CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 588

_id ddss2004_ra-213
id ddss2004_ra-213
authors Penn, A., C. Mottram, A. Fatah gen. Schieck, M. Wittkämper, M. Störring, O. Romell, A. Strothmann, and F. Aish
year 2004
title AUGMENTED REALITY MEETING TABLE: A NOVEL MULTI-USER INTERFACE FOR ARCHITECTURAL DESIGN
source Van Leeuwen, J.P. and H.J.P. Timmermans (eds.) Recent Advances in Design & Decision Support Systems in Architecture and Urban Planning, Dordrecht: Kluwer Academic Publishers, ISBN: 1-4020-2408-8, p. 213-231
summary Immersive virtual environments have received widespread attention as providing possible replacements for the media and systems that designers traditionally use, as well as, more generally, in providing support for collaborative work. Relatively little attention has been given to date however to the problem of how to merge immersive virtual environments into real world work settings, and so to add to the media at the disposal of the designer and the design team, rather than to replace it. In this paper we report on a research project in which optical see-through augmented reality displays have been developed together with prototype decision support software for architectural and urban design. We suggest that a critical characteristic of multi user augmented reality is its ability to generate visualisations from a first person perspective in which the scale of rendition of the design model follows many of the conventions that designers are used to. Different scales of model appear to allow designers to focus on different aspects of the design under consideration. Augmenting the scene with simulations of pedestrian movement appears to assist both in scale recognition, and in moving from a first person to a third person understanding of the design. This research project is funded by the European Commission IST program (IST-2000-28559).
keywords Design Collaboration, Tangible Interface, Gesture, Agent Simulation, Augmented Reality
series DDSS
type normal paper
last changed 2004/07/03 23:11

_id bb5f
authors Ahmad Rafi, M.E. and Mohd Fazidin, J.
year 2001
title Creating a City Administration System (CAS) using Virtual Reality in an Immersive Collaborative Environment (ICE)
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 449-453
doi https://doi.org/10.52842/conf.ecaade.2001.449
summary Current problems in administration of a city are found to be decentralized and noninteractive for an effective city management. This usually will result in inconsistencies of decision-making, inefficient services and slow response to a particular action. City administration often spends more money, time and human resource because of these problems. This research demonstrates our research and development of creating a City Administration System (CAS) to solve the problems stated above. The task of the system is to use information, multimedia and graphical technologies to form a database in which the city administrators can monitor, understand and manage an entire city from a central location. The key technology behind the success of the overall system uses virtual reality and immersive collaborative environment (ICE). This system employs emerging computer based real-time interactive technologies that are expected to ensure effective decisionmaking process, improved communication, and collaboration, error reduction, (Rafi and Karboulonis, 2000) between multi disciplinary users and approaches. This multi perspective approach allows planners, engineers, urban designers, architects, local authorities, environmentalists and general public to search, understand, process and anticipate the impact of a particular situation in the new city. It is hoped that the CAS will benefit city administrators to give them a tool that gives them the ability to understand, plan, and manage the business of running the city.
keywords City Administration System (CAS), Virtual Reality, Immersive Collaborative Environment (ICE), Database
series eCAADe
email
last changed 2022/06/07 07:54

_id ddssar0004
id ddssar0004
authors Bignon, J.-C., Halin, G. and Nakapan, W.
year 2000
title Building product information search by images
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary Building product information is required during the architectural design and technical design. The common access to the technical information system is the multi-criteria search mode. This search mode is adapted to the situation where an architect has a precise demand of information. But most of the time, the architect looks for ideas and wants to obtain many illustrations of product uses. Therefore, the system has to propose another search mode adapted to the situation where the demand is still fuzzy. Considering that the architect has the capacity to think with image and that an image can generate easily ideas, then a search by images seems to be suitable to the situation where an architect looks for ideas. The web is an inexhaustible resource of images we can exploit to provision an image database on a specific area. The system we propose allows making building product information search with images extracted from the web. This article presents the method used to extract images from web sites of French building product companies and how these images are used in an interactive and progressive image retrieval process.
series DDSS
last changed 2003/11/21 15:16

_id b4c4
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2000
title A framework for an Architectural Collaborative Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 57-60
doi https://doi.org/10.52842/conf.ecaade.2000.057
summary The building industry involves a larger number of disciplines, operators and professionals than other industrial processes. Its peculiarity is that the products (building objects) have a number of parts (building elements) that does not differ much from the number of classes into which building objects can be conceptually subdivided. Another important characteristic is that the building industry produces unique products (de Vries and van Zutphen, 1992). This is not an isolated situation but indeed one that is spreading also in other industrial fields. For example, production niches have proved successful in the automotive and computer industries (Carrara, Fioravanti, & Novembri, 1989). Building design is a complex multi-disciplinary process, which demands a high degree of co-ordination and co-operation among separate teams, each having its own specific knowledge and its own set of specific design tools. Establishing an environment for design tool integration is a prerequisite for network-based distributed work. It was attempted to solve the problem of efficient, user-friendly, and fast information exchange among operators by treating it simply as an exchange of data. But the failure of IGES, CGM, PHIGS confirms that data have different meanings and importance in different contexts. The STandard for Exchange of Product data, ISO 10303 Part 106 BCCM, relating to AEC field (Wix, 1997), seems to be too complex to be applied to professional studios. Moreover its structure is too deep and the conceptual classifications based on it do not allow multi-inheritance (Ekholm, 1996). From now on we shall adopt the BCCM semantic that defines the actor as "a functional participant in building construction"; and we shall define designer as "every member of the class formed by designers" (architects, engineers, town-planners, construction managers, etc.).
keywords Architectural Design Process, Collaborative Design, Knowledge Engineering, Dynamic Object Oriented Programming
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id ae0f
authors Ceccato, C., Simondetti, SA. and Burry, M.C.
year 2000
title Mass-Customization in Design Using Evolutionary and Parametric Methods
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 239-244
doi https://doi.org/10.52842/conf.acadia.2000.239
summary This paper describes a project within the authors’ ongoing research in the field of Generative Design. The work is based on the premise that computer-aided design (CAD) should evolve beyond its current limitation of one-way interaction, and become a dynamic, intelligent, multi-user environment that encourages creativity and actively supports the evolution of individual, mass-customized designs which exhibit common features. The authors describe this idea by illustrating the implementation of a research project, which explores the notions of mass-customization in design by using evolutionary and parametric methods to generate families of simple objects, in our case a door handle. The project examines related approaches using both complex CAD/CAM packages (CADDS, CATIA) and a proprietary software tool for evolutionary design. The paper first gives a short historical and philosophical background to the work, then describes the technical and algorithmic requirements, and concludes with the implementations of the project.
series ACADIA
email
last changed 2022/06/07 07:55

_id ga0019
id ga0019
authors Ceccato, Cristiano
year 2000
title On the Translation of Design Data into Design Form in Evolutionary Design
source International Conference on Generative Art
summary The marriage of advanced computational methods and new manufacturing technologies give rise to new paradigms in design process and execution. Specifically, the research concerns itself with the application of Generative and Evolutionary computation to the production of mass-customized products and building components. The work is based on the premise that CAD-CAM should evolve into a dynamic, intelligent, multi-user environment that encourages creativity and actively supports the evolution of individual, mass-customized designs that exhibit common features. The concept of Parametric Design is well established, and chiefly concerns itself with generating design sets that exists within the boundaries of pre-set parametric values. Evolutionary Design extends the notion of parametric control by using rule-based generative algorithms to evolve common families of individual design solutions. These can be optimized according to particular criteria, or can form a wide variety of hierarchically related design solutions, while supporting design intuition. The integration of Evolutionary Design with CAD-CAM, in particular the areas of flexible manufacturing and mass-customization, creates a unique scenario which exploits the full power of both approaches to create a new design-process paradigm that can generate limitless possibilities in a non-deterministic manner within a variable search-space of possible solutions.This paper concerns itself with the technical and philosophical aspects of the codification, generation and translation of data within the evolutionary-parametric design process. The efficiency and relevance of different methods for treating design data form the most fundamental aspect within the realm of CAD/CAM and are crucial to the successful implementation of Evolutionary Design mechanisms. This begins at the level of seeding and progresses through the entire evolutionary sequence, including the codification for evaluation criteria. Furthermore, the integration of digital design mechanisms with CAM and CNC technologies requires further translation of data into manufacturable formats. This paper examines different methods available to system designers and discussed their effect on new paradigms of digital design methods.
keywords Evolutionary, Parametric, Generative, Data, Format, Objects, Codification
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 0898
authors Chastain, Thomas and Elliott, Ame
year 2000
title Cultivating design competence: online support for beginning design studio
source Automation in Construction 9 (1) (2000) pp. 83-91
summary A primary lesson of a beginning design studio is the development of a fundamental design competence. This entails acquiring skills of integration, projection, exploration, as well as critical thinking––forming the basis of thinking "like a designer". Plaguing the beginning architectural design student as she develops this competence are three typical problems: a lagging visual intelligence, a linking of originality with creativity, and the belief that design is an act of an individual author instead of a collaborative activity. We believe that computation support for design learning has particular attributes for helping students overcome these problems. These attributes include its inherent qualities for visualization, for explicitness, and for sharing. This paper describes five interactive multi-media exercises exploiting these attributes which were developed to support a beginning design studio. The paper also reports how they have been integrated into the course curriculum.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ddssar0006
id ddssar0006
authors Ciftcioglu, Ö., Durmisevic, S. and Sariyildiz, S.
year 2000
title Multi-objective design for space layout topology
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary A novel method to produce space layout topologies for architectural design is described. From the uniformly distributed design solutions in the solution space the corresponding design requirements are computed according to a given norm and metric function. The system is based on graph representation of the layout so that the desired relations between the pairs of nodes are considered to be independent variables of appropriate series of multivariable functions mapping the requirements into the solution space. The system so established is used as a knowledge-base for robust layout design where knowledge base having been established, the layout design requirements are introduced to the system as design constraints and the output is identified in the multidimensional solution space by means of interpolation. Since the smoothness of the interpolation is guaranteed, robust design layout, in the form of node locations, is obtained.
series DDSS
last changed 2003/08/07 16:36

_id ddssar0007
id ddssar0007
authors Cooper, G., Rezqui, Y., Jackson, M., Lawson, B., Peng, C. and Cerulli, C.
year 2000
title A CAD-based decision support system for the design stage of a construction project
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary Decisions made during the design process are multi-dimensional, combining together factors which range from the highly subjective to the perfectly objective. These decisions are made by many, often non co-located, actors belonging to different disciplines. Moreover, there is a high risk for misunderstandings, inappropriate changes, and decisions, which are not notified to all interested parties. The ADS project (Advanced Decision Support for Construction Design) builds on the results of the earlier COMMIT project to provide an information management system, which addresses these problems. It defines mechanisms to handle the proactive management of information to support decision-making in collaborative projects. Different aspects of the COMMIT system have already been widely published, and the team is now applying the results in the context of construction design. These are referenced in the present paper, which gives an overview of the results of the COMMIT project and discusses some of the issue involved in applying them to the design process in conjunction with an advanced CAD tool.
series DDSS
last changed 2003/08/07 16:36

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

_id ga0027
id ga0027
authors E. Bilotta, P. Pantano and V. Talarico
year 2000
title Music Generation through Cellular Automata
source International Conference on Generative Art
summary Cellular automata (CA), like every other dynamical system, can be used to generate music. In fact, starting from any initial state and applying to them simple transition rules, such models are able to produce numerical sequences that can be successively associated to typically musical physical parameters. This approach is interesting because, maintaining fixed the set of rules and varying the initial data, many different, though correlated, numerical sequences can be originated (this recalls the genotype-phenotype dualism). Later on a musification (rendering) process can tie one or more physical parameters typical of music to various mathematical functions: as soon as the generative algorithm produces a numerical sequence this process modifies the physical parameter thus composing a sequence of sounds whose characteristic varies during the course of time. Many so obtained musical sequences can be selected by a genetic algorithm (CA) that promotes their evolution and refinement. The aim of this paper is to illustrate a series of musical pieces generated by CA. In the first part attention is focused on the effects coming from the application of various rendering processes to one dimensional multi state CA; typical behaviours of automata belonging to each of the four families discovered by Wolfram have been studied: CA evolving to a uniform state, CA evolving to a steady cycle, chaotic and complex CA. In order to make this part of the study Musical Dreams, a system for the simulation and musical rendering of one dimensional CA, has been used. In the second phase various CA obtained both by random generation and deriving from those studied in the first part are organised into families and, successively, made evolve through a genetic algorithm. This phase has been accomplished by using Harmony Seeker, a system for the generation of evolutionary music based on GA. The obtained results vary depending on the rendering systems used but, in general, automata belonging to the first family seem more indicated for the production of rhythmical patterns, while elements belonging to the second and fourth family seem to produce better harmonic patterns. Chaotic systems have been seen to produce good results only in presence of simple initial states. Experiments made in the second part have produced good harmonic results starting mainly from CA belonging to the second family.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ga0012
id ga0012
authors Galanter, Philip
year 2000
title GA2: a Programming Environment for Abstract Generative Fine Art
source International Conference on Generative Art
summary Fine artists looking to use computers to create generative works, especially those artists inclined towards abstraction, often face an uncomfortable choice in the selection of software tools. On the one hand there are a number of commercial and shareware programs available which implement a few techniques in an easy to use GUI environment. Unfortunately such programs often impose a certain look or style and are not terribly versatile or expressive. The other choice seems to be writing code from scratch, in a language such as c or Java. This can be very time consuming as every new work seems to demand a new program, and the artist's ability to write code can seldom keep pace with his ability to imagine new visual ideas. This paper describes a software system created by the author called GA2 which has been implemented in the Matlab software environment. By layering GA2 over Matlab the artist can take advantage of a very mature programming environment which includes extensive mathematical libraries, simple graphics routines, GUI construction tools, built-in help facilities, and command line, batch mode, and GUI modes of interaction. In addition, GA2 is very portable and can run on Macintosh, Windows, and Unix systems with almost no incremental effort for multi-platform support. GA2 is a work in progress and an extension of the completed GA1 environment. It is medium independent, and can be used for all manner of image, animation, and sound production. GA1 includes a complete set of genetic algorithm operations for breeding families of graphical marks, a database function for managing and recalling various genes, a set of statistical operations for creating various distributions of marks on a canvas or animation frame, a unique Markov-chain-likeoperator for generating families of visually similar lines or paths, and a complete L-system implementation. GA2 extends GA1 by adding more generative techniques such as tiling and symmetry operations, Thom's cusp catastrophe, and mechanisms inspired by complexity science notions such as cellular automata, fractals, artificial life, and chaos. All of these techniques are encapulated in genetic representations. This paper is supplemented with examples from the authors art work, and comments on the philosophy behind this method of working, and its relation towards the reinvigoration of abstraction after post-modernism.  
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 1eac
authors Garner, S.
year 2000
title Is Sketching Still Relevant in Virtual Design Studios?
source Proceedings of DCNet, Sydney
summary Sketching, as a particular subset of drawing, has for a long time, been valued within design activity. Although they can appear rough, inaccurate or incomplete, sketches have been presented as both valuable output from, and evidence of, essential activity in designing by individuals and groups. This paper reflects on this value and asks whether sketching is relevant today, given the advances in computing and communications technology seen in modern virtual design environments. Is it time to let go of the metaphor of drawing or can this ancient human capability still tell us something relevant for the improvement of the virtual design studio? While freehand line drawings may not have the same importance in current virtual design studios the support of incompleteness, ambiguity and shared meaning in solution-focused and problem-focused thinking remains essential. The paper proposes that attention to 'graphic acts' has improved our understanding of sketching within collaborative designing. A particular type of fast, transitory 'thumbnail' sketch would appear to be important. If this is so then attention to its modern counterpart in the latest 3D, multi-user, immersive virtual design studios is overdue if they are to support the cognitive processes of creativity vital to design.
series other
last changed 2003/04/23 15:50

_id 4c4b
authors Gavin, Lesley
year 2000
title 3D Online Learning in Multi-User Environments
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 187-191
doi https://doi.org/10.52842/conf.ecaade.2000.187
summary Over the last 2 years the MSc Virtual Environments course in the Bartlett School of Graduate Studies has used a 3-dimensional on-line multi-user environment to explore the possibilities for the architectural design of virtual environments. The "Bartlett" virtual world is established as the environment where students undertake group design projects. After an initial computer based face-toface workshop, students work from terminals at home and around the university. Using avatar representations of themselves, tutors and students meet in the on-line environment. The environment is used for student group discussions and demonstrations, tutorials and as the virtual "siteÕ for their design projects. The "Bartlett" world is currently open to every internet user and so often has "visitors". These visitors often engage in discussions with the students resulting in interesting dynamics in the teaching pattern. This project has been very successful and is particularly popular with the students. Observations made over the 2 years the project has been running have resulted in interesting reflections on both the role of architectural design in virtual environments and the use of such environments to extend the pedagogical structure used in traditional studio teaching. This paper will review the educational experience gained by the project and propose the ideal software environment for further development. We are now examining similar types of environments currently on the market with a view to adapting them for use as a distance learning medium.
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:51

_id 3940
authors Hall, Rick
year 1999
title Realtime 3D visual Analysis of Very Large Models at Low Cost
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 437-441
doi https://doi.org/10.52842/conf.ecaade.1999.437
summary Computer based visualisation of 3D models in architecture has been possible for 20 years or more, and the software technology has steadily improved during this time so that now incredibly realistic images can be generated from any viewpoint in a model, and impressive fly through sequences can bring a model to life in ways previously not possible. Virtual reality is with us and multi-media enables us to present a finished design in increasingly seductive ways. However, these forms of output from a 3D model offer much more limited benefits during the design process and particularly on large complex models because they are so computing intensive and it often require many hours to produce just one image. Anything other than a small and relatively simple model cannot be viewed dynamically in real-time on a desktop PC of the type commonly used by architects in a design office. Until now the solution to this problem has meant investing in expensive design review hardware and software with its inherent need for trained, skilled labour. As a result, design review products are often viewed as a luxury or costly necessity.
keywords Visual Analysis, Low Cost, 3D Modelling
series eCAADe
last changed 2022/06/07 07:50

_id 326c
authors Hirschberg, U., Gramazio, F., H¾ger, K., Liaropoulos Legendre, G., Milano, M. and Stöger, B.
year 2000
title EventSpaces. A Multi-Author Game And Design Environment
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 65-72
doi https://doi.org/10.52842/conf.ecaade.2000.065
summary EventSpaces is a web-based collaborative teaching environment we developed for our elective CAAD course. Its goal is to let the students collectively design a prototypical application - the EventSpaces.Game. The work students do to produce this game and the process of how they interact is actually a game in its own right. It is a process that is enabled by the EventSpaces.System, which combines work, learning, competition and play in a shared virtual environment. The EventSpaces.System allows students to criticize, evaluate, and rate each otherÕs contributions, thereby distributing the authorship credits of the game. The content of the game is therefore created in a collaborative as well as competitive manner. In the EventSpaces.System, the students form a community that shares a common interest in the development of the EventSpaces.Game. At the same time they are competing to secure as much credit as possible for themselves. This playful incentive in turn helps to improve the overall quality of the EventSpaces.Game, which is in the interest of all authors. This whole, rather intricate functionality, which also includes a messaging system for all EventSpaces activities, is achieved by means of a database driven online working environment that manages and displays all works produced. It preserves and showcases each authorÕs contributions in relation to the whole and allows for the emergence of coherence from the multiplicity of solutions. This Paper first presents the motivation for the project and gives a short technical summary of how the project was implemented. Then it describes the nature of the exercises and discusses possible implications that this approach to collaboration and teaching might have.
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:50

_id ca7b
authors Howes, Jaki
year 1999
title IT or not IT? An Examination of IT Use in an Experimental Multi-disciplinary Teamwork Situation
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 370-373
doi https://doi.org/10.52842/conf.ecaade.1999.370
summary Leeds Metropolitan University is well placed to carry out research into multi-disciplinary team-working, as all the design and construction disciplines are housed in one faculty. Staff have set up an experimental project, TIME IT (Team-working in Multi-disciplinary Environments using IT) which examines ways of working in the design/construction process and how IT is used when there is no commercial pressure. Four groups of four students, one graduate diploma architect, and one final year student from each of Civil Engineering, Construction Management and Quantity Surveying have been working on feasibility studies for projects that are based on completed schemes or have been devised by collaborators in the Construction Industry. Students have been asked to produce a PowerPoint presentation, in up to five working days, of a design scheme, with costs, structural analysis and construction programme. The students are not assessed on the quality of the product, but on their own ability to monitor the process and use of IT. Despite this, aggressive competition evolved between the teams to produce the 'best' design. Five projects were run in the 1998/99 session. A dedicated IT suite has been provided; each group of students had exclusive use of a machine. They were not told how to approach the projects nor when to use the available technology, but were asked to keep the use of paper to a minimum and to keep all their work on the server, so that it could be monitored externally. Not so. They plotted the AO drawings of an existing building that had been provided on the server. They like paper - they can scribble on it, fold it, tear it and throw it at one another.
keywords IT, Multi-disciplinary, Teamwork
series eCAADe
email
last changed 2022/06/07 07:50

_id 1a59
authors Jeng, Taysheng
year 2000
title Towards a Process-Centric, Asynchronous Collaborative Design Environment
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 15-24
doi https://doi.org/10.52842/conf.caadria.2000.015
summary The objective of this paper is to develop an effective multi-user computer environment supporting design collaboration. As design teams are distributed in different positions in time-space, coordination becomes a challenging problem for any collaborative projects. This paper addresses the coordination problem by modeling the dependencies between activities. The prototype of a future generation of collaborative design systems is presented. It concentrates on establishing a software infrastructure towards a process-centric, asynchronous collaborative environment.
series CAADRIA
email
last changed 2022/06/07 07:52

_id ddssar0023
id ddssar0023
authors Jens Pohl, Art Chapman, and Kym Jason Pohl
year 2000
title Computer-aided design systems for the 21st century: some design guidelines
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary This paper proposes nine design principles for a new generation of computer-aided design (CAD) systems that actively support the decision making and problem solving activities of environmental design. Foremost among these are: a meaningful internal object-based representation of the artifact being designed within its environmental context; a collaborative problem solving paradigm in which the human designer and the computer form a complementary partnership; and, the notion of decision-support tools rather than predefined solutions. Two prototype computer-aided design systems implemented by the CAD Research Center that embody most of these concepts are described. ICADS (Intelligent Computer-Aided Design System) incorporates multiple expert agents in domains such as natural and artificial lighting, noise control, structural system selection, climatic determinants, and energy conservation. Given a particular building design context, the agents in ICADS draw upon their own expertise and several knowledgebases as they monitor the actions of the human designer and collaborate opportunistically. KOALA (Knowledge-Based Object-Agent Collaboration) builds on the multi-agent concepts embodied in ICADS by the addition of two kinds of agents. Mentor agents represent the interests of selected objects within the ontology of the design environment. In the implemented KOALA system building spaces are represented by agents capable of collaborating with each other, with domain agents for the provision of expert services, and with the human designer. Facilitator agents listen in on the communications among mentor agents to detect conflicts and moderate arguments. While both of these prototype systems are limited in scope by focussing on the earliest design stages and restricted in their understanding of the inherent complexity of a design state, they nevertheless promise a paradigm shift in computer-aided design.
series DDSS
last changed 2003/08/07 16:36

_id 146a
authors Johnson, Robert E.
year 2000
title The Impact of E-Commerce on the Design and Construction Industry
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 75-83
doi https://doi.org/10.52842/conf.acadia.2000.075
summary Historically, the design and construction industry has been slow to innovate. As a result, productivity in the construction industry has declined substantially compared to other industries. Inefficiencies in this industry are well documented. However, the potential for cost savings and increased efficiency through the use of the Internet and e-commerce may not only increase the efficiency of the design and construction industry, but it may also significantly change the structure and composition of the industry. This is suggested because effective implementations of e-commerce technologies are not limited to one aspect of one industry. E-commerce may be most effective when it is thought of and applied to multi-industry enterprises and in a global context. This paper continues the exploration of a concept that we have been working on for several years, namely that “…information technology is evolving from a tool that incrementally improves ‘backoffice’ productivity to an essential component of strategic positioning that may alter the basic economics, organizational structure and operational practices of facility management organizations and their interactions with service providers (architects, engineers and constructors).” (Johnson and Clayton 1998) This paper will utilize the case study methodology to explore these issues as they are affecting the AEC/FM industry.
series ACADIA
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_229074 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002