, computer-aided architectural design (CAAD) has made a great impact in architectural education and practice. Its central role as a new media for the representation and analysis of designs will ensure that it will continue to do so. The teaching and research in CAAD in Asia have also been growing in scope and in quality. In the 21st century, the challenges of architectural education and practice in the new millennium will open up new fronts in CAAD research. This conference is an important platform to evaluate the challenge and opportunities and will enable researchers to exchange ideas and collaboration in projects with specific relevance to CADD for Asia. This compilation of 48 papers were elected through a blind review by an international panel and presented at the conference in Singapore on 18 - 19 May 2000. The chapters are organised according to the main topics covered by the conference -- Collaborative Design, Simulation, Design Education, Knowledge Representation, Design Process, Information Systems, Design Tools, Virtual Reality and Computer Media. The Collaborative Design section consists of papers which deal with Collaborative Design Process interfaces to databases, Collaborative Design System for Citizen Participation, Team Awareness in Collaboration and Computer Environment for supporting Design Collaboration. The Simulation section deals with lighting studies, colour assessment, simulation of urban growth patterns, dynamic simulations in buildings and way-finding. The Design Education section consists of papers on design pedagogy in design studios using computers, virtual studios and virtual learning. The Knowledge Representation section consists of papers that deal with knowledge-based systems, design representation and shape grammar. The Design Process section consists of papers on design process and cognition, design creativity and the computer media. The Information Systems section consists of papers on information navigation, information management, design information repository and databases. The Design Tools section consists of papers on design tools based on generative systems, a new method for 3D animation and movement-in-architectural-space representation. The Virtual Reality and Computer Media section deals with virtual reality applications and tools in architecture, designing virtual environments and computer media and visualization.
series CAADRIA
last changed 2022/06/07 07:49

_id ea49
authors Yen-wen Cheng, Nancy and Kvan, Thomas
year 2000
title Design Collaboration Strategies Estrategias para la Colaboración de Diseño a Larga Distancia
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 45-49
summary This paper explains the logistical and technical issues involved in design collaboration and how to address them strategically in projects for design, teaching and research. Five years of arranging projects, studying peer results and involving novices in exchanges point out the benefits and pitfalls of Internet partnering. Rather than a single universal technical solution, multiple solutions exist: Technical means must be tailored to specifics concerning the task and participants. The following factors need to be considered in finding the best fit between technology and group design: 1) Collaborators' profiles, 2) Mutual value of produced information, 3) Collaboration structure, and 4) Logistical opportunities. The success of a virtual studio depends upon clear task definition, aligned participant expectations and suitable engagement methods. // We question the efforts required in the installation of expensive technologies for communication and visualization. Often technical systems support ancillary and non-beneficial activity. Matching needs and resources can be more critical than high-tech equipment. People motivated to interact will work around technical difficulties.
series SIGRADI
email
last changed 2016/03/10 10:03

_id ga0018
id ga0018
authors Ciao, Quinsan
year 2000
title Hearing Architectural Design: Simulation and Auralization for Generating Better Acoustic Spaces
source International Conference on Generative Art
summary This paper with demonstration is devoted to revealing and establishing the relationship between space and sound through computational acoustic analysis, simulation and electronic synthesis of audible sound. Based on science of acoustics and computing technology, acoustic effect of an architectural 3-D design can be analyzed and the resulted sound in space can be synthesized and predicted accordingly and being heard. Auralization refers to this process of acoustic analysis, sound synthesis and audio presentation of the result in the form of audible sound. Design alternatives can be experimented until satisfactory acoustic effect is achieved. Traditionally, designers rely on some minimum and vague understanding or specialists’ experiences to predict and design for a desirable sound behavior in spaces. Most likely acoustic design and analysis are seen as a luxury remedy only affordable in large-scale theatres and concert halls. The recent available PC based auralization tools brought significance in both in terms of new knowledge towards the science and art of architectural acoustics and the methods and practice in the design process. The examples demonstrated in the presentation will indicate that the auralization technology make it possible for the designers, consultants, end users or potential occupants to examine and evaluate the performance of different designs by hearing it directly before an informed decision can be made. The case studies also illustrated that the auralization is a powerful tool for general public with common building types to uncover everyday acoustic problems that have been constantly harming their well being and would otherwise be undetected.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 93cc
authors Colajanni, B., Pellitteri, G. and Concialdi, S.
year 2000
title Retrieval Tools in Building Case Bases
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 113-116
doi https://doi.org/10.52842/conf.ecaade.2000.113
summary Most of the existing aids to building design rely on data base of cases representing solutions to problems that are thought to happen again at least in a similar way. Crucial for the success of the aid is the retrieval engine. In tour its efficiency depends on the way the cases are encoded. Whichever is this way cases will be represented at different levels of abstraction. The highest level will probably consist in an accessibility and adjacency graph. Another level could be a wire plan of the building. An easily workable representation of a graph is a square matrix. For any given building typology it is possible to write a list of encoded space types. This allows forming matrices that can be compared and their diversity measured. Here we present an algorithm that makes this job. Such an algorithm can be one of the case retrieval tools in the data base. It is likely that the designer has already some idea of the shape he wants for the building he is designing. A comparison between some geometric characteristics of the wire representation of the retrieved case and the corresponding ones of the imagined solution of the design problem can constitute a second test. The matching can be done
keywords Knowledge, Case Bases, Building, Tools
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:56

_id ec4d
authors Croser, J.
year 2001
title GDL Object
source The Architect’s Journal, 14 June 2001, pp. 49-50
summary It is all too common for technology companies to seek a new route to solving the same problem but for the most part the solutions address the effect and not the cause. The good old-fashioned pencil is the perfect example where inventors have sought to design-out the effect of the inherent brittleness of lead. Traditionally different methods of sharpening were suggested and more recently the propelling pencil has reigned king, the lead being supported by the dispensing sleeve thus reducing the likelihood of breakage. Developers convinced by the Single Building Model approach to design development have each embarked on a difficult journey to create an easy to use feature packed application. Unfortunately it seems that the two are not mutually compatible if we are to believe what we see emanating from Technology giants Autodesk in the guise of Architectural Desktop 3. The effect of their development is a feature rich environment but the cost and in this case the cause is a tool which is far from easy to use. However, this is only a small part of a much bigger problem, Interoperability. You see when one designer develops a model with one tool the information is typically locked in that environment. Of course the geometry can be distributed and shared amongst the team for use with their tools but the properties, or as often misquoted, the intelligence is lost along the way. The effect is the technological version of rubble; the cause is the low quality of data-translation available to us. Fortunately there is one company, which is making rapid advancements on the whole issue of collaboration, and data sharing. An old timer (Graphisoft - famous for ArchiCAD) has just donned a smart new suit, set up a new company called GDL Technology and stepped into the ring to do battle, with a difference. The difference is that GDL Technology does not rely on conquering the competition, quite the opposite in fact their success relies upon the continued success of all the major CAD platforms including AutoCAD, MicroStation and ArchiCAD (of course). GDL Technology have created a standard data format for manufacturers called GDL Objects. Product manufacturers such as Velux are now able to develop product libraries using GDL Objects, which can then be placed in a CAD model, or drawing using almost any CAD tool. The product libraries can be stored on the web or on CD giving easy download access to any building industry professional. These objects are created using scripts which makes them tiny for downloading from the web. Each object contains 3 important types of information: · Parametric scale dependant 2d plan symbols · Full 3d geometric data · Manufacturers information such as material, colour and price Whilst manufacturers are racing to GDL Technologies door to sign up, developers and clients are quick to see the benefit too. Porsche are using GDL Objects to manage their brand identity as they build over 300 new showrooms worldwide. Having defined the building style and interior Porsche, in conjunction with the product suppliers, have produced a CD-ROM with all of the selected building components such as cladding, doors, furniture, and finishes. Designing and detailing the various schemes will therefore be as straightforward as using Lego. To ease the process of accessing, sizing and placing the product libraries GDL Technology have developed a product called GDL Object Explorer, a free-standing application which can be placed on the CD with the product libraries. Furthermore, whilst the Object Explorer gives access to the GDL Objects it also enables the user to save the object in one of many file formats including DWG, DGN, DXF, 3DS and even the IAI's IFC. However, if you are an AutoCAD user there is another tool, which has been designed especially for you, it is called the Object Adapter and it works inside of AutoCAD 14 and 2000. The Object Adapter will dynamically convert all GDL Objects to AutoCAD Blocks during placement, which means that they can be controlled with standard AutoCAD commands. Furthermore, each object can be linked to an online document from the manufacturer web site, which is ideal for more extensive product information. Other tools, which have been developed to make the most of the objects, are the Web Plug-in and SalesCAD. The Plug-in enables objects to be dynamically modified and displayed on web pages and Sales CAD is an easy to learn and use design tool for sales teams to explore, develop and cost designs on a Notebook PC whilst sitting in the architects office. All sales quotations are directly extracted from the model and presented in HTML format as a mixture of product images, product descriptions and tables identifying quantities and costs. With full lifecycle information stored in each GDL Object it is no surprise that GDL Technology see their objects as the future for building design. Indeed they are not alone, the IAI have already said that they are going to explore the possibility of associating GDL Objects with their own data sharing format the IFC. So down to the dirty stuff, money and how much it costs? Well, at the risk of sounding like a market trader in Petticoat Lane, "To you guv? Nuffin". That's right as a user of this technology it will cost you nothing! Not a penny, it is gratis, free. The product manufacturer pays for the license to host their libraries on the web or on CD and even then their costs are small costing from as little as 50p for each CD filled with objects. GDL Technology has come up trumps with their GDL Objects. They have developed a new way to solve old problems. If CAD were a pencil then GDL Objects would be ballistic lead, which would never break or loose its point. A much better alternative to the strategy used by many of their competitors who seek to avoid breaking the pencil by persuading the artist not to press down so hard. If you are still reading and you have not already dropped the magazine and run off to find out if your favorite product supplier has already signed up then I suggest you check out the following web sites www.gdlcentral.com and www.gdltechnology.com. If you do not see them there, pick up the phone and ask them why.
series journal paper
email
last changed 2003/04/23 15:14

_id 34f7
authors Ehrhardt, Mark A. and Gross, Mark D.
year 2000
title Place Based Web Resources for Historic Buildings
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 177-179
doi https://doi.org/10.52842/conf.ecaade.2000.177
summary Web sites with animations, panoramic images, sound, and virtual reality can provide a strong sense of place, richer than text and photographs and more interactive than cinema. Constructing these sites demands a great deal of visual and textual information, which must be organized, integrated, and coded for delivery. Existing authoring packages are general-purpose, not specifically for architectural applications, and require technical sophistication. In our process for building Place Based Web Resources (PBWRs), after assembling photographic, drawing, text, and audio resources, the author follows a straightforward series of steps. The Hagia Sophia Web Resource resulted from this process; it includes panoramic pictures, photographs and interpretive text about the building and a VRML model.
keywords Historic Documentation, Web Authoring Tools, Representations of Place
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id b5f3
authors Johnson, Brian R.
year 2000
title Sustaining Studio Culture: How Well Do Internet Tools Meet the Needs of Virtual Design Studios?
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 15-22
doi https://doi.org/10.52842/conf.ecaade.2000.015
summary The Internet beckons seductively to students. The prospect of nearly instantaneous communication with acquaintances spread across the face of the earth is alluring. The ease with which rich graphical content can be made available to the world is stunning. The possibility of a design being seen by friends, family, and famous architects is tantalizing. Faculty are drawn by the potent synergy and learning that can be found in the opposition and cooperation of different cultural roots. It is probable that entire design studio sequences will be offered through distance-learning programs in the near future. Is that a good idea? Much has been written about "virtual design studios" in architecture schools and "virtual offices" in practice. Most offices have largely or totally abandoned drafting boards in favor of digital tools of production. Yet, regarding design, Ken Sanders, author of The Digital Architect, and Manager of Information Services at Zimmer Gunsul Frasca Partnership (ZGF), of Portland, Oregon, has written "we still make an effort to locate project teams together and always will". Production CAD work requires different kinds of interaction than design and design instruction. The experiments have been invaluable in developing strategies for use of the Internet as a component of a design studio series, but rarely depend entirely on use of the Internet for all course communications. In fact, most describe fairly isolated efforts to augment some aspect of traditional design environments using Internet tools (ftp, email, web). A few have implemented new pedagogic or collaboration paradigms (e.g., ETH’s phase(x)). This paper considers the traditional design studio in terms of formal and informal activities, characterizes the major Internet technologies with regard to the resulting interaction issues. In particular, it describes an area of informal work group communications that appears to be ill-supported with existing tools. The paper goes on to describe a web-based collaboration tool which was developed to address the need for less formal communication. The context for this development is the concept of a fully distributed collaboration environment with particular attention to questions of informal communication. Finally, it describes how the tool was deployed in an experimental "web studio" setting and student responses to use of the tool.
keywords Virtual Design Studio, Collaboration, Online Communities, Web Tools
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:52

_id 625d
authors Liapi, Katherine A.
year 2001
title Geometric Configuration and Graphical Representation of Spherical Tensegrity Networks
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 258-267
doi https://doi.org/10.52842/conf.acadia.2001.258
summary The term “Tensegrity,” that describes mainly a structural concept, is used in building design to address a class of structures with very promising applications in architecture. Tensegrity structures are characterized by almost no separation between structural configuration and formal or architectural expression (Liapi 2000). In the last two decades structural and mechanical aspects in the design of these structures have been successfully addressed, while their intriguing morphology has inspired several artists and architects. Yet, very few real world applications of the tensegrity concept in architecture have been encountered. The geometric and topological complexity of tensegrity structures that is inherent to their structural and mechanical basis may account for significant difficulties in the study of their form and their limited application in building design. In this paper an efficient method for the generation of the geometry of spherical tensegrity networks is presented. The method is based on the integration of CAD tools with Descriptive Geometry procedures and allows designers to resolve and visualize the complex geometry of such structures.
keywords Tensegrity Networks, Visualization, Geometric Configuration
series ACADIA
email
last changed 2022/06/07 07:59

_id a6a6
authors Peyret, F., Jurasz, J., Carrel, A., Zekri, E. and Gorham, B.
year 2000
title The Computer Integrated Road Construction project
source Automation in Construction 9 (5-6) (2000) pp. 447-461
summary This paper is about the "Computer Integrated Road Construction" (CIRC) project, which is a Brite-EuRam III funded project, lasting 1997–1999, aiming at introducing a new generation of control and monitoring tools for road pavements construction. These new tools are designed to bring on the sites significant improvements by creating a digital link between design office and job site. The first part of the paper describes the background of the project, which gathers seven European partners from five different countries, and gives the objectives of the project, in general and for each of the two targeted products: one for the compactors (CIRCOM) and one for the asphalt pavers (CIRPAV). Then, the two prototypes are described, each of them being broken down into three main sub-systems: the ground sub-system (GSS), the on-board sub-system (OB) and the positioning sub-system (POS). The expected benefits for the different users are also presented and quantified. The central part of the paper is devoted to the main technical innovations that have been developed in the frame of the project: universal vector database for road equipment guidance, multi-machine functionalities of CIRCOM and the two positioning systems which are actually the technological keys of the systems. Finally, the state of progress of the developments of the two CIRC products and the first commercial success achieved in parallel are presented.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 4aa9
authors Roberts, Andrew
year 1999
title Virtual Site Planning
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 442-447
doi https://doi.org/10.52842/conf.ecaade.1999.442
summary This paper looks at the potential for the Virtual Reality to be used as a medium for the development of teaching tools in Architectural and Urban Design Education. It identifies examples and lessons learned from the development of teaching tools in other disciplines. The paper outlines a prototype system developed at Cardiff University to help Town Planning students understand the three dimensional nature of site planning and design. This was developed following difficulties encountered by students in using CAD which was seen as insufficiently intuitive to allow effective use within the short timespan available. The prototype system allows students to access their site through the familiar environment of a Web Browser. A number of 'Standard' house types are available which can be selected and inserted into the design space. Once in the space the houses can be viewed in three dimensions, moved and rotated in order to form any configuration that the students may wish. The system is easily customisable; it need not be limited to uses in urban design, but could be used in many situations where component parts are arranged in space.
keywords Virtual Reality, Teaching, Learning, Site Planning
series eCAADe
email
more http://ctiweb.cf.ac.uk/Housing/
last changed 2022/06/07 07:56

_id 65f7
authors Rügemer, Jörg and Russell, Peter
year 2000
title Promise and Reality: The impact of the Virtual Design Studio on the Design and Learning Process in the Architectural Education
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 41-44
doi https://doi.org/10.52842/conf.ecaade.2000.041
summary In step with the popular trend of including virtual working methods and tools in the process of teaching, the Virtual Design Studio (VDS) has been developed by the Institute for Industrial Building Production (ifib), at the University of Karlsruhe over the past three years. Alongside the technical aspects of such a studio, the challenge persisted to incorporate computer based tools into the architectural design and planning process with the goal of enhancing the relationship between all participants. The VDS is being further developed and refined, experiencing regular changes in its organization and teaching methods. With the establishment of the Virtual Upperrhine University of Architecture (VuuA) and the introduction of the Virtual Design Studio into the curriculum of the Institute for Architectural Presentation and CAD (adai), BTU Cottbus, the VDS extended beyond the borders of a single architectural school, aiming towards a wide acceptance and use within architectural education institutions.
keywords Virtual Design Studio, Education, Interactive Design Development, Team Processes
series eCAADe
email
more http://www.ifib.uni-karlsruhe.de/
last changed 2022/06/07 07:56

_id ga0001
id ga0001
authors Soddu, Celestino
year 2000
title From Forming to Transforming
source International Conference on Generative Art
summary The ancient codes of harmony stem from the human vision of the complexity of nature. They allow us to think the possible, to design it and to perform its realization. The first gesture of every designer is to take, in a new application that is born from a need the opportunity to experiment with a possible harmonic code. And to operate in the evolution of the project so that this code buds and breeds beauty as a mirror of the complexity and wonder of nature. In this design activity, project after project, every architect builds his own code. This is strongly present in diverse ways in every architect. The code of harmony born from the attention of every man to the complexity of nature, manifests itself in interpretation, which is logical and therefore feasible, of the laws of formalization of relationships. Every interpretation is different and belongs to the oneness of every architect. Every interpretative code stems from, and reveals, our approach to the world, our cultural references, our history, our present and the memory of our past. Each idea is born as a representation of the interpretative code that is a cryptic and subjective code, even if it refers as constant to history of man. Generative art is the maximum expression of this human challenge: it traces a code as a reference to the complexity of nature, and it makes it feasible. So man is the craftsman of the possible, according to the laws of the natural harmony. What does a code of the harmony contain? As for all codes it contains some rules that trace certain behaviors. It is not therefore a sequence, a database of events, of forms, but it defines behaviors: the transformations. To choose forms and to put them together is an activity that can also resemble that of a designer, but essentially it is the activity of the client. The designer does not choose forms but operates transformations, because only by doing so can he put a code of harmony into effect. Between transforming and choosing forms one can trace the borderline between architects and clients, between who designs and who chooses the projected objects. This difference must be reconsidered especially today because we are going toward a hybridization in which the client wants to feel himself a designer, even if he only chooses. And the designer, using sophisticated tools, works as chooser between different solutions, in practice as a client. To design, to create through transformations is, however, an activity that takes time. The generative design, building a usable and upgradable code, makes time virtual and therefore allows the architect, even in a speeded-up world as today is, to design and reach levels of complexity that mirror the complexity of nature and its beauty.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id f8a3
authors Tuzmen, Ayca
year 2000
title Collaborative Building Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 93-99
doi https://doi.org/10.52842/conf.ecaade.2000.093
summary Studies on team performance have observed that some teams at the same stage in their development perform better than other teams, even of the same composition. Why is this? One of the main reasons is found to be a good team process. Researchers argue that collaborative process is an ideal case through which parties who see different aspects of a problem can constructively explore their differences and search for solutions that go beyond their own limited vision of what is possible. Much attention is now being paid to improvement of the design team process by establishing a collaborative environment in building design practice. Many scholars have prescribed various techniques and technology as ways of achieving collaboration in building design practice. A combination of these prescriptions does support design teams by facilitating one or more of the following: (a) team internal communication, (b) team external communication, (c) information sharing, and (d) decision making. Only recently have there been studies that have provided the strategies for integrating these techniques and technology for the establishment of a collaborative work environment. Researchers from various areas of research have this intention. This includes studies in Business Process Management (BPM), Business Process Re-Engineering (BPR), Total Quality Management (TQM), Project Management (PM), Workflow Management (WfM). All of these studies share one common feature. They all contribute to the study of the management of the team process. Despite the power of the concept and the history of successful application of process management techniques in building practice, the process management strategies are not a panacea. Rather it is a tool which, when properly used under appropriate circumstances, can aid design teams in the achievement of a collaborative design environment. The successful implementation or enactment of process management strategies in building design practice requires a mediator, a facilitator, or a project manager with a variety of managerial skills. However, it is not only enough to support major facilitators in the implementation or in the enactment of a design process that is planned for that teamwork. The performance of a design process should not only be depended on the skills or capabilities of tools that managers use to enact design processes. In order to achieve a collaborative design environment, members of the design team should also be given the support for monitoring and implementing of a collaborative design process. Team members should also have the ability to define, implement and track their personal subprocesses. Team members should also be able to monitor the process and be able to resolve the conflicts between their actions and other members' actions. A distributed process management environment is required in order to facilitate the management and control of the enactment of a collaborative design process. Such an environment should enable the control and monitoring of the enactment of a process and the resources required for its enactment. This paper presents the conceptual model of a process management environment that is developed in order to establish such a process management environment. It also discusses the findings of a study that is conducted for the validation and verification of this conceptual model.
keywords Collaborative Design, Process Management, Workflow Management
series eCAADe
type normal paper
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:58

_id 38ff
authors Van den Heuvel, F.A.
year 2000
title Trends in CAD-based photogrammetric measurement
source International Archives of Photogrammetry and Remote Sensing, Vol. 33, Part 5/2, pp. 852-863
summary In the past few decades, Computer Aided Design (CAD) systems have evolved from 2D tools that assist in construction design to the basis of software systems for a variety of applications, such as (re)design, manufacturing, quality control, and facility management. The basic functions of a modern CAD system are storage and retrieval of 3D data, their construction, manipulation, and visualisation. All these functions are needed in a photogrammetric measurement system. Therefore, photogrammetry benefits from integration with CAD, and thereby from developments in this field. There are two main interpretations of the term CAD-based photogrammetry. The first interpretation is on a system level: there is a trend towards integration of photogrammetric tools in existing CAD systems. The second interpretation is on an algorithmic level: developments in the field of CAD regarding object modelling techniques are being implemented in photogrammetric systems. In practice, the two interpretations overlap to a varying extent. The integrated photogrammetric processing of geometry and topology is defined as a minimum requirement for CAD-based photogrammetry. The paper discusses the relation between CAD and photogrammetry with an emphasis on close-range photogrammetry. Several approaches for the integration of CAD and photogrammetry are briefly reviewed, and trends in CAD-based photogrammetry are outlined. First of all, the trend towards CAD-based photogrammetry is observed. The integration of photogrammetry and CAD increases the efficiency of photogrammetric modelling. One of the reasons for this is the improvement of the user-interface, which allows better interaction with the data. A more fundamental improvement is the use of advanced object modelling techniques such as Constructive Solid Geometry, and the incorporation of geometric object constraints. Furthermore, research emphasis is on CAD-based matching techniques for automatic precise measurement of CAD-models. An overall conclusion remains: the integration of photogrammetry and CAD has great potential for widening the acceptance of photogrammetry, especially in industry. This is firstly because of the improvement in efficiency, and secondly because of the established and well-known concept of CAD.
series journal paper
last changed 2003/04/23 15:50

_id d267
authors Verbeke, J. Provoost, T., Verleye, J., Nys, K., Van Zutphen, R., Achten, H., Turksma, A., Pittioni, G., Asanowicz, A., Jakimowicz A. and Af Klercker, J.
year 1999
title AVOCAAD, The Experience
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 244-251
doi https://doi.org/10.52842/conf.ecaade.1999.244
summary The Leonardo da Vinci project AVOCAAD (Added Value of Computer Aided Architectural Design) aims at stimulating creative and experimental use of computers in the field of Architecture and Construction by the use of new technologies. For this purpose, a large set of exercises and exercise materials was developed and is now available through an interactive web-site. This allows regular students as well as architects in practice to continuously seek for a more interesting and inspiring use of computers and IC-technology, adding value in their own field of interest and work. The interactive web-site generates a virtual forum for exchange of ideas. The AVOCAAD partners as well as the newly joined partners are currently using and testing the available teaching materials (exercises, foreground and background information) with students. Moreover a small design exercise in the context of the project has been the theme of a workshop held at the AVOCAAD 1999 conference. Students and architects were asked to create a design in a predefined space based on experimental architectural music. This paper intends to report on the experiences we gained in using the interactive web-site, the exercises and also doing the workshop. We will address the pedagogical implications of issues like learning environment, continuous and distance learning, and focus on their impact towards CAAD curricula. Examples and results will illustrate the general framework.
keywords AVOCAAD, CAAD, Creativity, LLL, ODL
series eCAADe
email
more http://www.avocaad.org
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_803179 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002