CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 746

_id 5227
authors Bessone, Miriam and Mantovani, Graciela
year 2000
title Procesos Proyectuales Alternativos: em el Inicio del Aprendizaje del Diseño Arquitectonico (Alternative Design Processes: At an Early Stage in the Learning of Architectural Design)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 364-366
summary Building of knowledge and the traditional methods to approach it are changed by new technologies. The coexistence of two cultures, one of them based on written text and the other multitextual, are presented as an interesting exploring field. Accordingly, improvement in building of design learning, “new logics of perception” and “new projectable logics, are the main challenges to be addressed in a Research - Action Programme in harmonious interaction between both cultures and their instruments (analogous and digitals). Recognizing the existence of fields teachers are not trained in, an interaction teacher - pupil in didactic strategies is considered to be necessary.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 1f5c
authors Beesley, Philip and Seebohm, Thomas
year 2000
title Digital Tectonic Design
doi https://doi.org/10.52842/conf.ecaade.2000.287
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 287-290
summary Digital tectonic design is a fresh approach to architectural design methodology. Tectonics means a focus on assemblies of construction elements. Digital tectonics is an evolving methodology that integrates use of design software with traditional construction methods. We see digital tectonic design as a systematic use of geometric and spatial ordinances, used in combination with details and components directly related to contemporary construction. The current approach will, we hope, lead to an architectural curriculum based on generative form making where the computer can be used to produce systems of forms algorithmically. Digital design has tended to remain abstract, emphasizing visual and spatial arrangements often at the expense of materials and construction. Our pursuit is translation of these methods into more fully realized physical qualities. This method offers a rigorous approach based on close study of geometry and building construction elements. Giving a context for this approach, historical examples employing systematic tectonic design are explored in this paper. The underlying geometric ordinance systems and the highly tuned relationships between the details in these examples offer design vocabularies for use within the studio curriculum. The paper concludes with a detailed example from a recent studio project demonstrating particular qualities developed within the method. The method involves a wide range of scales, relating large-scale gestural and schematic studies to detailed assembly systems. Designing in this way means developing geometric strategies and, in parallel, producing detailed symbols or objects to be inserted. These details are assembled into a variety of arrays and groups. The approach is analogous to computer-aided designÕs tradition of shape grammars in which systems of spatial relationships are used to control the insertion of shapes within a space. Using this approach, a three-dimensional representation of a building is iteratively refined until the final result is an integrated, systematically organized complex of symbols representing physical building components. The resulting complex offers substantial material qualities. Strategies of symbol insertions and hierarchical grouping of elements are familiar in digital design practice. However these strategies are usually used for automated production of preconceived designs. In contrast to thsse normal approaches this presentation focuses on emergent qualities produced directly by means of the complex arrays of symbol insertions. The rhyth
keywords 3D CAD Systems, Design Practice, 3D Design Strategies
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 9384
authors Burry, M., Datta, S. and Anson, S.
year 2000
title Introductory Computer Programming as a Means for Extending Spatial and Temporal Understanding
doi https://doi.org/10.52842/conf.acadia.2000.129
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 129-135
summary Should computer programming be taught within schools of architecture? Incorporating even low-level computer programming within architectural education curricula is a matter of debate but we have found it useful to do so for two reasons: as an introduction or at least a consolidation of the realm of descriptive geometry and in providing an environment for experimenting in morphological time-based change. Mathematics and descriptive geometry formed a significant proportion of architectural education until the end of the 19th century. This proportion has declined in contemporary curricula, possibly at some cost for despite major advances in automated manufacture, Cartesian measurement is still the principal ‘language’ with which to describe building for construction purposes. When computer programming is used as a platform for instruction in logic and spatial representation, the waning interest in mathematics as a basis for spatial description can be readdressed using a left-field approach. Students gain insights into topology, Cartesian space and morphology through programmatic form finding, as opposed to through direct manipulation. In this context, it matters to the architect-programmer how the program operates more than what it does. This paper describes an assignment where students are given a figurative conceptual space comprising the three Cartesian axes with a cube at its centre. Six Phileban solids mark the Cartesian axial limits to the space. Any point in this space represents a hybrid of one, two or three transformations from the central cube towards the various Phileban solids. Students are asked to predict the topological and morphological outcomes of the operations. Through programming, they become aware of morphogenesis and hybridisation. Here we articulate the hypothesis above and report on the outcome from a student group, whose work reveals wider learning opportunities for architecture students in computer programming than conventionally assumed.
series ACADIA
email
last changed 2022/06/07 07:54

_id 85ab
authors Corrao, Rossella and Fulantelli, Giovanni
year 1999
title Architects in the Information Society: The Role of New Technologies
doi https://doi.org/10.52842/conf.ecaade.1999.665
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 665-671
summary New Technologies (NTs) offer us tools with which to deal with the new challenges that a changing society or workplace presents. In particular, new design strategies and approaches are required by the emerging Information Society, and NTs offer effective solutions to the designers in the different stages of their professional life, and in different working situations. In this paper some meaningful scenarios of the use of the NTs in Architecture and Urban Design are introduced; the scenarios have been selected in order to understand how the role of architects in the Information Society is changing, and what new opportunities NTs offer them. It will be underlined how the telematic networks play an essential role in the activation of virtual studios that are able to compete in an increasingly global market; examples will be given of the use of the Web to support activities related to Urban Planning and Management; it will be shown how the Internet may be used to access strategic resources for education and training, and sustain lifelong learning. The aforesaid considerations derive from a Web-Based Instruction system we have developed to support University students in the definition of projects that can concern either single buildings or whole parts of a city. The system can easily be adopted in the other scenarios introduced.
keywords Architecture, Urban Planning , New Technologies, World Wide Web, Education
series eCAADe
email
last changed 2022/06/07 07:56

_id 125a
authors Dikbas, Attila
year 1999
title An Evaluating Model for the Usage of Web-based Information Technology in Computer Aided Architectural Design and Engineering Education
doi https://doi.org/10.52842/conf.ecaade.1999.349
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 349-352
summary New technologies often reshape expectations, needs and Opportunities so as to develop strategic Plans for the implementation of Information Techniques in education and research. The widespread acceptance of the internet and more specifically the World Wide Web (WWW) has raised the awareness of educators to the potential for online education, virtual classrooms and even virtual universities. With the advent of computer mediated communication, especially the widespread adoption of the web as a publishing medium, educators see the advantages and potential of delivering educational material over the Internet. The Web offers an excellent medium for content delivery with full text, colour graphics support and hyperlinks. The Purpose of this paper is to present a model for the usage of web-based information technology in computer aided architectural design and engineering education. It involves the key features of a full educational system that is capable of offering the teacher and the student flexibility with which to approach their teaching and learning tasks in ways most appropriate to the architectural design and engineering education. Web-based educational system aims at creating quality in on-line educational materials taking collaboration, support, new skills, and, most of all, time. The paper concludes with a discussion of the benefits of such an education system suggesting directions for further work needed to improve the quality of architectural design and engineering education.
keywords Web-based Information Technology, Online Education, Virtual Campus, Computer Aided Architectural Design, Engineering Education
series eCAADe
last changed 2022/06/07 07:55

_id 389b
authors Do, Ellen Yi-Luen
year 2000
title Sketch that Scene for Me: Creating Virtual Worlds by Freehand Drawing
doi https://doi.org/10.52842/conf.ecaade.2000.265
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 265-268
summary With the Web people can now view virtual threedimensional worlds and explore virtual space. Increasingly, novice users are interested in creating 3D Web sites. Virtual Reality Modeling Language gained ISO status in 1997, although it is being supplanted by the compatible Java3D API and alternative 3D Web technologies compete. Viewing VRML scenes is relatively straightforward on most hardware platforms and browsers, but currently there are only two ways to create 3D virtual scenes: One is to code the scene directly using VRML. The other is to use existing CAD and modeling software, and save the world in VRML format or convert to VRML from some other format. Both methods are time consuming, cumbersome, and have steep learning curves. Pen-based user interfaces, on the other hand, are for many an easy and intuitive method for graphics input. Not only are people familiar with the look and feel of paper and pencil, novice users also find it less intimidating to draw what they want, where they want it instead of using a complicated tool palette and pull-down menus. Architects and designers use sketches as a primary tool to generate design ideas and to explore alternatives, and numerous computer-based interfaces have played on the concept of "sketch". However, we restrict the notion of sketch to freehand drawing, which we believe helps people to think, to envision, and to recognize properties of the objects with which they are working. SKETCH employs a pen interface to create three-dimensional models, but it uses a simple language of gestures to control a three-dimensional modeler; it does not attempt to interpret freehand drawings. In contrast, our support of 3D world creation using freehand drawing depend on users’ traditional understanding of a floor plan representation. Igarashi et al. used a pen interface to drive browsing in a 3D world, by projecting the user’s marks on the ground plane in the virtual world. Our Sketch-3D project extends this approach, investigating an interface that allows direct interpretation of the drawing marks (what you draw is what you get) and serves as a rapid prototyping tool for creating 3D virtual scenes.
keywords Freehand Sketching, Pen-Based User Interface, Interaction, VRML, Navigation
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id c6db
authors Heylighen, Ann
year 2000
title In Case of Architectural Design. Critique and Praise of Case-Based Design in Architecture
source Dissertation - Doct. Toegepaste wetenschappen, KU Leuven, Fac. Toegepaste wetenschappen, Dep. architectuur, stedebouw en ruimtelijke ordening (ISBN 90-5682-248-9)
summary Architects are said to learn design by experience. Learning design by experience is the essence of Case-Based Design (CBD), a sub-domain of Artificial Intelligence. Part I critically explores the CBD approach from an architectural point of view, tracing its origins in the Theory of Dynamic Memory and highlighting its potential for architectural design. Seven CBD systems are analysed, experienced architects and design teachers are interviewed, and an experiment is carried out to examine how cases affect the design performance of architecture students. The results of this exploration show that despite its sound view on how architects acquire (design) knowledge, CBD is limited in important respects: it reduces architectural design to problem solving, is difficult to implement and has to contend with prejudices among the target group. With a view to stretching these limits, part II covers the design, implementation and evaluation of DYNAMO (Dynamic Architectural Memory On-line). This Web-based design tool tailors the CBD approach to the complexity of architectural design by effecting three transformations: extending the concern with design products towards design processes, turning static case bases into dynamic memories and upgrading users from passive case consumers to active case-based designers.
keywords Architectural Design; Case-Based Design
series thesis:PhD
email
last changed 2002/12/14 19:29

_id 10e9
authors Heylighen, Ann and Neuckermans, Herman
year 2000
title DYNAMO in Action - Development and Use of a Web-Based Design Tool
source J. Pohl & T. Fowler (eds.), Proceedings of the Focus Symposium on Advances in Computer-Based and Web-Based Collaborative Systems - InterSymp-2000 International Conference On Systems Research, Informatics and Cybernetics, Baden-Baden (Germany), July 31 - Aug 4, 2000 (ISBN 0-921836-88-0), pp. 233-242
summary Addressing the subject of Case-Based Design (CBD), the paper describes the development and use of a Web-based design tool called DYNAMO. The tool is firmly rooted in the Dynamic Memory Theory underlying the CBD approach. Yet, rather than adopting it as such, we have tried to enrich this approach by extrapolating it beyond the individual. This extrapolation stimulates and intensifies several modes of interaction. Doing so, DYNAMO tries to kill two birds with one stone. At short notice, it provides architects and architecture students with a rich source of inspiration, ideas and design knowledge for their present design task, as it is filled with a permanently growing collection of design cases that is accessible on-line. Its long-term objective is to initiate and nurture the life-long process of learning from (design) experience as suggested by the cognitive model underlying CBD, and Case-Based Reasoning in general. DYNAMO is therefore conceived as an (inter-)active workhouse rather than a passive warehouse: it is interactively developed by and actively develops the user's design knowledge. Whereas previous papers have focused on the theoretical ideas of DYNAMO, this paper points out how Web technology enables us to implement these ideas as a working prototype. Furthermore, an annotated scenario of the system in use is described.
keywords Case-Based Design, Web Technology, Architectural Design
series journal paper
email
last changed 2002/11/22 14:50

_id b5f3
authors Johnson, Brian R.
year 2000
title Sustaining Studio Culture: How Well Do Internet Tools Meet the Needs of Virtual Design Studios?
doi https://doi.org/10.52842/conf.ecaade.2000.015
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 15-22
summary The Internet beckons seductively to students. The prospect of nearly instantaneous communication with acquaintances spread across the face of the earth is alluring. The ease with which rich graphical content can be made available to the world is stunning. The possibility of a design being seen by friends, family, and famous architects is tantalizing. Faculty are drawn by the potent synergy and learning that can be found in the opposition and cooperation of different cultural roots. It is probable that entire design studio sequences will be offered through distance-learning programs in the near future. Is that a good idea? Much has been written about "virtual design studios" in architecture schools and "virtual offices" in practice. Most offices have largely or totally abandoned drafting boards in favor of digital tools of production. Yet, regarding design, Ken Sanders, author of The Digital Architect, and Manager of Information Services at Zimmer Gunsul Frasca Partnership (ZGF), of Portland, Oregon, has written "we still make an effort to locate project teams together and always will". Production CAD work requires different kinds of interaction than design and design instruction. The experiments have been invaluable in developing strategies for use of the Internet as a component of a design studio series, but rarely depend entirely on use of the Internet for all course communications. In fact, most describe fairly isolated efforts to augment some aspect of traditional design environments using Internet tools (ftp, email, web). A few have implemented new pedagogic or collaboration paradigms (e.g., ETH’s phase(x)). This paper considers the traditional design studio in terms of formal and informal activities, characterizes the major Internet technologies with regard to the resulting interaction issues. In particular, it describes an area of informal work group communications that appears to be ill-supported with existing tools. The paper goes on to describe a web-based collaboration tool which was developed to address the need for less formal communication. The context for this development is the concept of a fully distributed collaboration environment with particular attention to questions of informal communication. Finally, it describes how the tool was deployed in an experimental "web studio" setting and student responses to use of the tool.
keywords Virtual Design Studio, Collaboration, Online Communities, Web Tools
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:52

_id ga0008
id ga0008
authors Koutamanis, Alexander
year 2000
title Redirecting design generation in architecture
source International Conference on Generative Art
summary Design generation has been the traditional culmination of computational design theory in architecture. Motivated either by programmatic and functional complexity (as in space allocation) or by the elegance and power of representational analyses (shape grammars, rectangular arrangements), research has produced generative systems capable of producing new designs that satisfied certain conditions or of reproducing exhaustively entire classes (such as all possible Palladian villas), comprising known and plausible new designs. Most generative systems aimed at a complete spatial design (detailing being an unpopular subject), with minimal if any intervention by the human user / designer. The reason for doing so was either to give a demonstration of the elegance, power and completeness of a system or simply that the replacement of the designer with the computer was the fundamental purpose of the system. In other words, the problem was deemed either already resolved by the generative system or too complex for the human designer. The ongoing democratization of the computer stimulates reconsideration of the principles underlying existing design generation in architecture. While the domain analysis upon which most systems are based is insightful and interesting, jumping to a generative conclusion was almost always based on a very sketchy understanding of human creativity and of the computer's role in designing and creativity. Our current perception of such matters suggests a different approach, based on the augmentation of intuitive creative capabilities with computational extensions. The paper proposes that architectural generative design systems can be redirected towards design exploration, including the development of alternatives and variations. Human designers are known to follow inconsistent strategies when confronted with conflicts in their designs. These strategies are not made more consistent by the emerging forms of design analysis. The use of analytical means such as simulation, couple to the necessity of considering a rapidly growing number of aspects, means that the designer is confronted with huge amounts of information that have to be processed and integrated in the design. Generative design exploration that can combine the analysis results in directed and responsive redesigning seems an effective method for the early stages of the design process, as well as for partial (local) problems in later stages. The transformation of generative systems into feedback support and background assistance for the human designer presupposes re-orientation of design generation with respect to the issues of local intelligence and autonomy. Design generation has made extensive use of local intelligence but has always kept it subservient to global schemes that tended to be holistic, rigid or deterministic. The acceptance of local conditions as largely independent structures (local coordinating devices) affords a more flexible attitude that permits not only the emergence of internal conflicts but also the resolution of such conflicts in a transparent manner. The resulting autonomy of local coordinating devices can be expanded to practically all aspects and abstraction levels. The ability to have intelligent behaviour built in components of the design representation, as well as in the spatial and building elements they signify, means that we can create the new, sharper tools required by the complexity resulting from the interpretation of the built environment as a dynamic configuration of co-operating yet autonomous parts that have to be considered independently and in conjunction with each other.   P.S. The content of the paper will be illustrated by a couple of computer programs that demonstrate the princples of local intelligence and autonomy in redesigning. It is possible that these programs could be presented as independent interactive exhibits but it all depends upon the time we can make free for the development of self-sufficient, self-running demonstrations until December.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id c97f
authors Kvan, Thomas and Candy, Linda
year 2000
title Designing Collaborative Environments for Strategic Knowledge in Design
source Knowledge-Based Systems, 13:6, November 2000, pp. 429-438
summary This paper considers aspects of strategic knowledge in design and some implications for designing in collaborative environments. Two key questions underline the concerns. First; how can strategic knowledge for collaborative design be taught and second; what kind of computer-based collaborative designing might best support the learning of strategic knowledge? We argue that the support of learning of strategic knowledge in collaborative design by computer-mediated means must be based upon empirical evidence about the nature of learning and design practice in the real world. This evidence suggests different ways of using computer-support for design learning and acquistion of strategic design knowledge. Examples of research by the authors that seeks to provide that evidence are described and an approach to computer system design and evaluation proposed.
keywords Collaborative Design; Strategic Knowledge; Empirical Studies; Computer Support
series journal paper
email
last changed 2002/11/15 18:29

_id ecaade2023_205
id ecaade2023_205
authors Meeran, Ahmed and Joyce, Sam
year 2023
title Rethinking Airport Spatial Analysis and Design: A GAN based data driven approach using latent space exploration on aerial imagery for adaptive airport planning
doi https://doi.org/10.52842/conf.ecaade.2023.2.501
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 501–510
summary Airports require long term planning, balancing estimations of future demand against available airfield land and site constraints. This is becoming more critical with climate change and the transition to sustainable aviation fuelling infrastructure. This paper demonstrates a novel procedure using Satellite Imagery and Generative Learning to aid in the comparative analysis and early-stage airfield design. Our workflow uses a GAN trained on 2000 images of airports transforming them into a high-dimensional latent space capturing the typologies’ large-scale features. Using a process of projection and dimensional-reduction methods we can locate real-world airport images in the generative latent space and vice-versa. With this capability we can perform comparative “neighbour” analysis at scale based on spatial similarity of features like airfield configuration, and surrounding context. Using this low-dimensional 3D ‘airport designs space’ with meaningful markers provided by existing airports allows for ‘what if’ modelling, such as visualizing an airport on a site without one, modifying an existing airport towards another target airport, or exploring changes in terrain, such as due to climate change or urban development. We present this method a new way to undertake case study, site identification and analysis, as well as undertake speculative design powered by typology informed ML generation, which can be applied to any typologies which could use aerial images to categorize them.
keywords Airport Development, Machine Learning, GAN, High Dimensional Analysis, Parametric Space Exploration, tSNE, Latent Space Exploration, Data Driven Planning
series eCAADe
email
last changed 2023/12/10 10:49

_id 3888
authors Reffat, Rabee M.
year 2000
title Computational Situated Learning in Designing - Application to Architectural Shape Semantics
source The University of Sydney, Faculty of Architecture
summary Learning the situatedness (applicability conditions), of design knowledge recognised from design compositions is the central tenet of the research presented in this thesis. This thesis develops and implements a computational system of situated learning and investigates its utility in designing. Situated learning is based on the concept that "knowledge is contextually situated and is fundamentally influenced by its situation". In this sense learning is tuned to the situations within which "what you do when you do matters". Designing cannot be predicted and the results of designing are not based on actions independent of what is being designed or independent of when, where and how it was designed. Designers' actions are situation dependent (situated), such that designers work actively with the design environment within the specific conditions of the situation where neither the goal state nor the solution space is completely predetermined. In designing, design solutions are fluid and emergent entities generated by dynamic and situated activities instead of fixed design plans. Since it is not possible in advance to know what knowledge to use in relation to any situation we need to learn knowledge in relation to its situation, i.e. learn the applicability conditions of knowledge. This leads towards the notion of the situation as having the potential role of guiding the use of knowledge.

Situated Learning in Designing (SLiDe) is developed and implemented within the domain of architectural shape composition (in the form of floor plans), to construct the situatedness of shape semantics. An architectural shape semantic is a set of characteristics with a semantic meaning based on a particular view of a shape such as reflection symmetry, adjacency, rotation and linearity. Each shape semantic has preconditions without which it cannot be recognised. Such preconditions indicate nothing about the situation within which this shape semantic was recognised. The situatedness or the applicability conditions of a shape semantic is viewed as, the interdependent relationships between this shape semantic as the design knowledge in focus, and other shape semantics across the observations of a design composition. While designing, various shape semantics and relationships among them emerge in different representations of a design composition. Multiple representations of a design composition by re-interpretation have been proposed to serve as a platform for SLiDe. Multiple representations provide the opportunity for different shape semantics and relationships among them to be found from a single design composition. This is important if these relationships are to be used later because it is not known in advance which of the possible relationships could be constructed are likely to be useful. Hence, multiple representations provide a platform for different situations to be encountered. A symbolic representation of shape and shape semantics is used in which the infinite maximal lines form the representative primitives of the shape.

SLiDe is concerned with learning the applicability conditions (situatedness), of shape semantics locating them in relation to situations within which they were recognised (situation dependent), and updating the situatedness of shape semantics in response to new observations of the design composition. SLiDe consists of three primary modules: Generator, Recogniser and Incremental Situator. The Generator is used by the designer to develop a set of multiple representations of a design composition. This set of representations forms the initial design environment of SLiDe. The Recogniser detects shape semantics in each representation and produces a set of observations, each of which is comprised of a group of shape semantics recognised at each corresponding representation. The Incremental Situator module consists of two sub-modules, Situator and Restructuring Situator, and utilises an unsupervised incremental clustering mechanism not affected by concept drift. The Situator module locates recognised shape semantics in relation to their situations by finding regularities of relationships among them across observations of a design composition and clustering them into situational categories organised in a hierarchical tree structure. Such relationships change over time due to the changes taken place in the design environment whenever further representations are developed using the Generator module and new observations are constructed by the Recogniser module. The Restructuring Situator module updates previously learned situational categories and restructures the hierarchical tree accordingly in response to new observations.

Learning the situatedness shape semantics may play a crucial role in designing if designers pursue further some of these shape semantics. This thesis illustrates an approach in which SLiDe can be utilised in designing to explore the shapes in a design composition in various ways; bring designers! attention to potentially hidden features and shape semantics of their designs; and maintain the integrity of the design composition by using the situatedness of shape semantics. The thesis concludes by outlining future directions for this research to learn and update the situatedness of design knowledge within the context of use; considering the role of functional knowledge while learning the situatedness of design knowledge; and developing an autonomous situated agent-based designing system.

series thesis:PhD
email
last changed 2003/05/06 11:34

_id 2005_787
id 2005_787
authors Veikos, Cathrine
year 2005
title The Post-Medium Condition
doi https://doi.org/10.52842/conf.ecaade.2005.787
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 787-794
summary Theorists in art, architecture and visual media have described the digital world as a world of mediumlessness and proclaimed that the medium of a work, once the ontological determinant for the classification of the arts, is rendered meaningless by recent technological and cultural developments (Krauss, 2000; Negroponte, 1995; Manovich, 2001). Although indebted to specific media-based techniques and their attendant ideologies, software removes the material reality of techniques to an immaterial condition where the effects of material operations are reproduced abstractly. This paper asserts that a productive approach for digital design can be found in the acknowledgement that the importance of the digital format is not that it de-materializes media, but that it allows for the maximum intermingling of media. A re-conceptualization of media follows from this, defined now as, a set of conventions derived from the material conditions of a given technical support, conventions out of which to develop a form of expressiveness that can be both projective and mnemonic (Krauss, 2000). The paper will focus on the identification of these conventions towards the development of new forms of expressiveness in architecture. Further demonstration of the intermingling of materially-based conventions is carried out in the paper through a comparative analysis of contemporary works of art and architecture, taking installation art as a particular example. A new design approach based on the maximum intermingling of media takes account of integrative strategies towards the digital and the material and sees them as inextricably linked. In the digital “medium” different sets of conventions derived from different material conditions transfer their informational assets producing fully formed, material-digital ingenuity.
keywords Expanded Architecture, Art Practice, Material, Information, ParametricTechniques, Evolutionary Logics
series eCAADe
email
last changed 2022/06/07 07:58

_id 20ab
authors Yakeley, Megan
year 2000
title Digitally Mediated Design: Using Computer Programming to Develop a Personal Design Process
source Massachusetts Institute of Technology, Department of Architecture
summary This thesis is based on the proposal that the current system of architectural design education confuses product and process. Students are assessed through, and therefore concentrate on, the former whilst the latter is left in many cases to chance. This thesis describes a new course taught by the author at MIT for the last three years whose aim is to teach the design process away from the complexities inherent in the studio system. This course draws a parallel between the design process and the Constructionist view of learning, and asserts that the design process is a constant learning activity. Therefore, learning about the design process necessarily involves learning the cognitive skills of this theoretical approach to education. These include concrete thinking and the creation of external artifacts to develop of ideas through iterative, experimental, incremental exploration. The course mimics the Constructionist model of using the computer programming environment LOGO to teach mathematics. It uses computer programming in a CAD environment, and specifically the development of a generative system, to teach the design process. The efficacy of such an approach to architectural design education has been studied using methodologies from educational research. The research design used an emergent qualitative model, employing Maykut and Morehouses interpretive descriptive approach (Maykut & Morehouse, 1994) and Glaser and Strausss Constant Comparative Method of data analysis (Glaser & Strauss, 1967). Six students joined the course in the Spring 1999 semester. The experience of these students, what and how they learned, and whether this understanding was transferred to other areas of their educational process, were studied. The findings demonstrated that computer programming in a particular pedagogical framework, can help transform the way in which students understand the process of designing. The following changes were observed in the students during the course of the year: Development of understanding of a personalized design process; move from using computer programming to solve quantifiable problems to using it to support qualitative design decisions; change in understanding of the paradigm for computers in the design process; awareness of the importance of intrapersonal and interpersonal communication skills; change in expectations of, their sense of control over, and appropriation of, the computer in the design process; evidence of transference of cognitive skills; change from a Behaviourist to a Constructionist model of learning Thesis Supervisor: William J. Mitchell Title: Professor of Architecture and Media Arts and Sciences, School of Architecture and Planning
series thesis:PhD
last changed 2003/02/12 22:37

_id ddssar0001
id ddssar0001
authors Achten, Henri and Leeuwen, Jos van
year 2000
title Towards generic representations of designs formalised as features
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary Feature-Based Modelling (FBM) is an information modelling technique that allows the formalisation of design concepts and using these formal definitions in design modelling. The dynamic nature of design and design information calls for a specialised approach to FBM that takes into account flexibility and extensibility of Feature Models of designs. Research work in Eindhoven has led to a FBM framework and implementation that can be used to support design.. Feature models of a design process has demonstrated the feasibility of using this information modelling technique. To develop the work on FBM in design, three tracks are initiated: Feature model descriptions of design processes, automated generic representation recognition in graphic representations, and Feature models of generic representations. The paper shows the status of the work in the first two tracks, and present the results of the research work.
series DDSS
last changed 2003/11/21 15:15

_id 1838
authors Akleman, E., Chen, J. and Meric, B.
year 2000
title Intuitive and Effective Design of Periodic Symmetric Tiles
doi https://doi.org/10.52842/conf.acadia.2000.123
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 123-127
summary This paper presents a new approach for intuitive and effective design of periodic symmetric tiles. We observe that planar graphs can effectively represent symmetric tiles and graph drawing provides an intuitive paradigm for designing symmetric tiles. Moreover, based on our theoretical work to represent hexagonal symmetry by rectangular symmetry, we are able to present all symmetric tiles as graphs embedded on a torus and based on simple modulo operations. This approach enables us to develop a simple and efficient algorithm, which has been implemented in Java. By using this software, designers, architects and artists can create interesting symmetric tiles directly on the web. We also have designed a few examples of symmetric tiles to show the effectiveness of the approach.
series ACADIA
last changed 2022/06/07 07:54

_id 456a
authors Alvarado, R.G., Parra, J.C., Vergara, R.L. and Chateau, H.B.
year 2000
title Architectural References to Virtual Environments Design
doi https://doi.org/10.52842/conf.ecaade.2000.151
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 151-155
summary Based on a comparison between the perception of digital and real construction, the development of virtual systems and the review of additional sources, this paper states some differences between the design of virtual environments and architectural spaces. Virtual-reality technologies provide advanced capabilities to simulate real situations, and also to create digital worlds not referred to physical places, such as imaginary landscapes or environments devoted to electronic activities, like entertainment, learning or commerce. Some on-line services already use 3D-stages, resembling building halls and domestic objects, and several authors have mentioned virtual modeling as a job opportunity to architects. But it will argue in this paper that the design of those environments should consider their own digital characteristics. Besides, the use of virtual installations on networks impells a convergence with global media, like Internet or TV. Virtual environments can be a 3Devolution of communicational technologies, which have an increasing participation in culture, reaching a closer relationship to contemporary architecture.
keywords Virtual Environments, Spatial Perception, Design Methodology
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 8948
authors Bertola Duarte, Rovenir
year 2001
title AS APROXIMAÇÕES DO COMPUTADOR AO PROCESSO DE ENSINO/ APRENDIZADO DO PROJETO ARQUITETÔNICO (An Approach to Computing in the Teaching/Learning Proces in Architectural Project Design)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 207-209
summary This article seeks to disclose part of the results obtained with the development of the master dissertation. (DUARTE [2], 2000) The several approach forms between the computers and the process teaching/learning of architectural design were investigated in this work, standing out, close moment the edict of MEC that regulated the introduction of the computers in the architecture schools in Brazil. Ten Brazilian schools of architecture were researched, through questionnaires and visits, in which four approach forms were detected, that were understood more deeply with a study of cases, highlighting: methods, supports, components and the teaching process and the design process built by the student.
series SIGRADI
email
last changed 2016/03/10 09:47

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_21318 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002