CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 742

_id 858c
authors Medjdoub, B. and Yannou, B.
year 2000
title Separating topology and geometry in space planning
source Computer-Aided Design, Vol. 32 (1) (2000) pp. 39-61
summary We are dealing with the problem of space layout planning here. We present an architectural conceptual CAD approach. Starting with design specifications in terms ofconstraints over spaces, a specific enumeration heuristics leads to a complete set of consistent conceptual design solutions named topological solutions. These topologicalsolutions which do not presume any precise definitive dimension correspond to the sketching step that an architect carries out from the Design specifications on a preliminarydesign phase in architecture.
keywords Layout, Heuristic, Optimization, Constraints, Conceptual Design, Topological Solutions
series journal paper
email
last changed 2003/05/15 21:33

_id 9384
authors Burry, M., Datta, S. and Anson, S.
year 2000
title Introductory Computer Programming as a Means for Extending Spatial and Temporal Understanding
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 129-135
doi https://doi.org/10.52842/conf.acadia.2000.129
summary Should computer programming be taught within schools of architecture? Incorporating even low-level computer programming within architectural education curricula is a matter of debate but we have found it useful to do so for two reasons: as an introduction or at least a consolidation of the realm of descriptive geometry and in providing an environment for experimenting in morphological time-based change. Mathematics and descriptive geometry formed a significant proportion of architectural education until the end of the 19th century. This proportion has declined in contemporary curricula, possibly at some cost for despite major advances in automated manufacture, Cartesian measurement is still the principal ‘language’ with which to describe building for construction purposes. When computer programming is used as a platform for instruction in logic and spatial representation, the waning interest in mathematics as a basis for spatial description can be readdressed using a left-field approach. Students gain insights into topology, Cartesian space and morphology through programmatic form finding, as opposed to through direct manipulation. In this context, it matters to the architect-programmer how the program operates more than what it does. This paper describes an assignment where students are given a figurative conceptual space comprising the three Cartesian axes with a cube at its centre. Six Phileban solids mark the Cartesian axial limits to the space. Any point in this space represents a hybrid of one, two or three transformations from the central cube towards the various Phileban solids. Students are asked to predict the topological and morphological outcomes of the operations. Through programming, they become aware of morphogenesis and hybridisation. Here we articulate the hypothesis above and report on the outcome from a student group, whose work reveals wider learning opportunities for architecture students in computer programming than conventionally assumed.
series ACADIA
email
last changed 2022/06/07 07:54

_id ddssar0006
id ddssar0006
authors Ciftcioglu, Ö., Durmisevic, S. and Sariyildiz, S.
year 2000
title Multi-objective design for space layout topology
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary A novel method to produce space layout topologies for architectural design is described. From the uniformly distributed design solutions in the solution space the corresponding design requirements are computed according to a given norm and metric function. The system is based on graph representation of the layout so that the desired relations between the pairs of nodes are considered to be independent variables of appropriate series of multivariable functions mapping the requirements into the solution space. The system so established is used as a knowledge-base for robust layout design where knowledge base having been established, the layout design requirements are introduced to the system as design constraints and the output is identified in the multidimensional solution space by means of interpolation. Since the smoothness of the interpolation is guaranteed, robust design layout, in the form of node locations, is obtained.
series DDSS
last changed 2003/08/07 16:36

_id f91f
authors Elezkurtaj, Tomor and Franck, Georg
year 2000
title Geometry and Topology. A User-Interface to Artificial Evolution in Architectural Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 309-312
doi https://doi.org/10.52842/conf.ecaade.2000.309
summary The paper presents a system that supports architectural floor plan design interactively. The method of problem solving implemented is a combination of an evolutionary strategy (ES) and a genetic algorithm (GA). The problem to be solved consists of fitting a number of rooms (n) into an outline by observing functional requirements. The rooms themselves are specified concerning size, function and preferred proportion. The functional requirements entering the fitness functions are expressed in terms of the proportions of the rooms and the neighbourhood relations between them. The system is designed to deal with one of the core problems of computer supported creativity in architecture. For architecture, form not only, but also function is relevant. Without specifying the function that a piece of architecture is supposed to fulfil, it is hard to support its design by computerised methods of problem solving and optimisation. In architecture, however, function relates to comfort, easiness of use, and aesthetics as well. Since it is extraordinary hard, if not impossible, to operationalise aesthetics, computer aided support of creative architectural design is still in its infancy.
keywords New AI, Genetic Algorithms, Artificial Evolution, creative Architectural Design, Interactive Design, Topology
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 1f5c
authors Beesley, Philip and Seebohm, Thomas
year 2000
title Digital Tectonic Design
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 287-290
doi https://doi.org/10.52842/conf.ecaade.2000.287
summary Digital tectonic design is a fresh approach to architectural design methodology. Tectonics means a focus on assemblies of construction elements. Digital tectonics is an evolving methodology that integrates use of design software with traditional construction methods. We see digital tectonic design as a systematic use of geometric and spatial ordinances, used in combination with details and components directly related to contemporary construction. The current approach will, we hope, lead to an architectural curriculum based on generative form making where the computer can be used to produce systems of forms algorithmically. Digital design has tended to remain abstract, emphasizing visual and spatial arrangements often at the expense of materials and construction. Our pursuit is translation of these methods into more fully realized physical qualities. This method offers a rigorous approach based on close study of geometry and building construction elements. Giving a context for this approach, historical examples employing systematic tectonic design are explored in this paper. The underlying geometric ordinance systems and the highly tuned relationships between the details in these examples offer design vocabularies for use within the studio curriculum. The paper concludes with a detailed example from a recent studio project demonstrating particular qualities developed within the method. The method involves a wide range of scales, relating large-scale gestural and schematic studies to detailed assembly systems. Designing in this way means developing geometric strategies and, in parallel, producing detailed symbols or objects to be inserted. These details are assembled into a variety of arrays and groups. The approach is analogous to computer-aided designÕs tradition of shape grammars in which systems of spatial relationships are used to control the insertion of shapes within a space. Using this approach, a three-dimensional representation of a building is iteratively refined until the final result is an integrated, systematically organized complex of symbols representing physical building components. The resulting complex offers substantial material qualities. Strategies of symbol insertions and hierarchical grouping of elements are familiar in digital design practice. However these strategies are usually used for automated production of preconceived designs. In contrast to thsse normal approaches this presentation focuses on emergent qualities produced directly by means of the complex arrays of symbol insertions. The rhyth
keywords 3D CAD Systems, Design Practice, 3D Design Strategies
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 2720
authors Magyar, Peter and Temkin, Aron
year 2000
title Developing an Algorithm for Topological Transformation
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 203-205
summary This research intends to test the architectural application of Jean Piaget’s clinical observations, described in the book: The Child’s Conception of Space (Piaget, 1956), according to which topology is an ordering discipline, active in the human psyche. Earlier attempts, based on the principles of graph-theory, were able to cover only a narrow aspect of spatial relations, i.e. connectivity, and were mostly a-perceptional, visually mute. The “Spaceprint” method, explained and illustrated in co-author’s book: Thought Palaces (Magyar, 1999), through dimensional reduction, investigates volumetric, 3D characteristics and relationships with planar 2D configurations. These configurations, however, represent dual values: they are simultaneously the formal descriptors of both finite matter and (fragments of) infinite space. The so- called “Particular Spaceprint”, as a tool of design development in building, object, or urban scales, with the help of digital technology, could express - again simultaneously - qualities of an idea-gram and the visual, even tactile aspects of material reality. With topological surface-transformations, the “General Spaceprints”, these abstract yet visually active spatial formulas can be obtained.
series SIGRADI
email
last changed 2016/03/10 09:55

_id 6b9d
authors Payssé, Marcelo
year 2000
title Reflexiones sobre el Diseño Arquitectónico en la Era Digital (Reflections on Architectural Design in the Digital Era)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 69-71
summary The ubiquity of the digital computer is revolutionizing our understanding of architecture, a paradigm shift comparable to the Renaissance real perspective, the Industrial Revolution of the XIX century, and the technological and scientific discoveries of the early part of the XX century. The creation of virtual worlds, with their own laws and logics, is one of the most important contributions of the digital era. The paradigms of modern architecture are being replaced by other models. The advent of the digital age erased the boundary between “original” and “copy”. Working with design fundamentals and not merely with its graphical manifestations will produce a revolution in architectural design, similar to the genetic revolution of decoding the human genome. Centralized, “star-topology” design locations, are being replaced by distributed, “circle-topology” design teams. The direct influence of digital technologies on the analysis, creation, and realization of architecture also must produce similar revolutions in the teaching of architecture.
series SIGRADI
email
last changed 2016/03/10 09:57

_id 887b
authors SQin, S.F., Wright, D.K. and Jordanov, I.N.
year 2000
title From on-line sketching to 2D and 3D geometry: a system based on fuzzy knowledge
source Computer-Aided Design, Vol. 32 (14) (2000) pp. 851-866
summary The paper describes the development of a fuzzy knowledge-based prototype system for conceptual design. This real time system is designed to infer user's sketchingintentions, to segment sketched input and generate corresponding geometric primitives: straight lines, circles; arcs, ellipses, elliptical arcs, and B-spline curves. Topologyinformation (connectivity, unitary constraints and pairwise constraints) is received dynamically from 2D sketched input and primitives. From the 2D topology information, amore accurate 2D geometry can be built up by applying a 2D geometric constraint solver. Subsequently, 3D geometry can be received feature by feature incrementally. Eachfeature can be recognised by inference knowledge in terms of matching its 2D primitive configurations and connection relationships. The system accepts not only sketchedinput, working as an automatic design tool, but also accepts user interactive input of both 2D primitives and special positional 3D primitives. This makes it easy and friendlyto use. The system has been tested with a number of sketched inputs of 2D and 3D geometry.
keywords Conceptual Design, Geometric Modelling, Fuzzy Knowledge
series journal paper
email
last changed 2003/05/15 21:33

_id 38ff
authors Van den Heuvel, F.A.
year 2000
title Trends in CAD-based photogrammetric measurement
source International Archives of Photogrammetry and Remote Sensing, Vol. 33, Part 5/2, pp. 852-863
summary In the past few decades, Computer Aided Design (CAD) systems have evolved from 2D tools that assist in construction design to the basis of software systems for a variety of applications, such as (re)design, manufacturing, quality control, and facility management. The basic functions of a modern CAD system are storage and retrieval of 3D data, their construction, manipulation, and visualisation. All these functions are needed in a photogrammetric measurement system. Therefore, photogrammetry benefits from integration with CAD, and thereby from developments in this field. There are two main interpretations of the term CAD-based photogrammetry. The first interpretation is on a system level: there is a trend towards integration of photogrammetric tools in existing CAD systems. The second interpretation is on an algorithmic level: developments in the field of CAD regarding object modelling techniques are being implemented in photogrammetric systems. In practice, the two interpretations overlap to a varying extent. The integrated photogrammetric processing of geometry and topology is defined as a minimum requirement for CAD-based photogrammetry. The paper discusses the relation between CAD and photogrammetry with an emphasis on close-range photogrammetry. Several approaches for the integration of CAD and photogrammetry are briefly reviewed, and trends in CAD-based photogrammetry are outlined. First of all, the trend towards CAD-based photogrammetry is observed. The integration of photogrammetry and CAD increases the efficiency of photogrammetric modelling. One of the reasons for this is the improvement of the user-interface, which allows better interaction with the data. A more fundamental improvement is the use of advanced object modelling techniques such as Constructive Solid Geometry, and the incorporation of geometric object constraints. Furthermore, research emphasis is on CAD-based matching techniques for automatic precise measurement of CAD-models. An overall conclusion remains: the integration of photogrammetry and CAD has great potential for widening the acceptance of photogrammetry, especially in industry. This is firstly because of the improvement in efficiency, and secondly because of the established and well-known concept of CAD.
series journal paper
last changed 2003/04/23 15:50

_id ddssar0002
id ddssar0002
authors Aoki, Yoshitsugu and Inage, Makoto
year 2000
title Linguistic Operation System for Design of Architectural Form
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary In a process of architectural design, an architect not only draws by himself/herself but also lets another person modify a design by given a linguistic instruction expressing how the design ought to be. In the case of utilization of CAD systems, it is useful if the system modifies the design according to the linguistic instruction. On the other hand, because of the recent increase of the opportunities of designing a building whose roof has complicated curved surface, it extremely takes labor to change the design. This paper proposes a linguistic operation system that modifies a design according to the linguistic instruction of the modification by the user to support design of a complicated form with curved surface. The proposed system is expected to be integrated with a CAD system. First, the system presents a perspective sketch of a designed form. From the values of the design variables that characterize the form in the system, the system calculates the position of the form in “the association image space.” Second, the designer puts a linguistic instruction i.e., words as like as “let it be more light” to modify the form. The words used for the instruction have the position in the association image space. In the association image space, the system moves the position of the form to a new position that gets to be near the position of the given word. The system calculates the values of the design variables of the form corresponding to the new position. We need a mapping from every vector representing the position of the changed form in the association image space to the corresponding vector representing the values of the design variables. To find the mapping, we construct a neural network system with three levels. Finally, the system presents a perspective sketch of changed form using the calculated values of design variables.
series DDSS
last changed 2003/11/21 15:15

_id 3642
authors Asojo, Abimbola Oluwatoni
year 2000
title Design Algorithms after Le Corbusier
source ACADIA Quarterly, vol. 19, no. 4, pp. 17-24
doi https://doi.org/10.52842/conf.acadia.2000.017
summary Some views of design are the act as puzzle making, problem solving, evolutionary, and decision-making. All these focus on form generation as constructive, therefore characterizing design as a path-planning problem through a space of possibilities. Design problems consist sets of information divided into initial, intermediate, and goal states. Design in its simplest state consist of a set of operators, sequences (or paths) between initial and goals states. In this paper, I present design algorithms for Le Corbusier because of his distinct compositional techniques particularly for his “White Villas” in which some elements have been identified to recursively occur.
series ACADIA
last changed 2022/06/07 07:54

_id f73b
authors Brady, Darlene A.
year 2000
title Percept vs. Precept: Digital Media & the Creative Process
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 261-264
doi https://doi.org/10.52842/conf.ecaade.2000.261
summary The design of architecture, as well as all of the arts, is a creative act concerned with the expression of ideas through culturally significant and relevant form. In order for the creative act to transcend the authority or dictates of precedents or trends, it must be informed and guided by a process and not a product; one which reveals, but does not dictate, expressive, functional form. The initial impact of digital media on architectural design has been the ability to render the look of a final project or to create shapes that reflect the facility of the tool. Digital media also enables the composition and structure of space and form to be discovered simultaneously and relationally with the phenomena of color and kinetics, to generate and visualize an idea as form, and to represent form as experience. This requires interweaving computing with a creative process in which percept, rather than precept, is the driving force of the investigation. This paper explores the role of ideation, tectonic color and kinetics as an intentional design strategy and formgiver for architecture. The role of the computer is to enable the designer to generate meaningful architecture beyond precepts of image and style. Design as a making in the mind uses our rational and imaginative faculties. Complete freedom is not a necessity for inventiveness. Research on creativity indicates that "constraining options and focusing thought in a specific, rigorous and discerning direction" play an important role. The key is a balance of structured and discursive inquiry that encourages a speculative, free association of ideas. Tim Berners-Lee, one of the creators of the World Wide Web, likened creativity to a weblike process that is nonlinear but also not random; which when placed in an environment rich with information will float ideas so the mind "can jiggle them into an insight." Geoffrey Vickers in his essay, "Rationality and Intuition" described this symbiotic relationship as "...two functions which in practice are never wholly separated but which are, nonetheless, logically distinct as two reciprocating phases in a recurrent process of mental activity." The rational is formative and intuition is generative; both are essential to creativity.
keywords Percept, Creativity, Ideation, Tectonic Color, Kinetics
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 8e02
authors Brown, A.G.P. and Coenen, F.P.
year 2000
title Spatial reasoning: improving computational efficiency
source Automation in Construction 9 (4) (2000) pp. 361-367
summary When spatial data is analysed the result is often very computer intensive: even by the standards of contemporary technologies, the machine power needed is great and the processing times significant. This is particularly so in 3-D and 4-D scenarios. What we describe here is a technique, which tackles this and associated problems. The technique is founded in the idea of quad-tesseral addressing; a technique, which was originally applied to the analysis of atomic structures. It is based on ideas concerning Hierarchical clustering developed in the 1960s and 1970s to improve data access time [G.M. Morton, A computer oriented geodetic database and a new technique on file sequencing, IBM Canada, 1996.], and on atomic isohedral (same shape) tiling strategies developed in the 1970s and 1980s concerned with group theory [B. Grunbaum, G.C. Shephard, Tilings and Patterns, Freeman, New York, 1987.]. The technique was first suggested as a suitable representation for GIS in the early 1980s when the two strands were brought together and a tesseral arithmetic applied [F.C. Holdroyd, The Geometry of Tiling Hierarchies, Ars Combanitoria 16B (1983) 211–244.; S.B.M. Bell, B.M. Diaz, F.C. Holroyd, M.J.J. Jackson, Spatially referenced methods of processing raster and vector data, Image and Vision Computing 1 (4) (1983) 211–220.; Diaz, S.B.M. Bell, Spatial Data Processing Using Tesseral Methods, Natural Environment Research Council, Swindon, 1986.]. Here, we describe how that technique can equally be applied to the analysis of environmental interaction with built forms. The way in which the technique deals with the problems described is first to linearise the three-dimensional (3-D) space being investigated. Then, the reasoning applied to that space is applied within the same environment as the definition of the problem data. We show, with an illustrative example, how the technique can be applied. The problem then remains of how to visualise the results of the analysis so undertaken. We show how this has been accomplished so that the 3-D space and the results are represented in a way which facilitates rapid interpretation of the analysis, which has been carried out.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 1206
authors Cabezas, M., Mariano, C., Mitolo, S. and Oliva, S.
year 1999
title Transformaciones en el Proceso Enseñanza-Aprendizaje de la Geometría Descriptiva con la Apliacación de los Medios Digitales (Transformations in the Teaching/Learning Process of Descriptive Geometry with the Aplplication of Digital Media)
source III Congreso Iberoamericano de Grafico Digital [SIGRADI Conference Proceedings] Montevideo (Uruguay) September 29th - October 1st 1999, pp. 347-348
summary The insert of the digital technologies in the atmosphere Áulico has left generalizing in a significant way. An example constitutes it the high percentage of students that they manifested general knowledge in the software handling in the introductory course of visual communication, as well as the voluntary presentation of practical works developed with digital means. The necessity of an answer to the requirements that arise of the students sinks to the certainty of a pedagogic compatibility among the matter to try and the teaching attended by the personal computer that would increase the Iconidad and the understanding of a topic of certain complexity like it is the geometry of the space. An educational program designed for the teaching of the Sistema Monge whose general characteristics were presented in the II Ibero-American Seminar of Digital Graph and that it will be applied as experience pilot in the course 2000, it will allow us to respond to the following queries: what place it will be given to the educational program in the formation process in connection with the other pedagogic means.
series SIGRADI
email
last changed 2016/03/10 09:47

_id e023
authors Charitos, Dimitrios and Bourdakis, Vassilis
year 2000
title Designing for the Spatial Context of 3D Online Communities
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 165-169
doi https://doi.org/10.52842/conf.ecaade.2000.165
summary This paper considers the issue of designing the spatial context within which 3D online communities can function and evolve. Firstly, the current state of 3D on-line communities is taken into account, particularly focusing on the way space is conceptualised, organised and depicted in them. A series of such communities is studied and analysed and an attempt to identify possible spatial design criteria is made. On the basis of this analysis and relevant work on designing space in Virtual Environments (V_s), a series of suggestions on the way that the spatial context of 3D online communities can be designed and developed are made.
keywords 3D City modeling
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 93cc
authors Colajanni, B., Pellitteri, G. and Concialdi, S.
year 2000
title Retrieval Tools in Building Case Bases
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 113-116
doi https://doi.org/10.52842/conf.ecaade.2000.113
summary Most of the existing aids to building design rely on data base of cases representing solutions to problems that are thought to happen again at least in a similar way. Crucial for the success of the aid is the retrieval engine. In tour its efficiency depends on the way the cases are encoded. Whichever is this way cases will be represented at different levels of abstraction. The highest level will probably consist in an accessibility and adjacency graph. Another level could be a wire plan of the building. An easily workable representation of a graph is a square matrix. For any given building typology it is possible to write a list of encoded space types. This allows forming matrices that can be compared and their diversity measured. Here we present an algorithm that makes this job. Such an algorithm can be one of the case retrieval tools in the data base. It is likely that the designer has already some idea of the shape he wants for the building he is designing. A comparison between some geometric characteristics of the wire representation of the retrieved case and the corresponding ones of the imagined solution of the design problem can constitute a second test. The matching can be done
keywords Knowledge, Case Bases, Building, Tools
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:56

_id d244
authors De Mesa, A., Quilez, J. and Regot, J.
year 2000
title Análisis Geométrico de Formas Arquitectónicas Complejas (Geometrical Analysis of Complex Architectural Forms)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 295-297
summary The present graphic computer system allows defining high-level shape problems with great freedom. In free-form surface modeling it comes to be a good reason to develop an example that shows, which is the best way to create, modify and control complex free-form shapes in three-dimensional architectonic virtual modeling. The parameters of Bezier curves are not simple. But the use of Splines curves let us a friendly free form curves management with a great designer performance level. Unfortunately, the standard computer graphic tools to control these entities have a lot of variations, and normally create an unclear and confuse interface for generic users without several knowledge of mathematics and geometry. With the help of an example, this paper expose the use of computer graphics to make models of architectonic buildings with complex shapes that contains free-form surfaces. At the same time, it is an evaluation of how the standard CAD software processes this problem.
series SIGRADI
last changed 2016/03/10 09:50

_id 389b
authors Do, Ellen Yi-Luen
year 2000
title Sketch that Scene for Me: Creating Virtual Worlds by Freehand Drawing
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 265-268
doi https://doi.org/10.52842/conf.ecaade.2000.265
summary With the Web people can now view virtual threedimensional worlds and explore virtual space. Increasingly, novice users are interested in creating 3D Web sites. Virtual Reality Modeling Language gained ISO status in 1997, although it is being supplanted by the compatible Java3D API and alternative 3D Web technologies compete. Viewing VRML scenes is relatively straightforward on most hardware platforms and browsers, but currently there are only two ways to create 3D virtual scenes: One is to code the scene directly using VRML. The other is to use existing CAD and modeling software, and save the world in VRML format or convert to VRML from some other format. Both methods are time consuming, cumbersome, and have steep learning curves. Pen-based user interfaces, on the other hand, are for many an easy and intuitive method for graphics input. Not only are people familiar with the look and feel of paper and pencil, novice users also find it less intimidating to draw what they want, where they want it instead of using a complicated tool palette and pull-down menus. Architects and designers use sketches as a primary tool to generate design ideas and to explore alternatives, and numerous computer-based interfaces have played on the concept of "sketch". However, we restrict the notion of sketch to freehand drawing, which we believe helps people to think, to envision, and to recognize properties of the objects with which they are working. SKETCH employs a pen interface to create three-dimensional models, but it uses a simple language of gestures to control a three-dimensional modeler; it does not attempt to interpret freehand drawings. In contrast, our support of 3D world creation using freehand drawing depend on users’ traditional understanding of a floor plan representation. Igarashi et al. used a pen interface to drive browsing in a 3D world, by projecting the user’s marks on the ground plane in the virtual world. Our Sketch-3D project extends this approach, investigating an interface that allows direct interpretation of the drawing marks (what you draw is what you get) and serves as a rapid prototyping tool for creating 3D virtual scenes.
keywords Freehand Sketching, Pen-Based User Interface, Interaction, VRML, Navigation
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 6c45
authors Drewe, Paul
year 2000
title In Search of New Concepts of Physical and Virtual Space
source CORP 2000, Vienna, pp. 37-44
summary Physical space is the material object of spatial planning and urbanism. It comprises, traditionally, zonesadapted to activities and channels of communication providing links between zones, catering to transport. Orvarious types of buildings, if one includes architecture. Virtual space opened by ICT, still is less familiar. Itis, after all, "no more than abstract flows of electronic signals, coded as information, representation andexchange" (Graham). This partly explains the frequent use of metaphors to describe it, among them spatialmetaphors (Graham, 1997). In dealing with the interactions between physical and virtual space, spatialmetaphors tend to obscure the issues and therefore better be avoided.Physical and virtual space must be defined as distinct entities. After all, only utopians believe in urbandissolution with all information supposed to become available at all times and places to all people. What arethe most important interactions between physical and virtual space?
series other
email
more www.corp.at
last changed 2002/12/19 12:15

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_368372 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002