CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 744

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 4c4b
authors Gavin, Lesley
year 2000
title 3D Online Learning in Multi-User Environments
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 187-191
doi https://doi.org/10.52842/conf.ecaade.2000.187
summary Over the last 2 years the MSc Virtual Environments course in the Bartlett School of Graduate Studies has used a 3-dimensional on-line multi-user environment to explore the possibilities for the architectural design of virtual environments. The "Bartlett" virtual world is established as the environment where students undertake group design projects. After an initial computer based face-toface workshop, students work from terminals at home and around the university. Using avatar representations of themselves, tutors and students meet in the on-line environment. The environment is used for student group discussions and demonstrations, tutorials and as the virtual "siteÕ for their design projects. The "Bartlett" world is currently open to every internet user and so often has "visitors". These visitors often engage in discussions with the students resulting in interesting dynamics in the teaching pattern. This project has been very successful and is particularly popular with the students. Observations made over the 2 years the project has been running have resulted in interesting reflections on both the role of architectural design in virtual environments and the use of such environments to extend the pedagogical structure used in traditional studio teaching. This paper will review the educational experience gained by the project and propose the ideal software environment for further development. We are now examining similar types of environments currently on the market with a view to adapting them for use as a distance learning medium.
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:51

_id 0c0d
authors Asanowicz, Aleksander
year 2000
title Computer as an Metaphorisation Machine
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 283-286
doi https://doi.org/10.52842/conf.ecaade.2000.283
summary Digital media is transforming the practice and teaching of design. Information technologies offer not only better production and rendering tools but also the ability to model, manipulate, and understand design in new ways. A new era in CAAD has started. One of the aspects of this situation is the increase in the number of computers in design offices and architectural schools (many of our students have their own computers, which a re often better than the computers we have at our school). We can submit a proposition that the critical point in the creative use of computers is over, and we should think how computers and new media may extend the designer’s perception and imagination.
keywords Creation of a Form, Imagination, Metaphors, Computer Support of Form Searching
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 0cb1
authors Dave, Bharat
year 2000
title Architecture of Digital Imagination
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 297-306
doi https://doi.org/10.52842/conf.caadria.2000.297
summary Digital technologies extend, displace or substitute entirely new elements into what has been observed so far in the traditional modes of conception, representation and communication of design. This paper examines various characteristics of digital media and representations, their impacts- constraining and liberating- on modes of conception in design, and possible shifts in design expressions and ways of designing. While much effort invested in research to date has relied upon architecture as conceived, taught and communicated in traditional modes, the use of digital technologies changes those very premises. The import of such characterisation for design computation research is to highlight emerging agendas for future investigation.
series CAADRIA
email
last changed 2022/06/07 07:55

_id f85d
authors Geraedts, Rob P and Pollalis, Spiro N.
year 2001
title Remote Teaching in Design Education - Educational and Organizational Issues and Experiences
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 305-310
doi https://doi.org/10.52842/conf.ecaade.2001.305
summary The Department of Real Estate and Project Management (BMVB) of the Faculty of Architecture at the Delft University of Technology has been working closely with Professor Spiro N. Pollalis of Harvard University, Graduate School of Design in Cambridge, USA since 1991. His case-based interactive seminars about the management of the design & construction process have been highly appreciated by many generations of students. In Spring 2000, Pollalis suggested to extend the scope of his involvement by introducing a remote teaching component, the subject of his research in the last few years. As Information and Communication Technology (ICT) in the Design and Construction Industry is part of his lectures, it was appropriate to provide the students with a first hand experience on the subject. In the following experiment, the teacher would remain in his office at Harvard while the interactive work and discussion sessions with 130 students in a full lecture room would take place in Delft as planned. The consequences this experiment has had for the course, for the techniques and facilities used, how teachers and students experienced these, and which conclusions and recommendations can be made, are the topics of this paper.
keywords Remote Teaching, Design & Construction Education, And ICT
series eCAADe
last changed 2022/06/07 07:51

_id e6fb
authors McFadzean, Jeanette
year 1999
title Computational Sketch Analyser (CSA): Extending the Boundaries of Knowledge in CAAD
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 503-510
doi https://doi.org/10.52842/conf.ecaade.1999.503
summary This paper focuses on the cognitive problem-solving strategies of professional architectural designers and their use of external representations for the production of creative ideas. Using a new form of protocol analysis (Computational Sketch Analysis), the research has analysed five architects' verbal descriptions of their cognitive reasoning strategies during conceptual designing. It compares these descriptions to a computational analysis of the architects' sketches and sketching behaviour. The paper describes how the current research is establishing a comprehensive understanding of the mapping between conceptualisation, cognition, drawing, and complex problem solving. The paper proposes a new direction for Computer Aided Architectural Design tools (CAAD). It suggests that in order to extend the boundaries of knowledge in CAAD an understanding of the complex nature of architectural conceptual problem-solving needs to be incorporated into and supported by future conceptual design tools.
keywords Computational Sketch Analysis, Conceptual Design
series eCAADe
email
last changed 2022/06/07 07:58

_id edd9
authors Zerefos, S.C., Kotsiopoulos, A.M. and Pombortsis, A.
year 2000
title Responsive Architecture: An Integrated Approach for the Future
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 245-249
doi https://doi.org/10.52842/conf.acadia.2000.245
summary An integrated approach towards a responsive architecture is presented. This new direction in architecture is based on recent scientific advances and on available technology in materials, telecommunications, electronics and sustainability principles. The integrated responsive architecture is not confined to offices or housing, but may well extend to intelligent neighborhoods and to intelligent cities. The dynamics of these future systems focus on security, comfort and health for the inhabitants.
series ACADIA
last changed 2022/06/07 07:57

_id aa7f
authors Bollinger, Elizabeth and Hill, Pamela
year 1993
title Virtual Reality: Technology of the Future or Playground of the Cyberpunk?
source Education and Practice: The Critical Interface [ACADIA Conference Proceedings / ISBN 1-880250-02-0] Texas (Texas / USA) 1993, pp. 121-129
doi https://doi.org/10.52842/conf.acadia.1993.121
summary Jaron Lanier is a major spokesperson of our society's hottest new technology: VR or virtual reality. He expressed his faith in the VR movement in this quote which appears in The User's Guide to the New Edge published by Mondo 2000. In its most technical sense, VR has attracted the attention of politicians in Washington who wonder if yet another technology developed in the United States will find its application across the globe in Asia. In its most human element, an entire "cyberpunk movement" has appealed to young minds everywhere as a seemingly safe form of hallucination. As architecture students, educators, and practitioners around the world are becoming attracted to the possibilities of VR technology as an extension of 3D modeling, visualization, and animation, it is appropriate to consider an overview of virtual reality.

In virtual reality a user encounters a computersimulated environment through the use of a physical interface. The user can interact with the environment to the point of becoming a part of the experience, and the experience becomes reality. Natural and

instinctive body movements are translated by the interface into computer commands. The quest for perfection in this human-computer relationship seems to be the essence of virtual reality technology.

To begin to capture the essence of virtual reality without first-hand experience, it is helpful to understand two important terms: presence and immersion. The sense of presence can be defined as the degree to which the user feels a part of the actual environment. The more reality the experience provides, the more presence it has. Immersion can be defined as the degree of other simulation a virtual reality interface provides for the viewer. A highly immersive system might provide more than just visual stimuli; for example, it may additionally provide simulated sound and motion, and simultaneously prevent distractions from being present.

series ACADIA
email
last changed 2022/06/07 07:52

_id 3d30
authors Castañé, D., Dehó, C. and Tessier, C.
year 2000
title Consecuencias y Alcances de los Procesos de Modelizacion: Una visión pedagógica-experimental del desarrollo de imágenes virtuales (Consequences and Potentiality of Modeling Processes : A pedagogical-experimental Vision on the Development of Virtual Images)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 292-294
summary The proposal is a discussion of the present limits offered by the modeling systems used in the educational environment. The perception of the space in the Renaissance period (Benevolo 92) and the multidimensional spaces observed in several design experiments (Bermúdez-Neiman 98), (Schmitt 99), (Eisenman 99) allow us to infer that the applications of 3D modeling procedures, has a vast spectrum of possibilities It is possible to distinguish six operative gradients according to the level of complexity when representing 3D spatial organization in architecture, according the architecture design strategy using Takes in consideration the factors that affects the “simulation” of reality according to several perceptive conditions that could alter the conventional visions of the 3D models.
series SIGRADI
email
last changed 2016/03/10 09:48

_id ddssar0013
id ddssar0013
authors Hensen, J.L.M. and Clarke, J.A.
year 2000
title Building systems and indoor environment: simulation for design decision support
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary This paper outlines the state-of-the-art in integrated building simulation for design support. The ESP-r system is used as an example where integrated simulation is a core philosophy behind the development. The paper finishes with indicating a number of barriers, which hinder routine application of simulation for building design.
series DDSS
last changed 2003/08/07 16:36

_id 7847
authors Kartam, Nabil and Flood, Ian
year 2000
title Construction simulation using parallel computing environments
source Automation in Construction 10 (1) (2000) pp. 69-78
summary The paper describes and compares alternative approaches to implementing construction simulation models within a multiprocessor computing environment. Both parallel-algorithmic and neural network based methods of simulating construction processes are considered, and compared with the conventional serial-algorithmic approach. The lines along which a simulation algorithm can be divided into tasks for parallel execution on a multiprocessor are first discussed, and the merits of each approach are identified. This is followed by a brief discourse on neural networks, their application to construction simulation, and the way in which such an implementation can be implemented within a multiprocessing environment. The merits and demerits of all approaches are discussed with particular reference to a model of an excavation system. A case study comparing the speed at which each implementation can process a simulation shows the neural approach to operate approximately two orders of magnitude faster than the alternatives. The paper concludes with an indication of future research to be conducted in this field.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ga0008
id ga0008
authors Koutamanis, Alexander
year 2000
title Redirecting design generation in architecture
source International Conference on Generative Art
summary Design generation has been the traditional culmination of computational design theory in architecture. Motivated either by programmatic and functional complexity (as in space allocation) or by the elegance and power of representational analyses (shape grammars, rectangular arrangements), research has produced generative systems capable of producing new designs that satisfied certain conditions or of reproducing exhaustively entire classes (such as all possible Palladian villas), comprising known and plausible new designs. Most generative systems aimed at a complete spatial design (detailing being an unpopular subject), with minimal if any intervention by the human user / designer. The reason for doing so was either to give a demonstration of the elegance, power and completeness of a system or simply that the replacement of the designer with the computer was the fundamental purpose of the system. In other words, the problem was deemed either already resolved by the generative system or too complex for the human designer. The ongoing democratization of the computer stimulates reconsideration of the principles underlying existing design generation in architecture. While the domain analysis upon which most systems are based is insightful and interesting, jumping to a generative conclusion was almost always based on a very sketchy understanding of human creativity and of the computer's role in designing and creativity. Our current perception of such matters suggests a different approach, based on the augmentation of intuitive creative capabilities with computational extensions. The paper proposes that architectural generative design systems can be redirected towards design exploration, including the development of alternatives and variations. Human designers are known to follow inconsistent strategies when confronted with conflicts in their designs. These strategies are not made more consistent by the emerging forms of design analysis. The use of analytical means such as simulation, couple to the necessity of considering a rapidly growing number of aspects, means that the designer is confronted with huge amounts of information that have to be processed and integrated in the design. Generative design exploration that can combine the analysis results in directed and responsive redesigning seems an effective method for the early stages of the design process, as well as for partial (local) problems in later stages. The transformation of generative systems into feedback support and background assistance for the human designer presupposes re-orientation of design generation with respect to the issues of local intelligence and autonomy. Design generation has made extensive use of local intelligence but has always kept it subservient to global schemes that tended to be holistic, rigid or deterministic. The acceptance of local conditions as largely independent structures (local coordinating devices) affords a more flexible attitude that permits not only the emergence of internal conflicts but also the resolution of such conflicts in a transparent manner. The resulting autonomy of local coordinating devices can be expanded to practically all aspects and abstraction levels. The ability to have intelligent behaviour built in components of the design representation, as well as in the spatial and building elements they signify, means that we can create the new, sharper tools required by the complexity resulting from the interpretation of the built environment as a dynamic configuration of co-operating yet autonomous parts that have to be considered independently and in conjunction with each other.   P.S. The content of the paper will be illustrated by a couple of computer programs that demonstrate the princples of local intelligence and autonomy in redesigning. It is possible that these programs could be presented as independent interactive exhibits but it all depends upon the time we can make free for the development of self-sufficient, self-running demonstrations until December.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id b792
authors Maruyama, Y., Iwase, Y., Koga, K., Yagi, J.,Takada, H., Sunaga, N., Nishigaki, S., Ito, T. and Tamaki, K.
year 2000
title Development of virtual and real-field construction management systems in innovative, intelligent field factory
source Automation in Construction 9 (5-6) (2000) pp. 503-514
summary In this study, we proposed a concept of virtual and real-field construction management systems (VR-Coms), which is integrated with virtual construction simulation, planning, scheduling, and performance management systems to evaluate productivity and safety in virtual simulated and real-field constructions. And, we built up a computational environment to develop the VR-Coms. The VR-Coms offer supporting modules for learning and discovering solutions with objective to manage construction at right speed with improved humanware and constructability. The configuration of VR-Coms is described. This paper also shows an application of agent theory to construction management.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ga0010
id ga0010
authors Moroni, A., Zuben, F. Von and Manzolli, J.
year 2000
title ArTbitrariness in Music
source International Conference on Generative Art
summary Evolution is now considered not only powerful enough to bring about the biological entities as complex as humans and conciousness, but also useful in simulation to create algorithms and structures of higher levels of complexity than could easily be built by design. In the context of artistic domains, the process of human-machine interaction is analyzed as a good framework to explore creativity and to produce results that could not be obtained without this interaction. When evolutionary computation and other computational intelligence methodologies are involved, every attempt to improve aesthetic judgement we denote as ArTbitrariness, and is interpreted as an interactive iterative optimization process. ArTbitrariness is also suggested as an effective way to produce art through an efficient manipulation of information and a proper use of computational creativity to increase the complexity of the results without neglecting the aesthetic aspects [Moroni et al., 2000]. Our emphasis will be in an approach to interactive music composition. The problem of computer generation of musical material has received extensive attention and a subclass of the field of algorithmic composition includes those applications which use the computer as something in between an instrument, in which a user "plays" through the application's interface, and a compositional aid, which a user experiments with in order to generate stimulating and varying musical material. This approach was adopted in Vox Populi, a hybrid made up of an instrument and a compositional environment. Differently from other systems found in genetic algorithms or evolutionary computation, in which people have to listen to and judge the musical items, Vox Populi uses the computer and the mouse as real-time music controllers, acting as a new interactive computer-based musical instrument. The interface is designed to be flexible for the user to modify the music being generated. It explores evolutionary computation in the context of algorithmic composition and provides a graphical interface that allows to modify the tonal center and the voice range, changing the evolution of the music by using the mouse[Moroni et al., 1999]. A piece of music consists of several sets of musical material manipulated and exposed to the listener, for example pitches, harmonies, rhythms, timbres, etc. They are composed of a finite number of elements and basically, the aim of a composer is to organize those elements in an esthetic way. Modeling a piece as a dynamic system implies a view in which the composer draws trajectories or orbits using the elements of each set [Manzolli, 1991]. Nonlinear iterative mappings are associated with interface controls. In the next page two examples of nonlinear iterative mappings with their resulting musical pieces are shown.The mappings may give rise to attractors, defined as geometric figures that represent the set of stationary states of a non-linear dynamic system, or simply trajectories to which the system is attracted. The relevance of this approach goes beyond music applications per se. Computer music systems that are built on the basis of a solid theory can be coherently embedded into multimedia environments. The richness and specialty of the music domain are likely to initiate new thinking and ideas, which will have an impact on areas such as knowledge representation and planning, and on the design of visual formalisms and human-computer interfaces in general. Above and bellow, Vox Populi interface is depicted, showing two nonlinear iterative mappings with their resulting musical pieces. References [Manzolli, 1991] J. Manzolli. Harmonic Strange Attractors, CEM BULLETIN, Vol. 2, No. 2, 4 -- 7, 1991. [Moroni et al., 1999] Moroni, J. Manzolli, F. Von Zuben, R. Gudwin. Evolutionary Computation applied to Algorithmic Composition, Proceedings of CEC99 - IEEE International Conference on Evolutionary Computation, Washington D. C., p. 807 -- 811,1999. [Moroni et al., 2000] Moroni, A., Von Zuben, F. and Manzolli, J. ArTbitration, Las Vegas, USA: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program – GECCO, 143 -- 145, 2000.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 0f8d
authors Pal, Vineeta
year 2000
title Integrated Decision-Making: The Building Design Advisor
source ACADIA Quarterly, vol. 19, no. 4, pp. 14-17
doi https://doi.org/10.52842/conf.acadia.2000.014
summary In this paper we describe an integrated decision-making environment that brings together several different building simulation tools, and provides the data management and process control required for their integrated use, from the initial, schematic phases of building design. The output of one tool is easily used as input to another, either directly, or after appropriate manipulation to ensure compatibility, which makes the whole integrated environment more than the sum of its parts. A simple graphical user interface, common to all simulation tools, allows access to all building parameters and supports multicriterion judegment by allowing side-by-side comparison of multiple alternative designs with respect to multiple performance parameters.
series ACADIA
last changed 2022/06/07 08:00

_id 988d
authors Russell, Peter and Forgber, Uwe
year 2000
title The E-Talier: Inter-university Networked Design Studios
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 45-50
doi https://doi.org/10.52842/conf.ecaade.2000.045
summary The widespread infiltration of internet based variations of traditional areas of society (e-commerce, e-business, e-mail etc.) will not spare the halls of academia in its propagation. The term courseware is well nigh 20 years old and considerable research and development has been done in bringing network based distributed courses to university consortiums including those in architecture and civil engineering. Indeed, the European Commission has recently approved funding for a 3-year web-based virtual university of architecture and construction technology: the WINDS project led by the University of Ancona. Such attempts to create e-courses are largely an extension of typical courseware where the syllabus is quantified and divided into lessons for use by the students alone or in conjunction with their tutors and professors. This is quite adequate in conveying the base knowledge of the profession. However, the tenants of being an architect or engineer involve the deft use of that unwieldy named and deliciously imprecise tool called "design". Teaching design sooner or later involves the design studio: a pedagogically construed environment of simulation intended to train, not teach the skills of designing. This is fundamentally different from normal courseware. A network based design studio (Etalier) must be able to reflect the nature of learning design. Design studios typically involve specifically chosen design problems, researched supporting information to assist design decisions, focussed discussions, individual consultation and criticism, group criticism, public forums for presentation discussion and criticism as well as a myriad of informal undocumented communication among the students themselves. So too must an Etalier function. Essentially, it must allow collaboration through communication. Traditional barriers to collaboration include language, culture (both national and professional) and distance. Through the internet's capricious growth and the widespread use of English as a second language, the largest hurdle to attaining fruitful collaboration is probably cultural. In the case of an Etalier in a university setting, the cultural difficulties arise from administrative rules, the pedagogical culture of specific universities and issues such as scheduling and accreditation. Previous experiments with virtual design studios have demonstrated the criticality of such issues. The proposed system allows participating members to specify the degree and breadth with which they wish to partake. As opposed to specifying the conditions of membership, we propose to specify the conditions of partnership. Through the basic principal of reciprocity, issues such as accreditation and work load sharing can be mitigated. Further, the establishment of a studio market will allow students, tutors and professors from participating institutions to partake in studio projects of their choosing in accordance with their own constraints, be they related to schedule, expertise, legal or other matters. The paper describes these mechanisms and some possible scenarios for collaboration in the Etalier market.
keywords e-Studio, Virtual Design Studio, Courseware, CSCW
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:56

_id f80f
authors Samiaji, Doddy
year 2001
title Development Simulator
source University of Washington, Design Machine Group
summary Development Simulator is a 3D simulation design application for architects and urban designers. Written in Visual Basic environment, using COM and ActiveX, it serves as a decision-making-support-system that reveals the impact of development numbers to three dimensional building form. The tool combines the power of a drawing program, AutoCAD 2000 and a spreadsheet program, Excel 2000. Development Simulator runs in Windows 2000.
series thesis:MSc
email
more http://dmg.caup.washington.edu/xmlSiteEngine/browsers/stylin/publications.html
last changed 2004/06/02 19:12

_id 2cf4
authors Shih, Naai-Jung and Huang, Yen-Shih
year 1999
title An Analysis and Simulation of Curtain Wall Reflection Glare
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 744-750
doi https://doi.org/10.52842/conf.ecaade.1999.744
summary This paper presents a computer-aided visualization on the influence of reflected sunbeams from curtain wall buildings. A survey was made to local buildings and it was discovered that reflected glare is a significant urban problem. Based on survey findings, a simulation was conducted to compare with actual occurrences in order to increase the comprehension of the consequences of window orientation and angles in the design stage. The simulation enabled design evaluation with an inspection above normal eye level and in a broader area, than that which normally could be achieved in a site survey at a pedestrian's or a driver's level. The computer simulation verified the influence of reflection on the urban environment by using a time-based record. In order to provide design solutions, the simulation used a 10x10x10 cube in referencing the horizontal area that would receive reflections. Due to the symmetric shape of the cube, a butterfly shaped boundary of reflection area (BRA) was concluded. BRA is smaller on the summer solstice than on the spring or autumnal equinox. In order to reduce BRA, a passive design approach was applied by tilting or rotating walls to evaluate how the tilted angles or orientation of the façade could affect reflected glare.
keywords Reflection Glare, Visualization
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2000_000
id caadria2000_000
authors Tan, Beng-Kiang; Tan, Milton; Wong, Yunn-Chii (eds.)
year 2000
title CAADRIA 2000
source Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, 519 p.
doi https://doi.org/10.52842/conf.caadria.2000
summary Ever since the advent of computer graphics in the sixties, computer-aided architectural design (CAAD) has made a great impact in architectural education and practice. Its central role as a new media for the representation and analysis of designs will ensure that it will continue to do so. The teaching and research in CAAD in Asia have also been growing in scope and in quality. In the 21st century, the challenges of architectural education and practice in the new millennium will open up new fronts in CAAD research. This conference is an important platform to evaluate the challenge and opportunities and will enable researchers to exchange ideas and collaboration in projects with specific relevance to CADD for Asia. This compilation of 48 papers were elected through a blind review by an international panel and presented at the conference in Singapore on 18 - 19 May 2000. The chapters are organised according to the main topics covered by the conference -- Collaborative Design, Simulation, Design Education, Knowledge Representation, Design Process, Information Systems, Design Tools, Virtual Reality and Computer Media. The Collaborative Design section consists of papers which deal with Collaborative Design Process interfaces to databases, Collaborative Design System for Citizen Participation, Team Awareness in Collaboration and Computer Environment for supporting Design Collaboration. The Simulation section deals with lighting studies, colour assessment, simulation of urban growth patterns, dynamic simulations in buildings and way-finding. The Design Education section consists of papers on design pedagogy in design studios using computers, virtual studios and virtual learning. The Knowledge Representation section consists of papers that deal with knowledge-based systems, design representation and shape grammar. The Design Process section consists of papers on design process and cognition, design creativity and the computer media. The Information Systems section consists of papers on information navigation, information management, design information repository and databases. The Design Tools section consists of papers on design tools based on generative systems, a new method for 3D animation and movement-in-architectural-space representation. The Virtual Reality and Computer Media section deals with virtual reality applications and tools in architecture, designing virtual environments and computer media and visualization.
series CAADRIA
last changed 2022/06/07 07:49

_id 83cb
authors Telea, Alexandru C.
year 2000
title Visualisation and simulation with object-oriented networks
source Eindhoven University of Technology
summary Among the existing systems, visual programming environments address best these issues. However, producing interactive simulations and visualisations is still a difficult task. This defines the main research objective of this thesis: The development and implementation of concepts and techniques to combine visualisation, simulation, and application construction in an interactive, easy to use, generic environment. The aim is to produce an environment in which the above mentioned activities can be learnt and carried out easily by a researcher. Working with such an environment should decrease the amount of time usually spent in redesigning existing software elements such as graphics interfaces, existing computational modules, and general infrastructure code. Writing new computational components or importing existing ones should be simple and automatic enough to make using the envisaged system an attractive option for a non programmer expert. Besides this, all proven successful elements of an interactive simulation and visualisation environment should be provided, such as visual programming, graphics user interfaces, direct manipulation, and so on. Finally, a large palette of existing scientific computation, data processing, and visualisation components should be integrated in the proposed system. On one hand, this should prove our claims of openness and easy code integration. On the other hand, this should provide the concrete set of tools needed for building a range of scientific applications and visualisations. This thesis is structured as follows. Chapter 2 defines the context of our work. The scientific research environment is presented and partitioned into the three roles of end user, application designer, and component developer. The interactions between these roles and their specific requirements are described and lead to a more precise formulation of our problem statement. Chapter 3 presents the most used architectures for simulation and visualisation systems: the monolithic system, the application library, and the framework. The advantages and disadvantages of these architectural models are then discussed in relation with our problem statement requirements. The main conclusion drawn is that no single existing architectural model suffices, and that what is needed is a combination of the features present in all three models. Chapter 4 introduces the new architectural model we propose, based on the combination of object-orientation in form of the C++ language and dataflow modelling in the new MC++ language. Chapter 5 presents VISSION, an interactive simulation and visualisation environment constructed on the introduced new architectural model, and shows how the usual tasks of application construction, steering, and visualisation are addressed. In chapter 6, the implementation of VISSION’s architectural model is described in terms of its component parts. Chapter 7 presents the applications of VISSION to numerical simulation, while chapter 8 focuses on its visualisation and graphics applications. Finally, chapter 9 concludes the thesis and outlines possible direction for future research.
keywords Computer Visualisation
series thesis:PhD
email
last changed 2003/02/12 22:37

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_505239 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002