CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 699

_id avocaad_2001_22
id avocaad_2001_22
authors Jos van Leeuwen, Joran Jessurun
year 2001
title XML for Flexibility an Extensibility of Design Information Models
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The VR-DIS research programme aims at the development of a Virtual Reality – Design Information System. This is a design and decision support system for collaborative design that provides a VR interface for the interaction with both the geometric representation of a design and the non-geometric information concerning the design throughout the design process. The major part of the research programme focuses on early stages of design. The programme is carried out by a large number of researchers from a variety of disciplines in the domain of construction and architecture, including architectural design, building physics, structural design, construction management, etc.Management of design information is at the core of this design and decision support system. Much effort in the development of the system has been and still is dedicated to the underlying theory for information management and its implementation in an Application Programming Interface (API) that the various modules of the system use. The theory is based on a so-called Feature-based modelling approach and is described in the PhD thesis by [first author, 1999] and in [first author et al., 2000a]. This information modelling approach provides three major capabilities: (1) it allows for extensibility of conceptual schemas, which is used to enable a designer to define new typologies to model with; (2) it supports sharing of conceptual schemas, called type-libraries; and (3) it provides a high level of flexibility that offers the designer the opportunity to easily reuse design information and to model information constructs that are not foreseen in any existing typologies. The latter aspect involves the capability to expand information entities in a model with relationships and properties that are not typologically defined but applicable to a particular design situation only; this helps the designer to represent the actual design concepts more accurately.The functional design of the information modelling system is based on a three-layered framework. In the bottom layer, the actual design data is stored in so-called Feature Instances. The middle layer defines the typologies of these instances in so-called Feature Types. The top layer is called the meta-layer because it provides the class definitions for both the Types layer and the Instances layer; both Feature Types and Feature Instances are objects of the classes defined in the top layer. This top layer ensures that types can be defined on the fly and that instances can be created from these types, as well as expanded with non-typological properties and relationships while still conforming to the information structures laid out in the meta-layer.The VR-DIS system consists of a growing number of modules for different kinds of functionality in relation with the design task. These modules access the design information through the API that implements the meta-layer of the framework. This API has previously been implemented using an Object-Oriented Database (OODB), but this implementation had a number of disadvantages. The dependency of the OODB, a commercial software library, was considered the most problematic. Not only are licenses of the OODB library rather expensive, also the fact that this library is not common technology that can easily be shared among a wide range of applications, including existing applications, reduces its suitability for a system with the aforementioned specifications. In addition, the OODB approach required a relatively large effort to implement the desired functionality. It lacked adequate support to generate unique identifications for worldwide information sources that were understandable for human interpretation. This strongly limited the capabilities of the system to share conceptual schemas.The approach that is currently being implemented for the core of the VR-DIS system is based on eXtensible Markup Language (XML). Rather than implementing the meta-layer of the framework into classes of Feature Types and Feature Instances, this level of meta-definitions is provided in a document type definition (DTD). The DTD is complemented with a set of rules that are implemented into a parser API, based on the Document Object Model (DOM). The advantages of the XML approach for the modelling framework are immediate. Type-libraries distributed through Internet are now supported through the mechanisms of namespaces and XLink. The implementation of the API is no longer dependent of a particular database system. This provides much more flexibility in the implementation of the various modules of the VR-DIS system. Being based on the (supposed to become) standard of XML the implementation is much more versatile in its future usage, specifically in a distributed, Internet-based environment.These immediate advantages of the XML approach opened the door to a wide range of applications that are and will be developed on top of the VR-DIS core. Examples of these are the VR-based 3D sketching module [VR-DIS ref., 2000]; the VR-based information-modelling tool that allows the management and manipulation of information models for design in a VR environment [VR-DIS ref., 2000]; and a design-knowledge capturing module that is now under development [first author et al., 2000a and 2000b]. The latter module aims to assist the designer in the recognition and utilisation of existing and new typologies in a design situation. The replacement of the OODB implementation of the API by the XML implementation enables these modules to use distributed Feature databases through Internet, without many changes to their own code, and without the loss of the flexibility and extensibility of conceptual schemas that are implemented as part of the API. Research in the near future will result in Internet-based applications that support designers in the utilisation of distributed libraries of product-information, design-knowledge, case-bases, etc.The paper roughly follows the outline of the abstract, starting with an introduction to the VR-DIS project, its objectives, and the developed theory of the Feature-modelling framework that forms the core of it. It briefly discusses the necessity of schema evolution, flexibility and extensibility of conceptual schemas, and how these capabilities have been addressed in the framework. The major part of the paper describes how the previously mentioned aspects of the framework are implemented in the XML-based approach, providing details on the so-called meta-layer, its definition in the DTD, and the parser rules that complement it. The impact of the XML approach on the functionality of the VR-DIS modules and the system as a whole is demonstrated by a discussion of these modules and scenarios of their usage for design tasks. The paper is concluded with an overview of future work on the sharing of Internet-based design information and design knowledge.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 899f
authors Papamichael, K., Pal, V., Bourassa, N., Loffeld, J. and Capeluto, I.G.
year 2000
title An Expandable Software Model for Collaborative Decision-Making During the Whole Building Life Cycle
doi https://doi.org/10.52842/conf.acadia.2000.019
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 19-28
summary Decisions throughout the life cycle of a building, from design through construction and commissioning to operation and demolition, require the involvement of multiple interested parties (e.g., architects, engineers, owners, occupants and facility managers). The performance of alternative designs and courses of action must be assessed with respect to multiple performance criteria, such as comfort, aesthetics, energy, cost and environmental impact. Several stand-alone computer tools are currently available that address specific performance issues during various stages of a building’s life cycle. Some of these tools support collaboration by providing means for synchronous and asynchronous communications, performance simulations, and monitoring of a variety of performance parameters involved in decisions about a building during building operation. However, these tools are not linked in any way, so significant work is required to maintain and distribute information to all parties. In this paper we describe a software model that provides the data management and process control required for collaborative decision-making throughout a building’s life cycle. The requirements for the model are delineated addressing data and process needs for decision making at different stages of a building’s life cycle. The software model meets these requirements and allows addition of any number of processes and support databases over time. What makes the model infinitely expandable is that it is a very generic conceptualization (or abstraction) of processes as relations among data. The software model supports multiple concurrent users, and facilitates discussion and debate leading to decision-making. The software allows users to define rules and functions for automating tasks and alerting all participants to issues that need attention. It supports management of simulated as well as real data and continuously generates information useful for improving performance prediction and understanding of the effects of proposed technologies and strategies.
keywords Decision Making, Integration, Collaboration, Simulation, Building Life Cycle, Software.
series ACADIA
email
last changed 2022/06/07 08:00

_id f8a3
authors Tuzmen, Ayca
year 2000
title Collaborative Building Design
doi https://doi.org/10.52842/conf.ecaade.2000.093
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 93-99
summary Studies on team performance have observed that some teams at the same stage in their development perform better than other teams, even of the same composition. Why is this? One of the main reasons is found to be a good team process. Researchers argue that collaborative process is an ideal case through which parties who see different aspects of a problem can constructively explore their differences and search for solutions that go beyond their own limited vision of what is possible. Much attention is now being paid to improvement of the design team process by establishing a collaborative environment in building design practice. Many scholars have prescribed various techniques and technology as ways of achieving collaboration in building design practice. A combination of these prescriptions does support design teams by facilitating one or more of the following: (a) team internal communication, (b) team external communication, (c) information sharing, and (d) decision making. Only recently have there been studies that have provided the strategies for integrating these techniques and technology for the establishment of a collaborative work environment. Researchers from various areas of research have this intention. This includes studies in Business Process Management (BPM), Business Process Re-Engineering (BPR), Total Quality Management (TQM), Project Management (PM), Workflow Management (WfM). All of these studies share one common feature. They all contribute to the study of the management of the team process. Despite the power of the concept and the history of successful application of process management techniques in building practice, the process management strategies are not a panacea. Rather it is a tool which, when properly used under appropriate circumstances, can aid design teams in the achievement of a collaborative design environment. The successful implementation or enactment of process management strategies in building design practice requires a mediator, a facilitator, or a project manager with a variety of managerial skills. However, it is not only enough to support major facilitators in the implementation or in the enactment of a design process that is planned for that teamwork. The performance of a design process should not only be depended on the skills or capabilities of tools that managers use to enact design processes. In order to achieve a collaborative design environment, members of the design team should also be given the support for monitoring and implementing of a collaborative design process. Team members should also have the ability to define, implement and track their personal subprocesses. Team members should also be able to monitor the process and be able to resolve the conflicts between their actions and other members' actions. A distributed process management environment is required in order to facilitate the management and control of the enactment of a collaborative design process. Such an environment should enable the control and monitoring of the enactment of a process and the resources required for its enactment. This paper presents the conceptual model of a process management environment that is developed in order to establish such a process management environment. It also discusses the findings of a study that is conducted for the validation and verification of this conceptual model.
keywords Collaborative Design, Process Management, Workflow Management
series eCAADe
type normal paper
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:58

_id ddssar0027
id ddssar0027
authors Tüzmen, AyVa
year 2000
title Process management for collaborative building design
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary Collaborative building design relies on people working coordinately to accomplish the requirements of a design project. Coordination is achieved by well organized, informed and communicating design teams. However, not all design teams in current design practice are well organized and well informed about where the project stands. This paper introduces a process management system that facilitates the management of the enactment of a collaborative design process. At the highest level, the process management system enables (a) the design teams to describe the design process that will be enacted by the team, (b) the enactment of the design process according to its process definition, (c) the management of the resources required for the enactment of the process. The paper also presents the findings of a validation and verification (V&V) study that is conducted to evaluate the effectiveness of the proposed system in the establishment of a collaborative design environment.
series DDSS
last changed 2003/08/07 16:36

_id 449f
authors Aish, Robert
year 2000
title Collaborative Design using Long Transactions and "Change Merge"
doi https://doi.org/10.52842/conf.ecaade.2000.107
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 107-111
summary If our goal is implement collaborative engineering across temporal, spatial and discipline dimensions, then it is suggested that we first have to address the necessary pre-requisites, which include both the deployment of "enterprise computing" and an understanding of the computing concepts on which such enterprise systems are based. This paper will consider the following computing concepts and the related concepts in the world of design computing, and discuss how these concepts have been realised in Bentley SystemsÕ ProjectBank collaborative engineering data repository: Computing Concept Related Design Concept Normalisation Model v. Report (or Drawing) Transaction Consistency of Design Long Transaction Parallelisation of Design Change Merge Coordination (synchronisation) Revisions Coordination (synchronisation) While we are most probably familiar with the applications of existing datadase concepts (such as Normalisation and Transaction Management) to the design process, the intent of this paper to focus
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 8802
authors Burry, Mark, Dawson, Tony and Woodbury, Robert
year 1999
title Learning about Architecture with the Computer, and Learning about the Computer in Architecture
doi https://doi.org/10.52842/conf.ecaade.1999.374
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 374-382
summary Most students commencing their university studies in architecture must confront and master two new modes of thought. The first, widely known as reflection-in-action, is a continuous cycle of self-criticism and creation that produces both learning and improved work. The second, which we call here design making, is a process which considers building construction as an integral part of architectural designing. Beginning students in Australia tend to do neither very well; their largely analytic secondary education leaves the majority ill-prepared for these new forms of learning and working. Computers have both complicated and offered opportunities to improve this situation. An increasing number of entering students have significant computing skill, yet university architecture programs do little in developing such skill into sound and extensible knowledge. Computing offers new ways to engage both reflection-in-action and design making. The collaboration between two Schools in Australia described in detail here pools computer-based learning resources to provide a wider scope for the education in each institution, which we capture in the phrase: Learn to use computers in architecture (not use computers to learn architecture). The two shared learning resources are Form Making Games (Adelaide University), aimed at reflection-in-action and The Construction Primer (Deakin University and Victoria University of Wellington), aimed at design making. Through contributing to and customising the resources themselves, students learn how designing and computing relate. This paper outlines the collaborative project in detail and locates the initiative at a time when the computer seems to have become less self-consciously assimilated within the wider architectural program.
keywords Reflection-In-Action, Design Making, Customising Computers
series eCAADe
email
last changed 2022/06/07 07:54

_id b4c4
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2000
title A framework for an Architectural Collaborative Design
doi https://doi.org/10.52842/conf.ecaade.2000.057
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 57-60
summary The building industry involves a larger number of disciplines, operators and professionals than other industrial processes. Its peculiarity is that the products (building objects) have a number of parts (building elements) that does not differ much from the number of classes into which building objects can be conceptually subdivided. Another important characteristic is that the building industry produces unique products (de Vries and van Zutphen, 1992). This is not an isolated situation but indeed one that is spreading also in other industrial fields. For example, production niches have proved successful in the automotive and computer industries (Carrara, Fioravanti, & Novembri, 1989). Building design is a complex multi-disciplinary process, which demands a high degree of co-ordination and co-operation among separate teams, each having its own specific knowledge and its own set of specific design tools. Establishing an environment for design tool integration is a prerequisite for network-based distributed work. It was attempted to solve the problem of efficient, user-friendly, and fast information exchange among operators by treating it simply as an exchange of data. But the failure of IGES, CGM, PHIGS confirms that data have different meanings and importance in different contexts. The STandard for Exchange of Product data, ISO 10303 Part 106 BCCM, relating to AEC field (Wix, 1997), seems to be too complex to be applied to professional studios. Moreover its structure is too deep and the conceptual classifications based on it do not allow multi-inheritance (Ekholm, 1996). From now on we shall adopt the BCCM semantic that defines the actor as "a functional participant in building construction"; and we shall define designer as "every member of the class formed by designers" (architects, engineers, town-planners, construction managers, etc.).
keywords Architectural Design Process, Collaborative Design, Knowledge Engineering, Dynamic Object Oriented Programming
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 3e51
authors Cerulli, C., Peng, C. and Lawson, B.
year 2001
title Capturing Histories of Design Processes for Collaborative Building Design Development. Field Trial of the ADS Prototype
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 427-437
summary The ADS Project - Advanced Design Support for the Construction Design Process - builds on the technological results of the previous COMMIT Project to exploit and demonstrate the benefits of a CAD based Design Decision Support System. COMMIT provides a system for storing knowledge about knowledge within the design process. It records design decisions, the actors who take them and the roles they play when doing so. ADS links COMMIT to an existing object-oriented CAD system, MicroStation/J from Bentley Systems. The project focuses on tackling the problem of managing design information without intruding too much on the design process itself. It provides the possibility to effectively link design decisions back to requirements, to gather rationale information for later stages of the building lifecycle, and to gather knowledge of rationale for later projects. The system enables members of the project team, including clients and constructors, to browse and search the recorded project history of decision making both during and after design development. ADS aims to facilitate change towards a more collaborative process in construction design, to improve the effectiveness of decision-making throughout the construction project and to provide clients with the facility to relate design outcomes to design briefs across the whole building life cycle. In this paper we will describe the field trials of the ADS prototype carried out over a three-month period at the Building Design Partnership (BDP) Manchester office. The objective of these trials is to assess the extent, to which the approach underlying ADS enhances the design process, and to gather and document the views and experiences of practitioners. The ADS prototype was previously tested with historical data of real project (Peng, Cerulli et al. 2000). To gather more valuable knowledge about how a Decision Support System like ADS can be used in practice, the testing and evaluation will be extended to a real project, while it is still ongoing. The live case study will look at some phases of the design of a mixed residential and retail development in Leeds, UK, recording project information while it is created. The users’ feedback on the system usability will inform the continuous redevelopment process that will run in parallel to the live case study. The ADS and COMMIT Projects were both funded by EPSRC.
keywords Design Rationale, Design Support Systems, Usability Evaluation
series CAAD Futures
email
last changed 2006/11/07 07:22

_id db71
authors Chien, S.-F. and Shih, S.-G.
year 2000
title A Web Environment to Support User Participation in the Development of Apartment Buildings
source Special Focus Symposium on WWW as the Framework for Collaboration, InterSymp 2000, July 31-August 5, Baden-Baden, Germany, pp. 225-231
summary In Taiwan, apartments are sold before ever been built. Apartment buyers can customize their units until the construction takes place. This customization process has become a very unique form of user participation in the development of apartment buildings in Taiwan. However, in all customizations, large amount of information has to be documented and exchanged between related agencies for each apartment unit. For an apartment building that contains over 40 units, managing the information can be a daunting task. We are developing a web environment to support the customization process and enable efficient management and timely exchanges of information. The environment provides three levels of design interaction to encourage user participation in a controlled customization process. This paper describes the framework of this web environment, illustrates its functionality through a running prototype, and discusses technical issues encountered during its implementation.
series other
last changed 2003/04/23 15:50

_id d0aa
authors Colajanni, Benedetto, Concialdi, Salvatore and Pellitteri, Giuseppe
year 1999
title CoCoMa: a Collaborative Constraint Management System for the Collaborative Design
doi https://doi.org/10.52842/conf.ecaade.1999.364
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 364-369
summary Collaborative Design is a topic of particular current interest. Existing software allows a multiplicity of designers to work on the same project. What the software really allows is accessing to a part of the information of the project and changing it. Sometimes there is a hierarchical distribution of the power of change: some participants can be permitted to operate only on some limited layers of the object representation. In this case the changes they propose are to be accepted by a general manager of the design process. What is lacking in this kind of software is the explicit management on the reciprocal constraints posed by different participants. In this paper, an elementary Collaborative Design System is presented whose main concern is just the management of constraints. Each participant designs the part of the project of his/her concern instantiating objects comprised of geometric description, alphanumeric variables and constraints on both. Constraints can be of two types: absolute or defined by a range of allowed values of the constrained variable. A participant intervening later can accept the constraint, choosing a value in the permitted range, or decide to violate it. In this case the proposed violation is signalled to whom posed it.
keywords Collaborative Design, Design Process, Management System, Participant Designs, Constraints Violation
series eCAADe
email
last changed 2022/06/07 07:56

_id ddssar0007
id ddssar0007
authors Cooper, G., Rezqui, Y., Jackson, M., Lawson, B., Peng, C. and Cerulli, C.
year 2000
title A CAD-based decision support system for the design stage of a construction project
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary Decisions made during the design process are multi-dimensional, combining together factors which range from the highly subjective to the perfectly objective. These decisions are made by many, often non co-located, actors belonging to different disciplines. Moreover, there is a high risk for misunderstandings, inappropriate changes, and decisions, which are not notified to all interested parties. The ADS project (Advanced Decision Support for Construction Design) builds on the results of the earlier COMMIT project to provide an information management system, which addresses these problems. It defines mechanisms to handle the proactive management of information to support decision-making in collaborative projects. Different aspects of the COMMIT system have already been widely published, and the team is now applying the results in the context of construction design. These are referenced in the present paper, which gives an overview of the results of the COMMIT project and discusses some of the issue involved in applying them to the design process in conjunction with an advanced CAD tool.
series DDSS
last changed 2003/08/07 16:36

_id 53c8
authors Donath, Dirk and Lömker, Thorsten Michael
year 2000
title Illusion, Frustration and Vision in Computer-Aided Project Planning: A Reflection and Outlook on the Use of Computing in Architecture
doi https://doi.org/10.52842/conf.acadia.2000.003
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 3-9
summary This paper examines the progressive and pragmatic use of computers and CAAD systems in the architectural practice. With the aid of three scenarios, this paper will illustrate gainful implementation of computer aided project planning in architecture. The first scenario describes an actual situation of implementation and describes conceptual abortive developments in office organization as well as in software technology. Scenario two outlines the essential features of an integrated building design system and the efforts involved in its implementation in the architectural practice. It clearly defines preconditions for implementation and focuses on feasible concepts for the integration of different database management systems. A glance at paradigms of conceptual work currently under development will be taken. The third scenario deals with the structure and integration of innovative concepts and the responsibility the architect will bear with regard to necessary alterations in office and workgroup organization. A future-oriented building design system will be described that distinguishes itself from existing programs because of its modular, net-based structure. With reference to today’s situation in architectural offices and according to realizable improvements, this article will demonstrate courses for future IT-support on the basis of an ongoing research project. The presented project is part of the special research area 524 “Materials and Constructions for the Revitalization of Existing Buildings” which is funded by the Deutsche Forschungsgemeinschaft. It deals with the integration of various parties that are involved in the revitalization process of existing buildings as well as with the provision of adequate information within the planning process resting upon the survey of existing building substance. Additional concepts that might change the way an architect’s work is organized will also be presented. “Case-based-reasoning” methods will make informal knowledge available, leading to a digital memory of preservable solutions.
series ACADIA
email
last changed 2022/06/07 07:55

_id 2e77
authors Ekholm, A. and Fridqvist, S.
year 2000
title A concept of space for building classification, product modelling, and design
source Automation in Construction 9 (3) (2000) pp. 315-328
summary Information about a building's spaces is of interest in every stage of the construction and facility management processes. An organisation1 or enterprise is located in and uses the building's spaces, and many of the building's spatial properties are determined on the basis of the user organisation's requirements. The definition of the concept "space" as applied in information systems for building classification and building product modelling today is unclear. A fundamental problem is to reconcile a material and construction method viewpoint with a space-centred viewpoint. In order to enable communication among actors and computer systems in the construction process, the concepts used in model development and the corresponding terms have to be formally defined and standardised. In this article, we analyse the concept of space and suggest a comprehensive definition for the construction context. The identification of a space in a building is based on a spatial view. We introduce the concept of aspectual unit and show how this concept can be used to integrate different aspect views in a conceptual schema. Additionally, we define the user organisation as a thing, which is separate from the building and has spatial properties of its own, so-called "activity spaces". Finally, we show how space may be represented in a comprehensive conceptual schema.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ca7b
authors Howes, Jaki
year 1999
title IT or not IT? An Examination of IT Use in an Experimental Multi-disciplinary Teamwork Situation
doi https://doi.org/10.52842/conf.ecaade.1999.370
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 370-373
summary Leeds Metropolitan University is well placed to carry out research into multi-disciplinary team-working, as all the design and construction disciplines are housed in one faculty. Staff have set up an experimental project, TIME IT (Team-working in Multi-disciplinary Environments using IT) which examines ways of working in the design/construction process and how IT is used when there is no commercial pressure. Four groups of four students, one graduate diploma architect, and one final year student from each of Civil Engineering, Construction Management and Quantity Surveying have been working on feasibility studies for projects that are based on completed schemes or have been devised by collaborators in the Construction Industry. Students have been asked to produce a PowerPoint presentation, in up to five working days, of a design scheme, with costs, structural analysis and construction programme. The students are not assessed on the quality of the product, but on their own ability to monitor the process and use of IT. Despite this, aggressive competition evolved between the teams to produce the 'best' design. Five projects were run in the 1998/99 session. A dedicated IT suite has been provided; each group of students had exclusive use of a machine. They were not told how to approach the projects nor when to use the available technology, but were asked to keep the use of paper to a minimum and to keep all their work on the server, so that it could be monitored externally. Not so. They plotted the AO drawings of an existing building that had been provided on the server. They like paper - they can scribble on it, fold it, tear it and throw it at one another.
keywords IT, Multi-disciplinary, Teamwork
series eCAADe
email
last changed 2022/06/07 07:50

_id 03ad
authors Lottaz, C., Smith, I.F.C., Robert-Nicoud, Y. and Faltings, B.V.
year 2000
title Constraint-based support for negotiation in collaborative design
source Artificial Intelligence in Engineering, Vol: 14, Issue: 3, pp. 261-280.
summary Solution spaces are proposed, instead of single solutions only, to support collaborative tasks during design and construction. Currently, partners involved in construction projects typically assign single values for sub-sets of variables and then proceed, often after tedious negotiations with other partners, to integrate these partial solutions into more complete project descriptions. We suggest the use of constraint solving to express possibly large families of acceptable solutions in order to improve the negotiation process in two ways. On one hand, con ict detection can be performed in an automated manner. Through the constraints collaborators impose, they de ne large unfeasible areas where no solution to the problem at hand can be expected. An emty intersectidon of the solution spaces can thus point at a con ict of design goals of the di erent collaborators at an early stage of the design process. On the other hand, important decision support during negotiation is provided. When a solution space is found, collaborators know during negotiation that they are negotiating about feasible solutions. Negotiation is no longer a means to nd a solution to the problem but it takes place in order to nd a good or the best solution. Since the consistency of the design remains ensured, collaborators are expected to be less restrictive towards innovative ideas during negotiation. Moreover, constraint techniques using explicit representations of solution spaces can provide tools to visualize trade-o s and illustrate the impact of certain decisions on other parameters. Thus decision-making is improved during the negotiation. New algorithms have been developed at EPFL for solving multi-dimensional nonlinear inequality constraints on continuous variables. Together with intuitive user interfaces such constraint-based support leads to better change management and easier implementation of least commitment decision strategies. It is expected that the results of this research can improve both the e ciency of negotiation processes and the quality of the achieved results.
series journal paper
last changed 2003/04/23 15:50

_id f7e2
authors Noriega, Farid Mokhtar
year 2000
title Activities Oriented Environments. A Conceptual Model for Building Advanced CAAD Systems
doi https://doi.org/10.52842/conf.ecaade.2000.131
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 131-134
summary The Activities Oriented Design Environments, is a collection of proposals that will introduce important changes in the interaction procedures and integration mechanisms, in the design of CAAD software and the operating environments that support them. We will discuss how this environment uses the architectural activities as a reference for his organizational scheme, and the structural rules that control it’s operations.
keywords CAAD, CAAD Design Pradigms, CAAD User Interfaces, Architectural Design Management
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:58

_id 0f8d
authors Pal, Vineeta
year 2000
title Integrated Decision-Making: The Building Design Advisor
doi https://doi.org/10.52842/conf.acadia.2000.014
source ACADIA Quarterly, vol. 19, no. 4, pp. 14-17
summary In this paper we describe an integrated decision-making environment that brings together several different building simulation tools, and provides the data management and process control required for their integrated use, from the initial, schematic phases of building design. The output of one tool is easily used as input to another, either directly, or after appropriate manipulation to ensure compatibility, which makes the whole integrated environment more than the sum of its parts. A simple graphical user interface, common to all simulation tools, allows access to all building parameters and supports multicriterion judegment by allowing side-by-side comparison of multiple alternative designs with respect to multiple performance parameters.
series ACADIA
last changed 2022/06/07 08:00

_id fe54
authors Regli, W.C. and Cicirello, V.A.
year 2000
title Managing digital libraries for computer-aided design
source Computer-Aided Design, Vol. 32 (2) (2000) pp. 119-132
summary This paper describes our initial efforts to deploy a digital library to support computer-aided collaborative design. At present, this experimental testbed, The EngineeringDesign Knowledge Repository, is an effort to collect and archive public domain engineering data for use by researchers and engineering professionals. We envision thiseffort expanding to facilitate collaboration and process archival for distributed design and manufacturing teams.CAD knowledge-bases are vital to engineers, who search through vast amounts of corporate legacy data and navigate on-line catalogs to retrieve precisely the rightcomponents for assembly into new products. This research attempts to begin addressing the critical need for improved computational methods for reasoning about complexgeometric and engineering information. In particular, we focus on archival and reuse of design and manufacturing data for mechatronic systems. This paper presents adescription of the research problems, an overview of the initial architecture of the testbed and a description of some of our preliminary results on conceptual design anddesign retrieval.
keywords Computer-Aided Design, Computer-Aided Engineering, Engineering Knowledge-Bases, Product Data Management, World Wide Web, Network-Enabled,CAD,CAE
series journal paper
email
last changed 2003/05/15 21:33

_id 15e4
authors Sariyildiz, S., Stouffs, R. and Tunçer, B.
year 2000
title Vision on ICT Developments for the Building Sector
doi https://doi.org/10.52842/conf.acadia.2000.011
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 11-18
summary The building sector is entering a new era. Developments in information and communication technology have an impact throughout the entire life cycle of a building, not only from a process and technical point of view but also from a creative design point of view. As a result of developments of advanced modeling software for architectural design, the gap between what the architect can envision and what the building technician or product architect can materialize is enlarging. Internet technology has already started to provide a closer link between the participants in the building process, their activities, knowledge, and information. Concurrent and collaborative engineering will be the future of building practice in respect to efficiency and quality improvement of this sector. The nature of the building process is complex, not only from a communication point of view, but also from the information of the number of participants, the spatial organization and the infrastructure etc. In the near future, soft computing techniques such as artificial neural networks, fuzzy logic, and genetic algorithms will make contributions to the problem solving aspects of the complex design process. This paper provides an overview of these and other future developments of information and communication technology (ICT) within the building sector.
series ACADIA
email
last changed 2022/06/07 07:57

_id caadria2000_000
id caadria2000_000
authors Tan, Beng-Kiang; Tan, Milton; Wong, Yunn-Chii (eds.)
year 2000
title CAADRIA 2000
doi https://doi.org/10.52842/conf.caadria.2000
source Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, 519 p.
summary Ever since the advent of computer graphics in the sixties, computer-aided architectural design (CAAD) has made a great impact in architectural education and practice. Its central role as a new media for the representation and analysis of designs will ensure that it will continue to do so. The teaching and research in CAAD in Asia have also been growing in scope and in quality. In the 21st century, the challenges of architectural education and practice in the new millennium will open up new fronts in CAAD research. This conference is an important platform to evaluate the challenge and opportunities and will enable researchers to exchange ideas and collaboration in projects with specific relevance to CADD for Asia. This compilation of 48 papers were elected through a blind review by an international panel and presented at the conference in Singapore on 18 - 19 May 2000. The chapters are organised according to the main topics covered by the conference -- Collaborative Design, Simulation, Design Education, Knowledge Representation, Design Process, Information Systems, Design Tools, Virtual Reality and Computer Media. The Collaborative Design section consists of papers which deal with Collaborative Design Process interfaces to databases, Collaborative Design System for Citizen Participation, Team Awareness in Collaboration and Computer Environment for supporting Design Collaboration. The Simulation section deals with lighting studies, colour assessment, simulation of urban growth patterns, dynamic simulations in buildings and way-finding. The Design Education section consists of papers on design pedagogy in design studios using computers, virtual studios and virtual learning. The Knowledge Representation section consists of papers that deal with knowledge-based systems, design representation and shape grammar. The Design Process section consists of papers on design process and cognition, design creativity and the computer media. The Information Systems section consists of papers on information navigation, information management, design information repository and databases. The Design Tools section consists of papers on design tools based on generative systems, a new method for 3D animation and movement-in-architectural-space representation. The Virtual Reality and Computer Media section deals with virtual reality applications and tools in architecture, designing virtual environments and computer media and visualization.
series CAADRIA
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 34HOMELOGIN (you are user _anon_935747 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002