CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 715

_id 42dd
authors Kobayashi, Yoshihiro and Terzidis, Kostas
year 2000
title Extracting the Geometry of Buildings from Satellite Images using Fuzzy Multiple Layer Perceptrons
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 236-239
summary This paper presents Computer Aided Architectural Design (CAAD) system utilizing the technologies of artificial intelligence (AI) and image processing. The goal is to create a CAAD system that detects buildings from satellite images and produces computer city models allowing the system’s users to manipulate the models utilizing machine learning technology. The flexibility and usability of the system was evaluated with case studies. Soft computing technologies including neural networks and fuzzy systems are mainly applied and tested as the system’s methodology.
series SIGRADI
email
last changed 2016/03/10 09:54

_id sigradi2005_438
id sigradi2005_438
authors Bessone, Miriam; Ricardo Pérez Miró, Isabel Molinas
year 2005
title Digital visualization and new intellectual associations among language - music - architecture
source SIGraDi 2005 - [Proceedings of the 9th Iberoamerican Congress of Digital Graphics] Lima - Peru 21-24 november 2005, vol. 1, pp. 438-443
summary Throughout history, architecture has transposed contributions bound to structuralist focus or to musical composition. This is from linguistic and music respectively. New visualization systems show the possibility to give transpositions a new meaning, form the potentialities of hypermedia; locking for new projects parameters. This papers will show experimental workshop results developed within CI+D 2000 “New speeches and design process”. They study links and explore our work interrelating word – music and image. These processes are developed by people coming from literature, visual arts, music, and architecture areas. Lastly, the first results will be shown. Since parameters were transposed from music, by using NURBS forms, space prefiguration is tried out. [Full paper in Spanish]
series SIGRADI
email
last changed 2016/03/10 09:47

_id c229
authors Cavazos, María Estela Sánchez
year 2002
title Experiencia en Digitalización de Procesos de Diseño Arquitectónico Caso Taller de Modelación Espacial, Universidad Autónoma de Aguascalientes [Experience in Digitalization Processes of Architectural Design: Study Case of Space Modeling, Independent University of Aguascalientes ]
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 252-256
summary This project has been based in an experience that took time in the years 1999 and 2000 where a group of 13 students of the Architectonic Design Masters in the U.A.A. were submitted to a project that consisted in register their Architectonic Design Processing during a year with the main purpose of having the most complete material possible to be used as material for different research projects. At the end of the architectonic project the students scanned all the graphics and ordered them in the format that was established by the group using ACDSee32 as the program, which resulted very simple to manage and permitted to order the graphics and write comments to them as it was thought. The result obtained was 12 ordered texts by seven segments pefectly identifi ed and with easy manage for any investigation that you want to realice with them, in fact today exist two fi nished investigations that were realized with this information added to one formal investigation and some informal in process.
series SIGRADI
email
last changed 2016/03/10 09:48

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 567d
authors Farrag, C., Pinna Braga, F. and Teixeira, P.
year 2000
title Investigação de Metodologia de Ensino de Informática Aplicada à Arquitetura (Research on the Methodology for Teaching Computer Applications in Architecture)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 347-349
summary Description of class research from 1997-2 to 2000-1 in “Applied Computing in Architecture” conducted in the sixth semester of the Architecture Program at Faculdade de Belas Artes de São Paulo. The study is intended to analyze, evaluate and discover new paradigms in the introduction/application of class methodologies of teaching the use of computer in the design process. Our intention is to verify the students natural understanding of the principles of 3D digital modeling by introducing new tools for defining space and form, using the computer as a communication/representation system, and not only as a mimetized production tool. The challenge was to find a natural syntony between the digital projectual process and the learning process. At the end of each semester we evaluated the results and redirected the class proposals.
series SIGRADI
email
last changed 2016/03/10 09:51

_id c839
authors Hwang, Jie-Eun
year 2002
title SpaceScope: Developing a Spatial Information Retrieval System - Focused on Apartment Unit Floor Plans -
source Yonsei University, Dept. of Housing & Interior Design
summary This research investigates the spatial information retrieval (IR) in architecture focused on constructing efficient metadata that is crucial for data retrieval. Generally speaking, metadata is ‘structured data about data’ to describe resources especially in a digital format. In this research, metadata is a sort of data object to be useful in searching spatial information. Metadata is also used to describe raw spatial data object as not only attribute data but also content structurally and semantic ally. There are two issues that motivate this research; 1) what is the spatial information – that materializes the intangible space as a data object, and 2) how we can search the information efficiently – the content-based information retrieval. Although knowledge of a building’s spatial content is most important in architecture, there has been no logical method to manage it.

From the viewpoint of content-based retrieval, the researcher analyzes spatial information of a floor plan, with a focus on the apartment unit floor plan common in Korea. Then the metadata items are extracted in a structured manner. To manage the items efficiently, the researcher develops a data model for spatial information according to the concept of the “Structured Floor Plan”. The main object of content to retrieve is a spatial network that consists of nodes of spaces and their linkages. There are two ways to organize the metadata: the traditional index files and the RDF (Resource Description Framework). While the index files are still efficient with computability, the RDF applies greater options to retrieve, such as fuzzy predicates, semantic predicates, and so on. To exploit the metadata, this research shows several possibilities of query operations that present a set of sample queries about L-DK(Living room – Dining room – Kitchen). Implementation of the prototype system is divided into three parts: 1) a modeling module using Vitruvius; 2) an indexing module using MS SQL Server? 2000 in conjunction XML; and 3) a browsing module using the SpaceScope browser.

The future works may consider XML-based databases and a knowledge based query language, such as RQL/XQL, working on such databases. The more specific domain knowledge is involved, the more practical systems would be. Even in architecture, there may be a diverse range of domain knowledge, such as design, building performance, facility management, energy management, post occupied evaluation, historical research, and so on. Also the issue of interface should be investigated in depth, so that it will be adequate to the needs of the architectural field.

keywords Content-based Information Retrieval; Metadata; RDF; XML; Spatial Information; Apartment Floor Plan; Semantics
series thesis:MSc
email
last changed 2003/04/25 07:27

_id 6cc5
authors Kowaltowski, D.C.C.K., Da Silva, V.G., Gouveia, A.P.S., Pina. G., Ruschel, R.C., Filho, F.B. and Fávero, E.
year 2000
title Ensino de Projeto com Inserção da Informática Aplicada: O curso de Arquitetura e Urbanismo da UNICAMP (Design Teaching with the Introduction of Applied Computing: The Architecture and Urbanism course at UNICAMP)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 352-354
summary This paper discusses the formal educational base of the Architecture course of the State University of Campinas, UNICAMP, which opened in 1999. Applied computing, thoerical content and technical aspects of design are principal educational elements of the course. The paper will show and discuss the structure of building up knowledge for design activities through drafting, applied computing and theory and practical design disciplines present in the course.
series SIGRADI
email
last changed 2016/03/10 09:54

_id f9f7
authors Mullins, Michael
year 1999
title Forming, Planning, Imaging and Connecting
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 178-185
doi https://doi.org/10.52842/conf.ecaade.1999.178
summary This paper sets out to define aspects of the architectural design process, using historical precedent and architectural theory, and tests the relationship of those aspects to the application of computers in architectural design, particularly in an educational context. The design process sub-sets are defined as: Forming, Planning, Imaging and Connecting. Historical precedents are uncovered in Classical, Modern, Postmodern and Contemporary architecture. The defined categories of the design process are related to current usages of computers in architectural education towards elucidating the strengths and weaknesses of digital media in those areas. Indications of their concurrent usage in digital design will be demonstrated in analysis of design studio programs presented at recent ACADIA conferences. An example of a current design studio programme set at the School of Architecture University of Natal, South Africa in which the above described categories give an underlying structure to the introduction of 3D digital modelling to undergraduates through design process. The definition of this set of design activities may offer a useful method for other educators in assessing existing and future design programs where digital tools are used.
keywords Design-Process, Digital-Media, Design-Programmes
series eCAADe
email
last changed 2022/06/07 07:59

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id avocaad_2001_19
id avocaad_2001_19
authors Shen-Kai Tang, Yu-Tung Liu, Yu-Sheng Chung, Chi-Seng Chung
year 2001
title The visual harmony between new and old materials in the restoration of historical architecture: A study of computer simulation
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the research of historical architecture restoration, scholars respectively focus on the field of architectural context and architectural archeology (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000) or on architecture construction and the procedure of restoration (Shi, 1988, 1989; Chiu, 1990). How to choose materials and cope with their durability becomes an important issue in the restoration of historical architecture (Dasser, 1990; Wang, 1998).In the related research of the usage and durability of materials, some scholars deem that, instead of continuing the traditional ways that last for hundreds of years (that is to replace new materials with old ones), it might be better to keep the original materials (Dasser, 1990). However, unavoidably, some of the originals are much worn. Thus we have to first establish the standard of eliminating components, and secondly to replace identical or similar materials with the old components (Lee, 1990). After accomplishing the restoration, we often unexpectedly find out that the renewed historical building is too new that the sense of history is eliminated (Dasser, 1990; Fu, 1997). Actually this is the important factor that determines the accomplishment of restoration. In the past, some scholars find out that the contrast and conflict between new and old materials are contributed to the different time of manufacture and different coating, such as antiseptic, pattern, etc., which result in the discrepancy of the sense of visual perception (Lee, 1990; Fu, 1997; Dasser, 1990).In recent years, a number of researches and practice of computer technology have been done in the field of architectural design. We are able to proceed design communication more exactly by the application of some systematic softwares, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and so on (Lawson, 1995; Liu, 1996). The application of computer technology to the research of the preservation of historical architecture is comparatively late. Continually some researchers explore the procedure of restoration by computer simulation technology (Potier, 2000), or establish digital database of the investigation of historical architecture (Sasada, 2000; Wang, 1998). How to choose materials by the technology of computer simulation influences the sense of visual perception. Liu (2000) has a more complete result on visual impact analysis and assessment (VIAA) about the research of urban design projection. The main subjects of this research paper focuses on whether the technology of computer simulation can extenuate the conflict between new and old materials that imposed on visual perception.The objective of this paper is to propose a standard method of visual harmony effects for materials in historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example).There are five steps in this research: 1.Categorize the materials of historical architecture and establish the information in digital database. 2.Get new materials of historical architecture and establish the information in digital database. 3.According to the mixing amount of new and old materials, determinate their proportion of the building; mixing new and old materials in a certain way. 4.Assign the mixed materials to the computer model and proceed the simulation of lighting. 5.Make experts and the citizens to evaluate the accomplished computer model in order to propose the expected standard method.According to the experiment mentioned above, we first address a procedure of material simulation of the historical architecture restoration and then offer some suggestions of how to mix new and old materials.By this procedure of simulation, we offer a better view to control the restoration of historical architecture. And, the discrepancy and discordance by new and old materials can be released. Moreover, we thus avoid to reconstructing ¡§too new¡¨ historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ecaade2015_237
id ecaade2015_237
authors Vrouwe, Ivo; Luyten, Laurens and Pak, Burak
year 2015
title Teaching and Learning CAAD and CAM in a Fluid Era - Tools and Strategies for the Analysis and Synthesis of Ill-Defined Construction Problems
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 119-126
doi https://doi.org/10.52842/conf.ecaade.2015.2.119
wos WOS:000372316000015
summary In this paper we discuss a series of tools and strategies to support learner-centred construction education in the complexity of the era today (Bauman, 2000). By using these tools in the education of CAD and CAM in construction education at universities for the arts, design and architecture, we aim to support the student in the abstract aspects of Bloom's (1956) cognitive learning domain. In order to present a coherent spectrum of educational tools and strategies, we start with the introduction of a tool for problem-analysis. The tool is explained by applying it to the context of spatial design construction, digital design and fabrication. Then we shortly discuss the process of design-evaluation. Next we introduce three models for design-synthesis. Afterwards, a test case is used to elaborate on the different tools and strategies which are tested and evaluated.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=d75a9f02-6f80-11e5-bc83-9bf4aa35f970
last changed 2022/06/07 07:58

_id avocaad_2001_17
id avocaad_2001_17
authors Ying-Hsiu Huang, Yu-Tung Liu, Cheng-Yuan Lin, Yi-Ting Cheng, Yu-Chen Chiu
year 2001
title The comparison of animation, virtual reality, and scenario scripting in design process
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Design media is a fundamental tool, which can incubate concrete ideas from ambiguous concepts. Evolved from freehand sketches, physical models to computerized drafting, modeling (Dave, 2000), animations (Woo, et al., 1999), and virtual reality (Chiu, 1999; Klercker, 1999; Emdanat, 1999), different media are used to communicate to designers or users with different conceptual levels¡@during the design process. Extensively employed in design process, physical models help designers in managing forms and spaces more precisely and more freely (Millon, 1994; Liu, 1996).Computerized drafting, models, animations, and VR have gradually replaced conventional media, freehand sketches and physical models. Diversely used in the design process, computerized media allow designers to handle more divergent levels of space than conventional media do. The rapid emergence of computers in design process has ushered in efforts to the visual impact of this media, particularly (Rahman, 1992). He also emphasized the use of computerized media: modeling and animations. Moreover, based on Rahman's study, Bai and Liu (1998) applied a new design media¡Xvirtual reality, to the design process. In doing so, they proposed an evaluation process to examine the visual impact of this new media in the design process. That same investigation pointed towards the facilitative role of the computerized media in enhancing topical comprehension, concept realization, and development of ideas.Computer technology fosters the growth of emerging media. A new computerized media, scenario scripting (Sasada, 2000; Jozen, 2000), markedly enhances computer animations and, in doing so, positively impacts design processes. For the three latest media, i.e., computerized animation, virtual reality, and scenario scripting, the following question arises: What role does visual impact play in different design phases of these media. Moreover, what is the origin of such an impact? Furthermore, what are the similarities and variances of computing techniques, principles of interaction, and practical applications among these computerized media?This study investigates the similarities and variances among computing techniques, interacting principles, and their applications in the above three media. Different computerized media in the design process are also adopted to explore related phenomenon by using these three media in two projects. First, a renewal planning project of the old district of Hsinchu City is inspected, in which animations and scenario scripting are used. Second, the renewal project is compared with a progressive design project for the Hsinchu Digital Museum, as designed by Peter Eisenman. Finally, similarity and variance among these computerized media are discussed.This study also examines the visual impact of these three computerized media in the design process. In computerized animation, although other designers can realize the spatial concept in design, users cannot fully comprehend the concept. On the other hand, other media such as virtual reality and scenario scripting enable users to more directly comprehend what the designer's presentation.Future studies should more closely examine how these three media impact the design process. This study not only provides further insight into the fundamental characteristics of the three computerized media discussed herein, but also enables designers to adopt different media in the design stages. Both designers and users can more fully understand design-related concepts.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 8e02
authors Brown, A.G.P. and Coenen, F.P.
year 2000
title Spatial reasoning: improving computational efficiency
source Automation in Construction 9 (4) (2000) pp. 361-367
summary When spatial data is analysed the result is often very computer intensive: even by the standards of contemporary technologies, the machine power needed is great and the processing times significant. This is particularly so in 3-D and 4-D scenarios. What we describe here is a technique, which tackles this and associated problems. The technique is founded in the idea of quad-tesseral addressing; a technique, which was originally applied to the analysis of atomic structures. It is based on ideas concerning Hierarchical clustering developed in the 1960s and 1970s to improve data access time [G.M. Morton, A computer oriented geodetic database and a new technique on file sequencing, IBM Canada, 1996.], and on atomic isohedral (same shape) tiling strategies developed in the 1970s and 1980s concerned with group theory [B. Grunbaum, G.C. Shephard, Tilings and Patterns, Freeman, New York, 1987.]. The technique was first suggested as a suitable representation for GIS in the early 1980s when the two strands were brought together and a tesseral arithmetic applied [F.C. Holdroyd, The Geometry of Tiling Hierarchies, Ars Combanitoria 16B (1983) 211–244.; S.B.M. Bell, B.M. Diaz, F.C. Holroyd, M.J.J. Jackson, Spatially referenced methods of processing raster and vector data, Image and Vision Computing 1 (4) (1983) 211–220.; Diaz, S.B.M. Bell, Spatial Data Processing Using Tesseral Methods, Natural Environment Research Council, Swindon, 1986.]. Here, we describe how that technique can equally be applied to the analysis of environmental interaction with built forms. The way in which the technique deals with the problems described is first to linearise the three-dimensional (3-D) space being investigated. Then, the reasoning applied to that space is applied within the same environment as the definition of the problem data. We show, with an illustrative example, how the technique can be applied. The problem then remains of how to visualise the results of the analysis so undertaken. We show how this has been accomplished so that the 3-D space and the results are represented in a way which facilitates rapid interpretation of the analysis, which has been carried out.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 9d26
authors Adriane Borda Da Silva, A., Félix, N.R., Magallón Lacarta, J.A., Serón Arbeloa, F.J.
year 2000
title Da Representação à Modelagem (From Representation Towards Modeling)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 280-282
summary This work intends to structure a conceptual and technical referential to guide the development of the “Post-Graduate Drawing Course - from traditional tracing to computer graphics” (DTGC-IFM,UFPel, RS, Brasil), related to the process of using the computer technology for problem-solving in graphics representation. The referential intends to evaluate the level of development, and also orientate the investments with qualification of the staff, hardware and software. This study refers only to the process of solving problems using computer graphics techniques for Geometric and Visual Modeling.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 60e7
authors Bailey, Rohan
year 2000
title The Intelligent Sketch: Developing a Conceptual Model for a Digital Design Assistant
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 137-145
doi https://doi.org/10.52842/conf.acadia.2000.137
summary The computer is a relatively new tool in the practice of Architecture. Since its introduction, there has been a desire amongst designers to use this new tool quite early in the design process. However, contrary to this desire, most Architects today use pen and paper in the very early stages of design to sketch. Architects solve problems by thinking visually. One of the most important tools that the Architect has at his disposal in the design process is the hand sketch. This iterative way of testing ideas and informing the design process with images fundamentally directs and aids the architect’s decision making. It has been said (Schön and Wiggins 1992) that sketching is about the reflective conversation designers have with images and ideas conveyed by the act of drawing. It is highly dependent on feedback. This “conversation” is an area worthy of investigation. Understanding this “conversation” is significant to understanding how we might apply the computer to enhance the designer’s ability to capture, manipulate and reflect on ideas during conceptual design. This paper discusses sketching and its relation to design thinking. It explores the conversations that designers engage in with the media they use. This is done through the explanation of a protocol analysis method. Protocol analysis used in the field of psychology, has been used extensively by Eastman et al (starting in the early 70s) as a method to elicit information about design thinking. In the pilot experiment described in this paper, two persons are used. One plays the role of the “hand” while the other is the “mind”- the two elements that are involved in the design “conversation”. This variation on classical protocol analysis sets out to discover how “intelligent” the hand should be to enhance design by reflection. The paper describes the procedures entailed in the pilot experiment and the resulting data. The paper then concludes by discussing future intentions for research and the far reaching possibilities for use of the computer in architectural studio teaching (as teaching aids) as well as a digital design assistant in conceptual design.
keywords CAAD, Sketching, Protocol Analysis, Design Thinking, Design Education
series ACADIA
last changed 2022/06/07 07:54

_id ff1d
authors Barki, José
year 2000
title Representação Digital e Projeto de Arquitetura (Digital Representation and Architectural Design)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 120-122
summary The paper is focused around a critical discussion of the digital representation and the architectural design process. Digital technology is now widely accepted and computers are causing a profound impact in the way reality and artificial objects are described and represented. Computers are now transforming skills, design processes, production processes and organizations. However, the evidence suggests that there are no fundamental changes in the architectural design process. It is acknowledged that the design process in architecture goes through representations and entails two altering phases: one generating tentative possibilities and hypothesis, and another of testing and evaluation. Based on this discussion a new way of using digital technology in architectural conception and design is suggested.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 1f5c
authors Beesley, Philip and Seebohm, Thomas
year 2000
title Digital Tectonic Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 287-290
doi https://doi.org/10.52842/conf.ecaade.2000.287
summary Digital tectonic design is a fresh approach to architectural design methodology. Tectonics means a focus on assemblies of construction elements. Digital tectonics is an evolving methodology that integrates use of design software with traditional construction methods. We see digital tectonic design as a systematic use of geometric and spatial ordinances, used in combination with details and components directly related to contemporary construction. The current approach will, we hope, lead to an architectural curriculum based on generative form making where the computer can be used to produce systems of forms algorithmically. Digital design has tended to remain abstract, emphasizing visual and spatial arrangements often at the expense of materials and construction. Our pursuit is translation of these methods into more fully realized physical qualities. This method offers a rigorous approach based on close study of geometry and building construction elements. Giving a context for this approach, historical examples employing systematic tectonic design are explored in this paper. The underlying geometric ordinance systems and the highly tuned relationships between the details in these examples offer design vocabularies for use within the studio curriculum. The paper concludes with a detailed example from a recent studio project demonstrating particular qualities developed within the method. The method involves a wide range of scales, relating large-scale gestural and schematic studies to detailed assembly systems. Designing in this way means developing geometric strategies and, in parallel, producing detailed symbols or objects to be inserted. These details are assembled into a variety of arrays and groups. The approach is analogous to computer-aided designÕs tradition of shape grammars in which systems of spatial relationships are used to control the insertion of shapes within a space. Using this approach, a three-dimensional representation of a building is iteratively refined until the final result is an integrated, systematically organized complex of symbols representing physical building components. The resulting complex offers substantial material qualities. Strategies of symbol insertions and hierarchical grouping of elements are familiar in digital design practice. However these strategies are usually used for automated production of preconceived designs. In contrast to thsse normal approaches this presentation focuses on emergent qualities produced directly by means of the complex arrays of symbol insertions. The rhyth
keywords 3D CAD Systems, Design Practice, 3D Design Strategies
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id c42a
authors Bermudez, J., Agutter, J., Brent, L., Syroid, N., Gondeck-Becker, D., Westenskow, D., Foresti, S. and Sharir, Y.
year 2000
title Cyberprint: Toward an Architecture of Being
source ACADIA Quarterly, vol. 19, no. 3, pp. 8-12
doi https://doi.org/10.52842/conf.acadia.2000.008
summary This project involves the design, construction and performance of an “architecture of being” that expresses selfhood in virtual space and real time using: (1) physiological data as its building material, (2) architectural design as its expressive intent, (3) digital space as its medium, (4) screen projection as its enveloping and viewing technique, (5) user interactivity and performance as its partner, and (6) interdisciplinary collaborations among Architecture, Choreography, Modern Dance, Music, Bioengineering, Medicine and Computer Science as its creative and technical contexts. The paper presents the implementation of the cyberPRINT during a series of techno-media performances at the Rose Wagner Performing Art Center in Salt Lake City, USA, in May 2000. This work is believed to be the first of its kind in the world. The cyberPRINT is building a new area of creative inquiry in Architecture by means of collaborations with the Arts and Sciences.
keywords Performance; Data Visualization; Interdisciplinary; Virtual; Architecture
series ACADIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_942056 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002