CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 745

_id 389b
authors Do, Ellen Yi-Luen
year 2000
title Sketch that Scene for Me: Creating Virtual Worlds by Freehand Drawing
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 265-268
doi https://doi.org/10.52842/conf.ecaade.2000.265
summary With the Web people can now view virtual threedimensional worlds and explore virtual space. Increasingly, novice users are interested in creating 3D Web sites. Virtual Reality Modeling Language gained ISO status in 1997, although it is being supplanted by the compatible Java3D API and alternative 3D Web technologies compete. Viewing VRML scenes is relatively straightforward on most hardware platforms and browsers, but currently there are only two ways to create 3D virtual scenes: One is to code the scene directly using VRML. The other is to use existing CAD and modeling software, and save the world in VRML format or convert to VRML from some other format. Both methods are time consuming, cumbersome, and have steep learning curves. Pen-based user interfaces, on the other hand, are for many an easy and intuitive method for graphics input. Not only are people familiar with the look and feel of paper and pencil, novice users also find it less intimidating to draw what they want, where they want it instead of using a complicated tool palette and pull-down menus. Architects and designers use sketches as a primary tool to generate design ideas and to explore alternatives, and numerous computer-based interfaces have played on the concept of "sketch". However, we restrict the notion of sketch to freehand drawing, which we believe helps people to think, to envision, and to recognize properties of the objects with which they are working. SKETCH employs a pen interface to create three-dimensional models, but it uses a simple language of gestures to control a three-dimensional modeler; it does not attempt to interpret freehand drawings. In contrast, our support of 3D world creation using freehand drawing depend on users’ traditional understanding of a floor plan representation. Igarashi et al. used a pen interface to drive browsing in a 3D world, by projecting the user’s marks on the ground plane in the virtual world. Our Sketch-3D project extends this approach, investigating an interface that allows direct interpretation of the drawing marks (what you draw is what you get) and serves as a rapid prototyping tool for creating 3D virtual scenes.
keywords Freehand Sketching, Pen-Based User Interface, Interaction, VRML, Navigation
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 1bb0
authors Russell, S. and Norvig, P.
year 1995
title Artificial Intelligence: A Modern Approach
source Prentice Hall, Englewood Cliffs, NJ
summary Humankind has given itself the scientific name homo sapiens--man the wise--because our mental capacities are so important to our everyday lives and our sense of self. The field of artificial intelligence, or AI, attempts to understand intelligent entities. Thus, one reason to study it is to learn more about ourselves. But unlike philosophy and psychology, which are also concerned with AI strives to build intelligent entities as well as understand them. Another reason to study AI is that these constructed intelligent entities are interesting and useful in their own right. AI has produced many significant and impressive products even at this early stage in its development. Although no one can predict the future in detail, it is clear that computers with human-level intelligence (or better) would have a huge impact on our everyday lives and on the future course of civilization. AI addresses one of the ultimate puzzles. How is it possible for a slow, tiny brain{brain}, whether biological or electronic, to perceive, understand, predict, and manipulate a world far larger and more complicated than itself? How do we go about making something with those properties? These are hard questions, but unlike the search for faster-than-light travel or an antigravity device, the researcher in AI has solid evidence that the quest is possible. All the researcher has to do is look in the mirror to see an example of an intelligent system. AI is one of the newest disciplines. It was formally initiated in 1956, when the name was coined, although at that point work had been under way for about five years. Along with modern genetics, it is regularly cited as the ``field I would most like to be in'' by scientists in other disciplines. A student in physics might reasonably feel that all the good ideas have already been taken by Galileo, Newton, Einstein, and the rest, and that it takes many years of study before one can contribute new ideas. AI, on the other hand, still has openings for a full-time Einstein. The study of intelligence is also one of the oldest disciplines. For over 2000 years, philosophers have tried to understand how seeing, learning, remembering, and reasoning could, or should, be done. The advent of usable computers in the early 1950s turned the learned but armchair speculation concerning these mental faculties into a real experimental and theoretical discipline. Many felt that the new ``Electronic Super-Brains'' had unlimited potential for intelligence. ``Faster Than Einstein'' was a typical headline. But as well as providing a vehicle for creating artificially intelligent entities, the computer provides a tool for testing theories of intelligence, and many theories failed to withstand the test--a case of ``out of the armchair, into the fire.'' AI has turned out to be more difficult than many at first imagined, and modern ideas are much richer, more subtle, and more interesting as a result. AI currently encompasses a huge variety of subfields, from general-purpose areas such as perception and logical reasoning, to specific tasks such as playing chess, proving mathematical theorems, writing poetry{poetry}, and diagnosing diseases. Often, scientists in other fields move gradually into artificial intelligence, where they find the tools and vocabulary to systematize and automate the intellectual tasks on which they have been working all their lives. Similarly, workers in AI can choose to apply their methods to any area of human intellectual endeavor. In this sense, it is truly a universal field.
series other
last changed 2003/04/23 15:14

_id 7e51
authors Ucelli, G., Conti, G. and Af Klercker, J.
year 1999
title Visualisation: The Customer's Perception
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 539-544
doi https://doi.org/10.52842/conf.ecaade.1999.539
summary Probably the most frustrating circumstance which might occur to an architect is to find out that his client is going to live for years in a house that is not like he expected it to be. Everybody has experienced to look at a picture of a place and after some time to go there and find out that the place is not according to his idea. This is due to the effectiveness of the media in representing the real space. During our experience we have tried to find out the way this effectiveness interferes in the relation between client and architect and how computer images can be effective in communicating the idea of architectural space. The problem of communication between designer and client rises when you notice that traditional graphic techniques (plans, sections, facades) are not enough understandable to make laypeople feel the real architectural space. And the unique answer to this problem has always been faced simply by leaving the architect understand the wishes of his client. During these last years though, computer techniques and multimedia tools have changed the way architects communicate their ideas.
keywords Perception, Computer Images, Rendering
series eCAADe
email
last changed 2022/06/07 07:58

_id 958e
authors Coppola, Carlo and Ceso, Alessandro
year 2000
title Computer Aided Design and Artificial Intelligence in Urban and Architectural Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 301-307
doi https://doi.org/10.52842/conf.ecaade.2000.301
summary In general, computer-aided design is still limited to a rather elementary use of the medium, as it is mainly used for the representation/simulation of a design idea w an electronic drawing-table. hich is not computer-generated. The procedures used to date have been basically been those of an electronic drawing-table. At the first stage of development the objective was to find a different and better means of communication, to give form to an idea so as to show its quality. The procedures used were 2D design and 3D simulation models, usually used when the design was already defined. The second stage is when solid 3D modelling is used to define the formal design at the conception stage, using virtual models instead of study models in wood, plastic, etc. At the same time in other connected fields the objective is to evaluate the feasibility of the formal idea by means of structural and technological analysis. The third stage, in my opinion, should aim to develop procedures capable of contributing to both the generation of the formal idea and the simultaneous study of technical feasibility by means of a decision-making support system aided by an Artificial Intelligence procedure which will lead to what I would describe as the definition of the design in its totality. The approach to architectural and urban design has been strongly influenced by the first two stages, though these have developed independently and with very specific objectives. It is my belief that architectural design is now increasingly the result of a structured and complex process, not a simple act of pure artistic invention. Consequently, I feel that the way forward is a procedure able to virtually represent all the features of the object designed, not only in its definitive configuration but also and more importantly in the interactions which determine the design process as it develops. Thus A.I. becomes the means of synthesis for models which are hierarchically subordinated which together determine the design object in its developmental process, supporting decision-making by applying processing criteria which generative modelling has already identified. This trend is currently being experimented, giving rise to interesting results from process design in the field of industrial production.
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:56

_id ga0014
id ga0014
authors McGuire, Kevin
year 2000
title Controlling Chaos: a Simple Deterministic System for Creating Complex Organic Shapes
source International Conference on Generative Art
summary It is difficult and frustrating to create complex organic shapes using the current set of computer graphic programs. One reason is because the geometry of nature is different from that of our tools. Its self-similarity and fine detail are derived from growth processes that are very different from the working process imposed by drawing programs. This mismatch makesit difficult to create natural looking artifacts. Drawing programs provide a palette of shapes that may be manipulated in a variety ways, but the palette is limited and based on a cold Euclidean geometry. Clouds, rivers, and rocks are not lines or circles. Paint programs provide interesting filters and effects, but require great skill and effort. Always, the details must be arduously managed by the artist. This limits the artist's expressive power. Fractals have stunning visual richness, but the artist's techniques are limited to those of choosing colours and searching the fractal space. Genetic algorithms provide a powerful means for exploring a space of variations, but the artist's skill is limited by the very difficult ability to arrive at the correct fitness function. It is hard to get the picture you wanted. Ideally, the artist should have macroscopic control over the creation while leaving the computer to manage the microscopic details. For the result to feel organic, the details should be rich, consistent and varied, cohesive but not repetitious. For the results to be reproducible, the system should be deterministic. For it to be expressive there should be a cause-effect relationship between the actions in the program and change in the resulting picture. Finally, it would be interesting if the way we drew was more closely related to the way things grew. We present a simple drawing program which provides this mixture of macroscopic control with free microscopic detail. Through use of an accretion growth model, the artist controls large scale structure while varied details emerge naturally from senstive dependence in the system. Its algorithms are simple and deterministic, so its results are predictable and reproducible. The overall resulting structure can be anticipated, but it can also surprise. Despite its simplicity, it has been used to generate a surprisingly rich assortment of complex organic looking pictures.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ebb2
authors Proctor, George
year 2000
title Reflections on the VDS, Pedagogy, Methods
source ACADIA Quarterly, vol. 19, no. 1, pp. 15-16
doi https://doi.org/10.52842/conf.acadia.2000.015.2
summary After having conducted a Digital Media based design studio at Cal Poly for six years, we have developed a body of experience I feel is worth sharing. When the idea of conducting a studio with the exclusive use of digital tools was implemented at our college, it was still somewhat novel, and only 2 short years after the first VDS- Virtual Design Studio (UBC, UHK et.al.-1993). When we began, most of what we explored required a suspension of disbelief on the part of both the students and faculty reviewers of studio work. In a few short years the notions we examined have become ubiquitous in academic architectural discourse and are expanding into common use in practice. (For background, the digital media component of our curriculum owes much to my time at Harvard GSD [MAUD 1989-91] and the texts of: McCullough/Mitchell 1990, 1994; McCullough 1998; Mitchell 1990,1992,1996; Tufte 1990; Turkel 1995; and Wojtowicz 1993; and others.)
series ACADIA
email
last changed 2022/06/07 08:00

_id ga0001
id ga0001
authors Soddu, Celestino
year 2000
title From Forming to Transforming
source International Conference on Generative Art
summary The ancient codes of harmony stem from the human vision of the complexity of nature. They allow us to think the possible, to design it and to perform its realization. The first gesture of every designer is to take, in a new application that is born from a need the opportunity to experiment with a possible harmonic code. And to operate in the evolution of the project so that this code buds and breeds beauty as a mirror of the complexity and wonder of nature. In this design activity, project after project, every architect builds his own code. This is strongly present in diverse ways in every architect. The code of harmony born from the attention of every man to the complexity of nature, manifests itself in interpretation, which is logical and therefore feasible, of the laws of formalization of relationships. Every interpretation is different and belongs to the oneness of every architect. Every interpretative code stems from, and reveals, our approach to the world, our cultural references, our history, our present and the memory of our past. Each idea is born as a representation of the interpretative code that is a cryptic and subjective code, even if it refers as constant to history of man. Generative art is the maximum expression of this human challenge: it traces a code as a reference to the complexity of nature, and it makes it feasible. So man is the craftsman of the possible, according to the laws of the natural harmony. What does a code of the harmony contain? As for all codes it contains some rules that trace certain behaviors. It is not therefore a sequence, a database of events, of forms, but it defines behaviors: the transformations. To choose forms and to put them together is an activity that can also resemble that of a designer, but essentially it is the activity of the client. The designer does not choose forms but operates transformations, because only by doing so can he put a code of harmony into effect. Between transforming and choosing forms one can trace the borderline between architects and clients, between who designs and who chooses the projected objects. This difference must be reconsidered especially today because we are going toward a hybridization in which the client wants to feel himself a designer, even if he only chooses. And the designer, using sophisticated tools, works as chooser between different solutions, in practice as a client. To design, to create through transformations is, however, an activity that takes time. The generative design, building a usable and upgradable code, makes time virtual and therefore allows the architect, even in a speeded-up world as today is, to design and reach levels of complexity that mirror the complexity of nature and its beauty.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id d931
authors Gabryszewski, Artur B.
year 1999
title Idea of an Intelligent Building - Development Prospects
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 739-743
doi https://doi.org/10.52842/conf.ecaade.1999.739
summary An ever-increasing number of offices as also residential buildings are being realised by designers and investors in accordance with the concept of an intelligent building. Houses of the new generation are being constructed. This is possible thanks to dynamic progress in the development of computer and microprocessor engineering techniques. Putting into reality the idea of the 'intelligent building' will become one of the most interesting assignments of Polish building industry in the rapidly approaching XXI century. The term 'intelligent building' first appeared in the eighties. The idea behind this conception is aspiring to create a friendly, work supporting, effective environment. The revolution in telecommunications and information technology along with change in the standards of office work, have caused computer networks and modem systems of automation and protection, to invade buildings. From the technical point of view, an intelligent building is an object in which all the subsystems co-operate with each other, forming a friendly environment for man. For users of an intelligent building, the most important issue is realisation of the following aims: object management which includes both control of human resources and automation systems in the building and also efficient management of the building space in such a way that the costs of its utilisation are minimised. The possibility of optional installation of modern systems and equipment should be facilitated by the architecture itself. Therefore, the specifics of all the building elements should be taken into account right at the designing stage. The following features characterise an intelligent building: integration of telecommunication systems in the building, central management and supervision system and utilisation of structural cabling as the carrier of signals controlling most of the systems in the building. Presently, there is no building in Poland that could be characterised by the three features mentioned.
keywords High-tech Architecture, Ecology, CAAD
series eCAADe
email
last changed 2022/06/07 07:50

_id 5cba
authors Anders, Peter
year 1999
title Beyond Y2k: A Look at Acadia's Present and Future
source ACADIA Quarterly, vol. 18, no. 1, p. 10
doi https://doi.org/10.52842/conf.acadia.1999.x.o3r
summary The sky may not be falling, but it sure is getting closer. Where will you when the last three zeros of our millennial odometer click into place? Computer scientists tell us that Y2K will bring the world’s computer infrastructure to its knees. Maybe, maybe not. But it is interesting that Y2K is an issue at all. Speculating on the future is simultaneously a magnifying glass for examining our technologies and a looking glass for what we become through them. "The future" is nothing new. Orwell's vision of totalitarian mass media did come true, if only as Madison Avenue rather than Big Brother. Futureboosters of the '50s were convinced that each garage would house a private airplane by the year 2000. But world citizens of the 60's and 70's feared a nuclear catastrophe that would replace the earth with a smoking crater. Others - perhaps more optimistically -predicted that computers were going to drive all our activities by the year 2000. And, in fact, theymay not be far off... The year 2000 is symbolic marker, a point of reflection and assessment. And - as this date is approaching rapidly - this may be a good time to come to grips with who we are and where we want to be.
series ACADIA
email
last changed 2022/06/07 07:49

_id f73b
authors Brady, Darlene A.
year 2000
title Percept vs. Precept: Digital Media & the Creative Process
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 261-264
doi https://doi.org/10.52842/conf.ecaade.2000.261
summary The design of architecture, as well as all of the arts, is a creative act concerned with the expression of ideas through culturally significant and relevant form. In order for the creative act to transcend the authority or dictates of precedents or trends, it must be informed and guided by a process and not a product; one which reveals, but does not dictate, expressive, functional form. The initial impact of digital media on architectural design has been the ability to render the look of a final project or to create shapes that reflect the facility of the tool. Digital media also enables the composition and structure of space and form to be discovered simultaneously and relationally with the phenomena of color and kinetics, to generate and visualize an idea as form, and to represent form as experience. This requires interweaving computing with a creative process in which percept, rather than precept, is the driving force of the investigation. This paper explores the role of ideation, tectonic color and kinetics as an intentional design strategy and formgiver for architecture. The role of the computer is to enable the designer to generate meaningful architecture beyond precepts of image and style. Design as a making in the mind uses our rational and imaginative faculties. Complete freedom is not a necessity for inventiveness. Research on creativity indicates that "constraining options and focusing thought in a specific, rigorous and discerning direction" play an important role. The key is a balance of structured and discursive inquiry that encourages a speculative, free association of ideas. Tim Berners-Lee, one of the creators of the World Wide Web, likened creativity to a weblike process that is nonlinear but also not random; which when placed in an environment rich with information will float ideas so the mind "can jiggle them into an insight." Geoffrey Vickers in his essay, "Rationality and Intuition" described this symbiotic relationship as "...two functions which in practice are never wholly separated but which are, nonetheless, logically distinct as two reciprocating phases in a recurrent process of mental activity." The rational is formative and intuition is generative; both are essential to creativity.
keywords Percept, Creativity, Ideation, Tectonic Color, Kinetics
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id f2f1
authors Breen, Jack and Nottrot, Robert
year 2000
title Project a2W. A Dialogue on New Media Perspectives
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 291-296
doi https://doi.org/10.52842/conf.ecaade.2000.291
summary This paper documents an initiative taking the form of a "dialogue". The format which has been developed is somewhat similar to that of the "conversation" which Mondrian conceived in 1919, taking place between two fictitious characters - A and B - discussing the new direction in art, which he called "Nieuwe Beelding" and which contributed to the "De Stijl" movement (the dialogue was followed later that year by a "trialogue" between X, Y and Z on a virtual walk taking them from the countryside to the city) 1 . This time the issue is not so much the evolvement of a new artistic or architectural style, but the role of "new media" in architecture... The present dialogue takes place between two fictitious media proponents ("Alpha" and "Omega"). They take turns questioning several issues and exchanging proposals... What are the values - and the promises - of computer supported instruments in creative design and research - concerning the art and science shaping the built environment? How do the present applications measure up, how do they compare to the expectations and ambitions expressed a number of years ago? The form of a dialogue means that issues and ideas, which are not often aired within the confines of academic discourse, can be played back and forth and a measure of exaggeration was intended from the beginning... This contribution does not in any way pretend to be all-inclusive. Rather, the paper is meant to put forward ideas and experiences - from the perspective of the Delft Media group, in practice, in teaching and in research - which may stimulate (or even irritate?) but will hopefully activate. The aim is to open up discussions, to allow other (hidden) agendas for the future to become more visible and to look for platforms for sharing concepts and fascinations, however improbable they might be...
keywords A Dialogue on New Media
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id aef9
id aef9
authors Brown, A., Knight, M. and Berridge, P. (Eds.)
year 1999
title Architectural Computing from Turing to 2000 [Conference Proceedings]
source eCAADe Conference Proceedings / ISBN 0-9523687-5-7 / Liverpool (UK) 15-17 September 1999, 773 p.
doi https://doi.org/10.52842/conf.ecaade.1999
summary The core theme of this book is the idea of looking forward to where research and development in Computer Aided Architectural Design might be heading. The contention is that we can do so most effectively by using the developments that have taken place over the past three or four decades in Computing and Architectural Computing as our reference point; the past informing the future. The genesis of this theme is the fact that a new millennium is about to arrive. If we are ruthlessly objective the year 2000 holds no more significance than any other year; perhaps we should, instead, be preparing for the year 2048 (2k). In fact, whatever the justification, it is now timely to review where we stand in terms of the development of Architectural Computing. This book aims to do that. It is salutary to look back at what writers and researchers have said in the past about where they thought that the developments in computing were taking us. One of the common themes picked up in the sections of this book is the developments that have been spawned by the global linkup that the worldwide web offers us. In the past decade the scale and application of this new medium of communication has grown at a remarkable rate. There are few technological developments that have become so ubiquitous, so quickly. As a consequence there are particular sections in this book on Communication and the Virtual Design Studio which reflect the prominence of this new area, but examples of its application are scattered throughout the book. In 'Computer-Aided Architectural Design' (1977), Bill Mitchell did suggest that computer network accessibility from expensive centralised locations to affordable common, decentralised computing facilities would become more commonplace. But most pundits have been taken by surprise by just how powerful the explosive cocktail of networks, email and hypertext has proven to be. Each of the ingredients is interesting in its own right but together they have presented us with genuinely new ways of working. Perhaps, with foresight we can see what the next new explosive cocktail might be.
series eCAADe
email
more http://www.ecaade.org
last changed 2022/06/07 07:49

_id 3e51
authors Cerulli, C., Peng, C. and Lawson, B.
year 2001
title Capturing Histories of Design Processes for Collaborative Building Design Development. Field Trial of the ADS Prototype
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 427-437
summary The ADS Project - Advanced Design Support for the Construction Design Process - builds on the technological results of the previous COMMIT Project to exploit and demonstrate the benefits of a CAD based Design Decision Support System. COMMIT provides a system for storing knowledge about knowledge within the design process. It records design decisions, the actors who take them and the roles they play when doing so. ADS links COMMIT to an existing object-oriented CAD system, MicroStation/J from Bentley Systems. The project focuses on tackling the problem of managing design information without intruding too much on the design process itself. It provides the possibility to effectively link design decisions back to requirements, to gather rationale information for later stages of the building lifecycle, and to gather knowledge of rationale for later projects. The system enables members of the project team, including clients and constructors, to browse and search the recorded project history of decision making both during and after design development. ADS aims to facilitate change towards a more collaborative process in construction design, to improve the effectiveness of decision-making throughout the construction project and to provide clients with the facility to relate design outcomes to design briefs across the whole building life cycle. In this paper we will describe the field trials of the ADS prototype carried out over a three-month period at the Building Design Partnership (BDP) Manchester office. The objective of these trials is to assess the extent, to which the approach underlying ADS enhances the design process, and to gather and document the views and experiences of practitioners. The ADS prototype was previously tested with historical data of real project (Peng, Cerulli et al. 2000). To gather more valuable knowledge about how a Decision Support System like ADS can be used in practice, the testing and evaluation will be extended to a real project, while it is still ongoing. The live case study will look at some phases of the design of a mixed residential and retail development in Leeds, UK, recording project information while it is created. The users’ feedback on the system usability will inform the continuous redevelopment process that will run in parallel to the live case study. The ADS and COMMIT Projects were both funded by EPSRC.
keywords Design Rationale, Design Support Systems, Usability Evaluation
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 3b4c
authors Chung, Misun
year 2000
title A Sacred Space in Cyberspace
source ACADIA Quarterly, vol. 19, no. 2, pp. 7-8
doi https://doi.org/10.52842/conf.acadia.2000.007
summary Sometimes we hold an object in our hand or look at a 2D drawing and wonder what would be like to be inside that space? Mentally, we are able to transcend ourselves into another dimension. That is the reality of our physical space. But in this new cyberspace, we are able to share that experience with others. Through visual, sound, color, and spatial stimulation, we are able to share what used to be only an imaginable space with others in “real time”. The technology of multi-user 3D environment is still cumbersome and unstable but the future expansion and opportunities far weights its current limitations.
series ACADIA
last changed 2022/06/07 07:56

_id ga0020
id ga0020
authors Codignola, G.Matteo
year 2000
title [Title missing]
source International Conference on Generative Art
summary This paper is a summary of my last degree in architecture (discussed in December 1999) with Prof. Celestino Soddu and Prof. Enrica Colabella. In this work I had the possibility to reach complexity by a generative approach with the construction of a paradigm that organizes the different codes of project identity. My general objective was to design shape complexity in variable categories : 3d space surfaces, 2d drawings and 2d textures. I was to discover the identity of one of my favourite architects of the 20th century : Antoni Gaudì, by constructing codes relative to shape complexity. I defined my particular objective in the possibility to abduct from Gaudì's imaginary reference the generatives codes that operate in the logical processing I use to create a possible species project. The next step was to verify the exact working of the new generative codes by means of 3d scenaries, that are recognizable as "Antoni Gaudì specie's architecture". Whit project processing on the generative codes and not on a possible resulting shape design, I was able to organize by my general paradigm the attributes of the project's species : different shapes, different attributes (color, scale, proportion), to get to possible and different scenarys, all recognizable by the relative class codes. I chose three examples in Barcellona built during the period 1902 to 1914 : The Parco Guell, Casa Batllò and Casa Milà are the three reference sceneryes that I used to create the generative codes. In the second step I defined different codes that operate in sequence (it is defined in the paradigm) : The generatives codes are only subjective; they are one possible solution of my interpretation of Antoni Gaudì's identity. This codes operate in four differents ways : Geometrical codes for 2d shapes Geometrical codes for interface relations Spatial codes for 3d extrusion of 2d shapes Geometrical codes for 2d and 3d texturing of generated surfaces. By a stratified application of this codes I arrived at one idea for all the generative processes but many different, possible scenaryes, all recognizable in Gaudì's species. So, my final result has made possible sceneryes belonging to related species defined previously. At the end of my research I designed a project by combination : using Antoni Gaudì's generative codes on a new 3d scenary with a shape catalyst : the Frank Lloyd Wright Guggenheim Museum of New York. In this process I created a "hybrid scenary" : a new species of architectural look; a Guggenheim museum planned by Wright with a god pinch of Gaudì.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 65b0
authors De Souza e Silva, Adriana
year 2000
title Habitar o Digital (To Inhabit the Digital)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 307-309
summary This paper analyzes the graphic digital interfaces of multiuser environments. Throughout the analysis of several graphic interfaces existing on the web - textual, 2D graphics and 3D graphics - and the role of the avatars (the body interface), the goal is to rethink the role of these interfaces in the contemporary time, just like a way to represent a subject (and a world) that is fragmented, multiple and deconstructed. After the birth of the www, the graphic interface of the computer, which was used to design graphic pages, turned also to be a tool to design digital environments. With the emergence of multiuser environments, the graphic interface should not only mediate the relationship man / machine, but also interface the relationship man / man. In this context, some questions, as the presence, the activity and the identity on the web should be graphically solved. What does online conversations look like?
series SIGRADI
email
last changed 2016/03/10 09:50

_id ga0012
id ga0012
authors Galanter, Philip
year 2000
title GA2: a Programming Environment for Abstract Generative Fine Art
source International Conference on Generative Art
summary Fine artists looking to use computers to create generative works, especially those artists inclined towards abstraction, often face an uncomfortable choice in the selection of software tools. On the one hand there are a number of commercial and shareware programs available which implement a few techniques in an easy to use GUI environment. Unfortunately such programs often impose a certain look or style and are not terribly versatile or expressive. The other choice seems to be writing code from scratch, in a language such as c or Java. This can be very time consuming as every new work seems to demand a new program, and the artist's ability to write code can seldom keep pace with his ability to imagine new visual ideas. This paper describes a software system created by the author called GA2 which has been implemented in the Matlab software environment. By layering GA2 over Matlab the artist can take advantage of a very mature programming environment which includes extensive mathematical libraries, simple graphics routines, GUI construction tools, built-in help facilities, and command line, batch mode, and GUI modes of interaction. In addition, GA2 is very portable and can run on Macintosh, Windows, and Unix systems with almost no incremental effort for multi-platform support. GA2 is a work in progress and an extension of the completed GA1 environment. It is medium independent, and can be used for all manner of image, animation, and sound production. GA1 includes a complete set of genetic algorithm operations for breeding families of graphical marks, a database function for managing and recalling various genes, a set of statistical operations for creating various distributions of marks on a canvas or animation frame, a unique Markov-chain-likeoperator for generating families of visually similar lines or paths, and a complete L-system implementation. GA2 extends GA1 by adding more generative techniques such as tiling and symmetry operations, Thom's cusp catastrophe, and mechanisms inspired by complexity science notions such as cellular automata, fractals, artificial life, and chaos. All of these techniques are encapulated in genetic representations. This paper is supplemented with examples from the authors art work, and comments on the philosophy behind this method of working, and its relation towards the reinvigoration of abstraction after post-modernism.  
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id a07a
authors Johnson,Scott and Clayton , Mark
year 2000
title Binary Oppositions: Should Buildings Designed with a Computer “Look Like” They Were Designed with a Computer?
source ACADIA Quarterly, vol. 19, no. 1, pp. 19-21
doi https://doi.org/10.52842/conf.acadia.2000.019.3
summary This article marks the trial introduction of what I hope will become a regular feature in the ACADIA Quarterly, a forum for the debate of opposing viewpoints on various CAD issues. In each issue, I intend to present a controversial, CADrelated topic, and argue it, pro and con, with another ACADIAn. It is my hope that the discussions in this article will cause us all to form knowledgeable opinions on subjects we hadn’t previously considered, examine our views on debatable subjects more critically, make us better informed about differing viewpoints, and perhaps even change a few minds.
series ACADIA
email
last changed 2022/06/07 07:52

_id cdc4
authors Lemos Motta, Maria Inês and Spitz, Rejane
year 2000
title Webdesign e Inclusão Social: em Busca de uma Sociedade Melhor Conectada (Web Design and Social Inclusion: In Search for a Better Connected Society)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 27-29
summary The expanding use of computers in developing countries - alongside the results of surveys revealing dramatic social indicators for illiteracy - demands careful analysis of the necessary education and training for people to be able to take part and to survive in the information society.”For a citizen of international society, it is no longer enough to know how to read and write, or to have learned a skill. One must have access to information, know how to look for it and find it, master the usage, organize it, understand its organizational forms and, above all, make appropriate, adequate and effective use of it. “ (Spitz, 2000). In this article we raise issues concerning the use of the Internet by low-income classes in Brazil, aiming at discussing the fundamental role Design plays in terms of the inclusion of people from these classes in the inter-connected society.
series SIGRADI
email
last changed 2016/03/10 09:54

_id 1bf8
authors Martens, B., Uhl, M., Tschuppik, W.-M. and Voigt, A.
year 2000
title Synagogue Neudeggergasse: A Virtual Reconstruction in Vienna
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 213-218
doi https://doi.org/10.52842/conf.acadia.2000.213
summary Issues associated with virtual reconstruction are first dealt within this paper. Visualizing of no longer existent (architecture-) objects and their surroundings practically amounts to a “virtual comeback”. Furthermore, special attention is given to the description of the working procedure for a case study of reconstruction sounding out the potentials of QuickTime VR. The paper ends up with a set of conclusions, taking a close look at the “pros” and “cons” of this type of re-construction. 1 Introduction Irreversible destruction having removed identity-establishing buildings from the urban surface for all times is the principal cause for the attempt of renewed “imaginating.” When dealing with such reconstruction first the problem of reliability concerning the existing basic material has to be tackled. Due to their two-dimensional recording photographs only supply us with restricted information content of the object under consideration. Thus the missing part has to be supplemented or substituted by additional sources. Within the process of assembling and overlaying of differing data sets the way of dealing with such fragmentations becomes of major importance. Priority is given to the choice of information. One of the most elementary items of information regarding perception of three-dimensional objects surely is the effect that color and material furnishes. It seems to suggest itself that black-and-white shots hardly will prove valid in this respect. The three-dimensional object doubtlessly provides us with a by far greater variety of possibilities in the following working process than the “cardboard model with pasted-on facade photography”. Only the completely designed model structure makes for visualizing the plastic representation form of architecture in a sustainable manner. Furthermore, a virtual model can be dismantled into part models without amounting to a destruction process thereof. Apart therefrom the virtual model permits the generation of differing reconstruction variants regarding color and material. Moreover, architecture models of a physical nature are inherently connected to locality as such.
series ACADIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_376580 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002