CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 708

_id 86dc
authors Aouad, G., and Price, A.D.F.
year 1993
title An integrated system to aid the planning of concrete structures: introducing the system
source The Int. Journal of Construction IT1(2), pp.1-14
summary This paper reports on the development at Loughborough University of a CAD-based integrated model to aid the planning of in-situ concrete structures. The system development started after a review of the planning models currently available and after a detailed questionnaire survey undertaken amongst the top UK and US contractors on the current status of planning techniques and information technology. The main aim of this system is to automate the planning process of in-situ concrete structures using data generated by CAD systems. So far, the integration of a CAD system (AutoCAD 10) and a computerized scheduling system (Artemis 2000) has been achieved on a typical IBM-PC. This enables the generation of network plans using AutoCAD which are then automatically transferred to the Artemis system for time and cost analyses.Traditionally, construction planners are faced with many conventional drawings and documents which are used to re-extract information relevant to their planning processes. Such an approach can be very inefficient as it involves data double-handling and is often error prone. In addition, current computerized construction planning applications are little more than the automation of manual formulations of plans. For example, data are fed into the planning system and computations are performed using either CPM (Critical Path Method) or PERT (Programme Evaluation and Review Technique). However, data relating to the planning process such as activity lists, resources requirements and durations are not automatically generated within the system. It would thus seem logical to devise a CAD-based integrated planning model which accepts data in its electronic format and involves some integration of the traditional planning approach. This paper introduces the proposed CAD-based integrated planning model and describes its different components. In addition, it discusses the system functional specifications and summarizes the main benefits and limitations of such a model.
series journal paper
last changed 2003/05/15 21:45

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 00d5
authors Liou, ShuennRen and Chyn, TaRen
year 2000
title Constructing Geometric Regularity underlying Building Facades
doi https://doi.org/10.52842/conf.ecaade.2000.313
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 313-315
summary Geometric regularity constitutes a basis for designers to initiate the formulation of building shapes and urban forms. For example, Le Corbusier considers the regulating line "an inevitable element of architecture" and uses it as a "means" for understanding and creating good designs. Thomas Beeby argues that the acquisition of knowledge on geometric construction plays a crucial role in the education of architecture design. This paper illustrates a computational approach to constructing the regularity of architectural geometry. The formal structure underlying a single façade and continuous façades are examined.
keywords Geometric Regularity, Building Facades, Cluster Analysis, CAAD
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:59

_id ga0010
id ga0010
authors Moroni, A., Zuben, F. Von and Manzolli, J.
year 2000
title ArTbitrariness in Music
source International Conference on Generative Art
summary Evolution is now considered not only powerful enough to bring about the biological entities as complex as humans and conciousness, but also useful in simulation to create algorithms and structures of higher levels of complexity than could easily be built by design. In the context of artistic domains, the process of human-machine interaction is analyzed as a good framework to explore creativity and to produce results that could not be obtained without this interaction. When evolutionary computation and other computational intelligence methodologies are involved, every attempt to improve aesthetic judgement we denote as ArTbitrariness, and is interpreted as an interactive iterative optimization process. ArTbitrariness is also suggested as an effective way to produce art through an efficient manipulation of information and a proper use of computational creativity to increase the complexity of the results without neglecting the aesthetic aspects [Moroni et al., 2000]. Our emphasis will be in an approach to interactive music composition. The problem of computer generation of musical material has received extensive attention and a subclass of the field of algorithmic composition includes those applications which use the computer as something in between an instrument, in which a user "plays" through the application's interface, and a compositional aid, which a user experiments with in order to generate stimulating and varying musical material. This approach was adopted in Vox Populi, a hybrid made up of an instrument and a compositional environment. Differently from other systems found in genetic algorithms or evolutionary computation, in which people have to listen to and judge the musical items, Vox Populi uses the computer and the mouse as real-time music controllers, acting as a new interactive computer-based musical instrument. The interface is designed to be flexible for the user to modify the music being generated. It explores evolutionary computation in the context of algorithmic composition and provides a graphical interface that allows to modify the tonal center and the voice range, changing the evolution of the music by using the mouse[Moroni et al., 1999]. A piece of music consists of several sets of musical material manipulated and exposed to the listener, for example pitches, harmonies, rhythms, timbres, etc. They are composed of a finite number of elements and basically, the aim of a composer is to organize those elements in an esthetic way. Modeling a piece as a dynamic system implies a view in which the composer draws trajectories or orbits using the elements of each set [Manzolli, 1991]. Nonlinear iterative mappings are associated with interface controls. In the next page two examples of nonlinear iterative mappings with their resulting musical pieces are shown.The mappings may give rise to attractors, defined as geometric figures that represent the set of stationary states of a non-linear dynamic system, or simply trajectories to which the system is attracted. The relevance of this approach goes beyond music applications per se. Computer music systems that are built on the basis of a solid theory can be coherently embedded into multimedia environments. The richness and specialty of the music domain are likely to initiate new thinking and ideas, which will have an impact on areas such as knowledge representation and planning, and on the design of visual formalisms and human-computer interfaces in general. Above and bellow, Vox Populi interface is depicted, showing two nonlinear iterative mappings with their resulting musical pieces. References [Manzolli, 1991] J. Manzolli. Harmonic Strange Attractors, CEM BULLETIN, Vol. 2, No. 2, 4 -- 7, 1991. [Moroni et al., 1999] Moroni, J. Manzolli, F. Von Zuben, R. Gudwin. Evolutionary Computation applied to Algorithmic Composition, Proceedings of CEC99 - IEEE International Conference on Evolutionary Computation, Washington D. C., p. 807 -- 811,1999. [Moroni et al., 2000] Moroni, A., Von Zuben, F. and Manzolli, J. ArTbitration, Las Vegas, USA: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program – GECCO, 143 -- 145, 2000.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 6c0a
authors Tserng, H. Ping, Ran, Bin and Russell, Jeffrey S.
year 2000
title Interactive path planning for multi-equipment landfill operations
source Automation in Construction 10 (1) (2000) pp. 155-168
summary A methodology and several algorithms for interactive motion planning are developed for multi-equipment landfill operations in an automated landfill system (ALS). A system for establishing ALS is also proposed in the paper. To develop a multi-truck/multi-compactor ALS, the major problems can be classified into three principal categories: (1) navigation system for multiple devices, (2) job-site geometric model, and (3) instantaneous motion planning and control system for equipment in the work site. To solve the problems from the three categories, this paper will present a methodology to simulate the operational processes of landfill vehicles and equipment in pre-planning a landfill project as well as finding efficient and collision-free motion patterns to control autonomous landfill equipment during the construction phase. Furthermore, by linking this system to a global positioning system (GPS), the efficient traffic routing and collision-free path for each piece of equipment can be calculated by using real-time positional data acquisition in a 3-D geometric model of a landfill site.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id bfec
authors Tserng, H.P., Ran, B. and Russell, J.S.
year 2001
title Erratum to ""Interactive path planning for multi-equipment landfill operations"" [Autom. Constr. 10 (2000) 155-168]"
source Automation in Construction 10 (4) (2001) pp. 541-541
summary A methodology and several algorithms for interactive motion planning are developed for multi-equipment landfill operations in an automated landfill system (ALS). A system for establishing ALS is also proposed in the paper. To develop a multi-truck/multi-compactor ALS, the major problems can he classified into three principal categories: (1) navigation system for multiple devices, (2) job-site geometric model, and (3) instantaneous motion planning and control system for equipment in the work site. To solve the problems from the three categories, this paper will present a methodology to simulate the operational processes of landfill vehicles and equipment in pre-planning a landfill project as well as finding efficient and collision-free motion patterns to control autonomous landfill equipment during the construction phase. Furthermore, by linking this system to a global positioning system (GPS), the efficient traffic routing and collision-free path for each piece of equipment can he calculated by using real-time positional data acquisition in a 3-D geometric model of a landfill site.
keywords Multi-equipment landfill operations; Automated landfill system; Global positioning system
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/06/02 09:33

_id ddssar0001
id ddssar0001
authors Achten, Henri and Leeuwen, Jos van
year 2000
title Towards generic representations of designs formalised as features
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary Feature-Based Modelling (FBM) is an information modelling technique that allows the formalisation of design concepts and using these formal definitions in design modelling. The dynamic nature of design and design information calls for a specialised approach to FBM that takes into account flexibility and extensibility of Feature Models of designs. Research work in Eindhoven has led to a FBM framework and implementation that can be used to support design.. Feature models of a design process has demonstrated the feasibility of using this information modelling technique. To develop the work on FBM in design, three tracks are initiated: Feature model descriptions of design processes, automated generic representation recognition in graphic representations, and Feature models of generic representations. The paper shows the status of the work in the first two tracks, and present the results of the research work.
series DDSS
last changed 2003/11/21 15:15

_id 1838
authors Akleman, E., Chen, J. and Meric, B.
year 2000
title Intuitive and Effective Design of Periodic Symmetric Tiles
doi https://doi.org/10.52842/conf.acadia.2000.123
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 123-127
summary This paper presents a new approach for intuitive and effective design of periodic symmetric tiles. We observe that planar graphs can effectively represent symmetric tiles and graph drawing provides an intuitive paradigm for designing symmetric tiles. Moreover, based on our theoretical work to represent hexagonal symmetry by rectangular symmetry, we are able to present all symmetric tiles as graphs embedded on a torus and based on simple modulo operations. This approach enables us to develop a simple and efficient algorithm, which has been implemented in Java. By using this software, designers, architects and artists can create interesting symmetric tiles directly on the web. We also have designed a few examples of symmetric tiles to show the effectiveness of the approach.
series ACADIA
last changed 2022/06/07 07:54

_id 1f5c
authors Beesley, Philip and Seebohm, Thomas
year 2000
title Digital Tectonic Design
doi https://doi.org/10.52842/conf.ecaade.2000.287
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 287-290
summary Digital tectonic design is a fresh approach to architectural design methodology. Tectonics means a focus on assemblies of construction elements. Digital tectonics is an evolving methodology that integrates use of design software with traditional construction methods. We see digital tectonic design as a systematic use of geometric and spatial ordinances, used in combination with details and components directly related to contemporary construction. The current approach will, we hope, lead to an architectural curriculum based on generative form making where the computer can be used to produce systems of forms algorithmically. Digital design has tended to remain abstract, emphasizing visual and spatial arrangements often at the expense of materials and construction. Our pursuit is translation of these methods into more fully realized physical qualities. This method offers a rigorous approach based on close study of geometry and building construction elements. Giving a context for this approach, historical examples employing systematic tectonic design are explored in this paper. The underlying geometric ordinance systems and the highly tuned relationships between the details in these examples offer design vocabularies for use within the studio curriculum. The paper concludes with a detailed example from a recent studio project demonstrating particular qualities developed within the method. The method involves a wide range of scales, relating large-scale gestural and schematic studies to detailed assembly systems. Designing in this way means developing geometric strategies and, in parallel, producing detailed symbols or objects to be inserted. These details are assembled into a variety of arrays and groups. The approach is analogous to computer-aided designÕs tradition of shape grammars in which systems of spatial relationships are used to control the insertion of shapes within a space. Using this approach, a three-dimensional representation of a building is iteratively refined until the final result is an integrated, systematically organized complex of symbols representing physical building components. The resulting complex offers substantial material qualities. Strategies of symbol insertions and hierarchical grouping of elements are familiar in digital design practice. However these strategies are usually used for automated production of preconceived designs. In contrast to thsse normal approaches this presentation focuses on emergent qualities produced directly by means of the complex arrays of symbol insertions. The rhyth
keywords 3D CAD Systems, Design Practice, 3D Design Strategies
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 9bc4
authors Bhavnani, S.K. and John, B.E.
year 2000
title The Strategic Use of Complex Computer Systems
source Human-Computer Interaction 15 (2000), 107-137
summary Several studies show that despite experience, many users with basic command knowledge do not progress to an efficient use of complex computer applications. These studies suggest that knowledge of tasks and knowledge of tools are insufficient to lead users to become efficient. To address this problem, we argue that users also need to learn strategies in the intermediate layers of knowledge lying between tasks and tools. These strategies are (a) efficient because they exploit specific powers of computers, (b) difficult to acquire because they are suggested by neither tasks nor tools, and (c) general in nature having wide applicability. The above characteristics are first demonstrated in the context of aggregation strategies that exploit the iterative power of computers.Acognitive analysis of a real-world task reveals that even though such aggregation strategies can have large effects on task time, errors, and on the quality of the final product, they are not often used by even experienced users. We identify other strategies beyond aggregation that can be efficient and useful across computer applications and show how they were used to develop a new approach to training with promising results.We conclude by suggesting that a systematic analysis of strategies in the intermediate layers of knowledge can lead not only to more effective ways to design training but also to more principled approaches to design systems. These advances should lead users to make more efficient use of complex computer systems.
series other
email
last changed 2003/11/21 15:16

_id b4c4
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2000
title A framework for an Architectural Collaborative Design
doi https://doi.org/10.52842/conf.ecaade.2000.057
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 57-60
summary The building industry involves a larger number of disciplines, operators and professionals than other industrial processes. Its peculiarity is that the products (building objects) have a number of parts (building elements) that does not differ much from the number of classes into which building objects can be conceptually subdivided. Another important characteristic is that the building industry produces unique products (de Vries and van Zutphen, 1992). This is not an isolated situation but indeed one that is spreading also in other industrial fields. For example, production niches have proved successful in the automotive and computer industries (Carrara, Fioravanti, & Novembri, 1989). Building design is a complex multi-disciplinary process, which demands a high degree of co-ordination and co-operation among separate teams, each having its own specific knowledge and its own set of specific design tools. Establishing an environment for design tool integration is a prerequisite for network-based distributed work. It was attempted to solve the problem of efficient, user-friendly, and fast information exchange among operators by treating it simply as an exchange of data. But the failure of IGES, CGM, PHIGS confirms that data have different meanings and importance in different contexts. The STandard for Exchange of Product data, ISO 10303 Part 106 BCCM, relating to AEC field (Wix, 1997), seems to be too complex to be applied to professional studios. Moreover its structure is too deep and the conceptual classifications based on it do not allow multi-inheritance (Ekholm, 1996). From now on we shall adopt the BCCM semantic that defines the actor as "a functional participant in building construction"; and we shall define designer as "every member of the class formed by designers" (architects, engineers, town-planners, construction managers, etc.).
keywords Architectural Design Process, Collaborative Design, Knowledge Engineering, Dynamic Object Oriented Programming
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 958e
authors Coppola, Carlo and Ceso, Alessandro
year 2000
title Computer Aided Design and Artificial Intelligence in Urban and Architectural Design
doi https://doi.org/10.52842/conf.ecaade.2000.301
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 301-307
summary In general, computer-aided design is still limited to a rather elementary use of the medium, as it is mainly used for the representation/simulation of a design idea w an electronic drawing-table. hich is not computer-generated. The procedures used to date have been basically been those of an electronic drawing-table. At the first stage of development the objective was to find a different and better means of communication, to give form to an idea so as to show its quality. The procedures used were 2D design and 3D simulation models, usually used when the design was already defined. The second stage is when solid 3D modelling is used to define the formal design at the conception stage, using virtual models instead of study models in wood, plastic, etc. At the same time in other connected fields the objective is to evaluate the feasibility of the formal idea by means of structural and technological analysis. The third stage, in my opinion, should aim to develop procedures capable of contributing to both the generation of the formal idea and the simultaneous study of technical feasibility by means of a decision-making support system aided by an Artificial Intelligence procedure which will lead to what I would describe as the definition of the design in its totality. The approach to architectural and urban design has been strongly influenced by the first two stages, though these have developed independently and with very specific objectives. It is my belief that architectural design is now increasingly the result of a structured and complex process, not a simple act of pure artistic invention. Consequently, I feel that the way forward is a procedure able to virtually represent all the features of the object designed, not only in its definitive configuration but also and more importantly in the interactions which determine the design process as it develops. Thus A.I. becomes the means of synthesis for models which are hierarchically subordinated which together determine the design object in its developmental process, supporting decision-making by applying processing criteria which generative modelling has already identified. This trend is currently being experimented, giving rise to interesting results from process design in the field of industrial production.
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:56

_id 85ab
authors Corrao, Rossella and Fulantelli, Giovanni
year 1999
title Architects in the Information Society: The Role of New Technologies
doi https://doi.org/10.52842/conf.ecaade.1999.665
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 665-671
summary New Technologies (NTs) offer us tools with which to deal with the new challenges that a changing society or workplace presents. In particular, new design strategies and approaches are required by the emerging Information Society, and NTs offer effective solutions to the designers in the different stages of their professional life, and in different working situations. In this paper some meaningful scenarios of the use of the NTs in Architecture and Urban Design are introduced; the scenarios have been selected in order to understand how the role of architects in the Information Society is changing, and what new opportunities NTs offer them. It will be underlined how the telematic networks play an essential role in the activation of virtual studios that are able to compete in an increasingly global market; examples will be given of the use of the Web to support activities related to Urban Planning and Management; it will be shown how the Internet may be used to access strategic resources for education and training, and sustain lifelong learning. The aforesaid considerations derive from a Web-Based Instruction system we have developed to support University students in the definition of projects that can concern either single buildings or whole parts of a city. The system can easily be adopted in the other scenarios introduced.
keywords Architecture, Urban Planning , New Technologies, World Wide Web, Education
series eCAADe
email
last changed 2022/06/07 07:56

_id ec4d
authors Croser, J.
year 2001
title GDL Object
source The Architect’s Journal, 14 June 2001, pp. 49-50
summary It is all too common for technology companies to seek a new route to solving the same problem but for the most part the solutions address the effect and not the cause. The good old-fashioned pencil is the perfect example where inventors have sought to design-out the effect of the inherent brittleness of lead. Traditionally different methods of sharpening were suggested and more recently the propelling pencil has reigned king, the lead being supported by the dispensing sleeve thus reducing the likelihood of breakage. Developers convinced by the Single Building Model approach to design development have each embarked on a difficult journey to create an easy to use feature packed application. Unfortunately it seems that the two are not mutually compatible if we are to believe what we see emanating from Technology giants Autodesk in the guise of Architectural Desktop 3. The effect of their development is a feature rich environment but the cost and in this case the cause is a tool which is far from easy to use. However, this is only a small part of a much bigger problem, Interoperability. You see when one designer develops a model with one tool the information is typically locked in that environment. Of course the geometry can be distributed and shared amongst the team for use with their tools but the properties, or as often misquoted, the intelligence is lost along the way. The effect is the technological version of rubble; the cause is the low quality of data-translation available to us. Fortunately there is one company, which is making rapid advancements on the whole issue of collaboration, and data sharing. An old timer (Graphisoft - famous for ArchiCAD) has just donned a smart new suit, set up a new company called GDL Technology and stepped into the ring to do battle, with a difference. The difference is that GDL Technology does not rely on conquering the competition, quite the opposite in fact their success relies upon the continued success of all the major CAD platforms including AutoCAD, MicroStation and ArchiCAD (of course). GDL Technology have created a standard data format for manufacturers called GDL Objects. Product manufacturers such as Velux are now able to develop product libraries using GDL Objects, which can then be placed in a CAD model, or drawing using almost any CAD tool. The product libraries can be stored on the web or on CD giving easy download access to any building industry professional. These objects are created using scripts which makes them tiny for downloading from the web. Each object contains 3 important types of information: · Parametric scale dependant 2d plan symbols · Full 3d geometric data · Manufacturers information such as material, colour and price Whilst manufacturers are racing to GDL Technologies door to sign up, developers and clients are quick to see the benefit too. Porsche are using GDL Objects to manage their brand identity as they build over 300 new showrooms worldwide. Having defined the building style and interior Porsche, in conjunction with the product suppliers, have produced a CD-ROM with all of the selected building components such as cladding, doors, furniture, and finishes. Designing and detailing the various schemes will therefore be as straightforward as using Lego. To ease the process of accessing, sizing and placing the product libraries GDL Technology have developed a product called GDL Object Explorer, a free-standing application which can be placed on the CD with the product libraries. Furthermore, whilst the Object Explorer gives access to the GDL Objects it also enables the user to save the object in one of many file formats including DWG, DGN, DXF, 3DS and even the IAI's IFC. However, if you are an AutoCAD user there is another tool, which has been designed especially for you, it is called the Object Adapter and it works inside of AutoCAD 14 and 2000. The Object Adapter will dynamically convert all GDL Objects to AutoCAD Blocks during placement, which means that they can be controlled with standard AutoCAD commands. Furthermore, each object can be linked to an online document from the manufacturer web site, which is ideal for more extensive product information. Other tools, which have been developed to make the most of the objects, are the Web Plug-in and SalesCAD. The Plug-in enables objects to be dynamically modified and displayed on web pages and Sales CAD is an easy to learn and use design tool for sales teams to explore, develop and cost designs on a Notebook PC whilst sitting in the architects office. All sales quotations are directly extracted from the model and presented in HTML format as a mixture of product images, product descriptions and tables identifying quantities and costs. With full lifecycle information stored in each GDL Object it is no surprise that GDL Technology see their objects as the future for building design. Indeed they are not alone, the IAI have already said that they are going to explore the possibility of associating GDL Objects with their own data sharing format the IFC. So down to the dirty stuff, money and how much it costs? Well, at the risk of sounding like a market trader in Petticoat Lane, "To you guv? Nuffin". That's right as a user of this technology it will cost you nothing! Not a penny, it is gratis, free. The product manufacturer pays for the license to host their libraries on the web or on CD and even then their costs are small costing from as little as 50p for each CD filled with objects. GDL Technology has come up trumps with their GDL Objects. They have developed a new way to solve old problems. If CAD were a pencil then GDL Objects would be ballistic lead, which would never break or loose its point. A much better alternative to the strategy used by many of their competitors who seek to avoid breaking the pencil by persuading the artist not to press down so hard. If you are still reading and you have not already dropped the magazine and run off to find out if your favorite product supplier has already signed up then I suggest you check out the following web sites www.gdlcentral.com and www.gdltechnology.com. If you do not see them there, pick up the phone and ask them why.
series journal paper
email
last changed 2003/04/23 15:14

_id 74ac
authors De Vries, Bauke
year 2000
title Sketching in 3D
doi https://doi.org/10.52842/conf.ecaade.2000.277
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 277-280
summary Sketching in 3D is a design activity that requires a new approach to user interaction and geometric modeling in an architectural context. DDDoolz is an example of such a system used for mass study and spatial design. This paper describes the basic principles and the students’ experiences in a CAAD course.
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id ga0002
id ga0002
authors Dehlinger, Hans
year 2000
title Experimental Search for Order in the Code of Generated Drawings
source International Conference on Generative Art
summary In a generative system a set of rules is used to create line-oriented drawings. The intentions of the artist are supported and constrained by the rules. If the entire system is designed and programmed by the artist, its generated results can come very close to the intetions persued. The drawing itself comes into existence in a single run of the system. The purity of such an approach has an inherent aesthetic to it, and the results produced seem to reflect this. After production there is (a) the drawing, and (b) the code which generated it. Feeding the code of one such drawing into a postprocessing cycle opens up a range of further possibilities. The paper experimentally explores such possibilities with a focus on finding and constructing order in disorderly arrangements.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 389b
authors Do, Ellen Yi-Luen
year 2000
title Sketch that Scene for Me: Creating Virtual Worlds by Freehand Drawing
doi https://doi.org/10.52842/conf.ecaade.2000.265
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 265-268
summary With the Web people can now view virtual threedimensional worlds and explore virtual space. Increasingly, novice users are interested in creating 3D Web sites. Virtual Reality Modeling Language gained ISO status in 1997, although it is being supplanted by the compatible Java3D API and alternative 3D Web technologies compete. Viewing VRML scenes is relatively straightforward on most hardware platforms and browsers, but currently there are only two ways to create 3D virtual scenes: One is to code the scene directly using VRML. The other is to use existing CAD and modeling software, and save the world in VRML format or convert to VRML from some other format. Both methods are time consuming, cumbersome, and have steep learning curves. Pen-based user interfaces, on the other hand, are for many an easy and intuitive method for graphics input. Not only are people familiar with the look and feel of paper and pencil, novice users also find it less intimidating to draw what they want, where they want it instead of using a complicated tool palette and pull-down menus. Architects and designers use sketches as a primary tool to generate design ideas and to explore alternatives, and numerous computer-based interfaces have played on the concept of "sketch". However, we restrict the notion of sketch to freehand drawing, which we believe helps people to think, to envision, and to recognize properties of the objects with which they are working. SKETCH employs a pen interface to create three-dimensional models, but it uses a simple language of gestures to control a three-dimensional modeler; it does not attempt to interpret freehand drawings. In contrast, our support of 3D world creation using freehand drawing depend on users’ traditional understanding of a floor plan representation. Igarashi et al. used a pen interface to drive browsing in a 3D world, by projecting the user’s marks on the ground plane in the virtual world. Our Sketch-3D project extends this approach, investigating an interface that allows direct interpretation of the drawing marks (what you draw is what you get) and serves as a rapid prototyping tool for creating 3D virtual scenes.
keywords Freehand Sketching, Pen-Based User Interface, Interaction, VRML, Navigation
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id ddssar0011
id ddssar0011
authors Hartog, J.P. den, Koutamanis, A. and Luscuere, P.G.
year 2000
title Possibilities and limitations of CFD simulation for indoor climate analysis
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary With the democratization of information and communication technologies, simulation techniques that used to be computationally expensive and time-consuming are becoming feasible instruments for the analysis of architectural design. Simulation is an indispensable ingredient of the descriptive design approach, which provides the designer with precise and accurate projections of the performance and behavior of a design. The paper describes the application of a particular class of simulation techniques, computational fluid dynamics (CFD), to the analysis and evaluation of indoor climate. Using two different CFD systems as representatives of the class, we describe: relevant computational possibilities and limitations of CFD simulation; the accessibility of CFD simulation for architects, especially concerning the handling of simulation variables; the compatibility of CFD representations of built space with similar representations in standard CAD and modeling systems, including possibilities for feedback; The relations between geometric representation and accuracy / precision in CFD simulation. We propose that CFD simulation can become an operational instrument for the designer, provided that CFD simulation does not become a trial and error game trying to master computational techniques. A promising solution to this problem is the use of case based reasoning. A case base of analyzed, evaluated and verified buildings provides a flexible source of information (guidance and examples) for both the CFD simulation and the designer.
series DDSS
last changed 2003/08/07 16:36

_id ddssar0012
id ddssar0012
authors Hendricx, Ann and Neuckermans, Herman
year 2000
title Setting objects to work: adding functionality to an architectural object model
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary Several research initiatives in the field of product modelling have produced static descriptions of the architectural and geometrical objects capable of describing architectural design projects. Less attention is paid to the development phase in which these static models are transformed into workable architectural design environments. In the context of the IDEA+ research project (Integrated Design Environment for Architectural Design), we use the object-oriented analysis method MERODE to develop and describe both an enterprise (or product) model and a functionality model. On the one hand, the enterprise model defines the architectural and geometrical objects, their methods and their relation with other objects. On the other hand, the functionality model organizes the functionality objects – ranging from single-event objects to complex-workflow objects – in a layered and easily expandable system. The functionality model is created on top of the enterprise model and closes the gap between the static enterprise model and the dynamic design environment as a whole. After a short introduction of the envisaged design environment and its underlying enterprise model, the paper will concentrate on the presentation of the higher-level functionality model. Elaborated examples of functionality objects on the different levels will clarify its concepts and proof its feasibility.
series DDSS
last changed 2003/08/07 16:36

_id c839
authors Hwang, Jie-Eun
year 2002
title SpaceScope: Developing a Spatial Information Retrieval System - Focused on Apartment Unit Floor Plans -
source Yonsei University, Dept. of Housing & Interior Design
summary This research investigates the spatial information retrieval (IR) in architecture focused on constructing efficient metadata that is crucial for data retrieval. Generally speaking, metadata is ‘structured data about data’ to describe resources especially in a digital format. In this research, metadata is a sort of data object to be useful in searching spatial information. Metadata is also used to describe raw spatial data object as not only attribute data but also content structurally and semantic ally. There are two issues that motivate this research; 1) what is the spatial information – that materializes the intangible space as a data object, and 2) how we can search the information efficiently – the content-based information retrieval. Although knowledge of a building’s spatial content is most important in architecture, there has been no logical method to manage it.

From the viewpoint of content-based retrieval, the researcher analyzes spatial information of a floor plan, with a focus on the apartment unit floor plan common in Korea. Then the metadata items are extracted in a structured manner. To manage the items efficiently, the researcher develops a data model for spatial information according to the concept of the “Structured Floor Plan”. The main object of content to retrieve is a spatial network that consists of nodes of spaces and their linkages. There are two ways to organize the metadata: the traditional index files and the RDF (Resource Description Framework). While the index files are still efficient with computability, the RDF applies greater options to retrieve, such as fuzzy predicates, semantic predicates, and so on. To exploit the metadata, this research shows several possibilities of query operations that present a set of sample queries about L-DK(Living room – Dining room – Kitchen). Implementation of the prototype system is divided into three parts: 1) a modeling module using Vitruvius; 2) an indexing module using MS SQL Server? 2000 in conjunction XML; and 3) a browsing module using the SpaceScope browser.

The future works may consider XML-based databases and a knowledge based query language, such as RQL/XQL, working on such databases. The more specific domain knowledge is involved, the more practical systems would be. Even in architecture, there may be a diverse range of domain knowledge, such as design, building performance, facility management, energy management, post occupied evaluation, historical research, and so on. Also the issue of interface should be investigated in depth, so that it will be adequate to the needs of the architectural field.

keywords Content-based Information Retrieval; Metadata; RDF; XML; Spatial Information; Apartment Floor Plan; Semantics
series thesis:MSc
email
last changed 2003/04/25 07:27

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_970580 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002