CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 749

_id b966
authors Ceccato, Cristiano and Janssen, Patrick
year 2000
title GORBI: Autonomous Intelligent Agents Using Distributed Object-Oriented Graphics
doi https://doi.org/10.52842/conf.ecaade.2000.297
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 297-300
summary Autonomous agents represent a new form of thinking that is of primary importance in the age of the Internet and distributed networks, and provide a platform on which Turing’s model of sequential instruction-executing machines and von NeumannÕs connectionist vision of interconnected, concurrent fine-grain processors may be reconciled. In this paper we map this emergent paradigm to design and design intelligence by to illustrating examples of decentralised interacting agents projects.
keywords Graphics, CAD, Internet, Evolutionary, Generative, Distributed, Decentralised, Object, Request, Broker, CORBA, OpenGL, Java, C++
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 389b
authors Do, Ellen Yi-Luen
year 2000
title Sketch that Scene for Me: Creating Virtual Worlds by Freehand Drawing
doi https://doi.org/10.52842/conf.ecaade.2000.265
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 265-268
summary With the Web people can now view virtual threedimensional worlds and explore virtual space. Increasingly, novice users are interested in creating 3D Web sites. Virtual Reality Modeling Language gained ISO status in 1997, although it is being supplanted by the compatible Java3D API and alternative 3D Web technologies compete. Viewing VRML scenes is relatively straightforward on most hardware platforms and browsers, but currently there are only two ways to create 3D virtual scenes: One is to code the scene directly using VRML. The other is to use existing CAD and modeling software, and save the world in VRML format or convert to VRML from some other format. Both methods are time consuming, cumbersome, and have steep learning curves. Pen-based user interfaces, on the other hand, are for many an easy and intuitive method for graphics input. Not only are people familiar with the look and feel of paper and pencil, novice users also find it less intimidating to draw what they want, where they want it instead of using a complicated tool palette and pull-down menus. Architects and designers use sketches as a primary tool to generate design ideas and to explore alternatives, and numerous computer-based interfaces have played on the concept of "sketch". However, we restrict the notion of sketch to freehand drawing, which we believe helps people to think, to envision, and to recognize properties of the objects with which they are working. SKETCH employs a pen interface to create three-dimensional models, but it uses a simple language of gestures to control a three-dimensional modeler; it does not attempt to interpret freehand drawings. In contrast, our support of 3D world creation using freehand drawing depend on users’ traditional understanding of a floor plan representation. Igarashi et al. used a pen interface to drive browsing in a 3D world, by projecting the user’s marks on the ground plane in the virtual world. Our Sketch-3D project extends this approach, investigating an interface that allows direct interpretation of the drawing marks (what you draw is what you get) and serves as a rapid prototyping tool for creating 3D virtual scenes.
keywords Freehand Sketching, Pen-Based User Interface, Interaction, VRML, Navigation
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id 837b
authors Elger, Dietrich and Russell, Peter
year 2000
title Using the World Wide Web as a Communication and Presentation Forum for Students of Architecture
doi https://doi.org/10.52842/conf.ecaade.2000.061
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 61-64
summary Since 1997, the Institute for Industrial Building Production (ifib) has been carrying out upper level design studios under the framework of the Netzentwurf or Net-Studio. The Netzentwurf is categorized as a virtual design studio in that the environment for presentation, criticism and communication is web based. This allows lessons learned from research into Computer Supported Cooperative Work (CSCW) to be adapted to the special conditions indigenous to the architectural design studio. Indeed, an aim of the Netzentwurf is the creation and evolution of a design studio planing platform. In the Winter semester 1999-2000, ifib again carried out two Netzentwurf studios. involving approximately 30 students from the Faculty of Architecture, University of Karlsruhe. The projects differed from previous net studios in that both studios encompassed an inter-university character in addition to the established framework of the Netzentwurf. The first project, the re-use of Fort Kleber in Wolfisheim by Strasbourg, was carried out as part of the Virtual Upperrhine University of Architecture (VuuA) involving over 140 students from various disciplines in six institutions from five universities in France, Switzerland and Germany. The second project, entitled "Future, Inc.", involved the design of an office building for a scenario 20 years hence. This project was carried out in parallel with the Technical University Cottbus using the same methodology and program for two separate building sites.
keywords Virtual Design Studios, Architectural Graphics, Presentation Techniques
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id ga0009
id ga0009
authors Lewis, Matthew
year 2000
title Aesthetic Evolutionary Design with Data Flow Networks
source International Conference on Generative Art
summary For a little over a decade, software has been created which allows for the design of visual content by aesthetic evolutionary design (AED) [3]. The great majority of these AED systems involve custom software intended for breeding entities within one fairly narrow problem domain, e.g., certain classes of buildings, cars, images, etc. [5]. Only a very few generic AED systems have been attempted, and extending them to a new design problem domain can require a significant amount of custom software development [6][8]. High end computer graphics software packages have in recent years become sufficiently robust to allow for flexible specification and construction of high level procedural models. These packages also provide extensibility, allowing for the creation of new software tools. One component of these systems which enables rapid development of new generative models and tools is the visual data flow network [1][2][7]. One of the first CG packages to employ this paradigm was Houdini. A system constructed within Houdini which allows for very fast generic specification of evolvable parametric prototypes is described [4]. The real-time nature of the software, when combined with the interlocking data networks, allows not only for vertical ancestor/child populations within the design space to be explored, but also allows for fast "horizontal" exploration of the potential population surface. Several example problem domains will be presented and discussed. References: [1] Alias | Wavefront. Maya. 2000, http://www.aliaswavefront.com [2] Avid. SOFTIMAGE. 2000, http://www.softimage.com [3] Bentley, Peter J. Evolutionary Design by Computers. Morgan Kaufmann, 1999. [4] Lewis, Matthew. "Metavolve Home Page". 2000, http://www.cgrg.ohio-state.edu/~mlewis/AED/Metavolve/ [5] Lewis, Matthew. "Visual Aesthetic Evolutionary Design Links". 2000, http://www.cgrg.ohio-state.edu/~mlewis/aed.html [6] Rowley, Timothy. "A Toolkit for Visual Genetic Programming". Technical Report GCG-74, The Geometry Center, University of Minnesota, 1994. [7] Side Effects Software. Houdini. 2000, http://www.sidefx.com [8] Todd, Stephen and William Latham. "The Mutation and Growth of Art by Computers" in Evolutionary Design by Computers, Peter Bentley ed., pp. 221-250, Chapter 9, Morgan Kaufmann, 1999.    
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id e806
authors Maver, T.W.
year 1987
title The New Studio: CAD and the Workstation - State of the Art
doi https://doi.org/10.52842/conf.ecaade.1987.x.g1r
source Architectural Education and the Information Explosion [eCAADe Conference Proceedings] Zurich (Switzerland) 5-7 September 1987.
summary This presentation draws on three main sources: (i) reportage of the ATHENA project at MIT, (ii) the experience of the author as a Professor of CAAD, (iii) the work of the eCAADe on the social impacts of CAAD. // Project ATHENA was introduced to MIT in May 1983 as an experiment in the potential uses of advanced computer technology throughout the University curriculum. By the end of the project a network of about 2000 high performance graphics workstations - supplied mainly by IBM and DEC - will have been installed; about half of MIT's $20 million investment is being devoted to the development of new applications software for teaching across almost all the academic Departments, including Architecture.

series eCAADe
email
last changed 2022/06/07 07:50

_id fdb8
authors Montagu, A., Rodriguez Barros, D. and Chernobilsky, L.
year 2000
title The New Reality through Virtuality
doi https://doi.org/10.52842/conf.ecaade.2000.225
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 225-229
summary In this paper we want to develop some conceptual reflections of the processes of virtualization procedures with the aim to indicate a series of misfits and mutations as byproducts of the “digital-graphic culture” (DGC) when we are dealing with the perception of the “digital space”. Considering the present situation, a bit chaotic from a pedagogical point of view, we also want to propose a set of “virtual space parameters” in order to organize in a systemic way the teaching procedures of architectural design when using digital technology. Nowadays there is a great variety of computer graphics applications comprising practically all the fields of “science & technology”, “architecture, design & urbanism”, “video & film”, “sound” and the massive amount of information technology protocols. This fact obliges us to have an overall view about the meaning of “the new reality through virtuality”. The paper is divided in two sections and one appendix. In the first section we recognise the relationships among the sensory apparatus, the cognitive structures of perception and the cultural models involved in the process of understanding the reality. In the second section, as architects, we use to have “a global set of social and technical responsabilities” to organize the physical space, but now we must also be able to organize the “virtual space” obtained from a multidimensional set of computer simulations. There are certain features that can be used as “sensory parameters” when we are dealing with architectural design in the “virtual world”, taking into consideration the differences between “immersive virtual reality” and “non inmersive virtual reality”. In the appendix we present a summary of some conclusions based on a set of pedagogical applications analysing the positive and the negative consequences of working exclusively in a “virtual world”.
keywords Virtualisation Processes, Simulation, Philosophy, Space, Design, Cyberspace
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:58

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
doi https://doi.org/10.52842/conf.acadia.2020.1.574
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 01c0
authors Af Klercker, Jonas
year 2000
title Modelling for Virtual Reality in Architecture
doi https://doi.org/10.52842/conf.ecaade.2000.209
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 209-213
summary CAAD systems are using object modelling methods for building databases to make information available. Object data must then be made useful for many different purposes in the design process. Even if the capacity of the computer will allow an almost unlimited amount of information to be transformed, the eye does not make the transformations in the same “simple” mathematical way. Trained architects have to involve in an inventive process of finding ways to “harmonize” this new medium with the human eye and the architect’s professional experience. This paper will be an interimistic report from a surveying course. During the spring semester 2000 the CAAD division of TU-Lund is giving a course “Modelling for VR in Architecture”. The students are practising architects with experience from using object modelling CAAD. The aims are to survey different ways to use available hard- and software to create VR-models of pieces of architecture and evaluate them in desktop and CAVE environments. The architect is to do as much preparation work as possible with his CAAD program and only the final adjustments with the special VR tool.
keywords CAAD, VR, Modelling, Spatial Experience
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id b0e7
authors Ahmad Rafi, M.E. and Karboulonis, P.
year 2000
title The Re-Convergence of Art and Science: A Vehicle for Creativity
doi https://doi.org/10.52842/conf.caadria.2000.491
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 491-500
summary Ever-increasing complexity in product design and the need to deliver a cost-effective solution that benefits from a dynamic approach requires the employment and adoption of innovative design methods which ensure that products are of the highest quality and meet or exceed customers' expectations. According to Bronowski (1976) science and art were originally two faces of the same human creativity. However, as civilisation advances and works became specialised, the dichotomy of science and art gradually became apparent. Hence scientists and artists were born, and began to develop work that was polar opposite. The sense of beauty itself became separated from science and was confined within the field of art. This dichotomy existed through mankind's efforts in advancing civilisation to its present state. This paper briefly examines the relationship between art and science through the ages and discusses their relatively recent re-convergence. Based on this hypothesis, this paper studies the current state of the convergence between arts and sciences and examines the current relationship between the two by considering real world applications and products. The study of such products and their successes and impact they had in the marketplace due to their designs and aesthetics rather than their advanced technology that had partially failed them appears to support this argument. This text further argues that a re-convergence between art and science is currently occurring and highlights the need for accelerating this process. It is suggested that re-convergence is a result of new technologies which are adopted by practitioners that include effective visualisation and communication of ideas and concepts. Such elements are widely found today in multimedia and Virtual Environments (VEs) where such tools offer increased power and new abilities to both scientists and designers as both venture in each other's domains. This paper highlights the need for the employment of emerging computer based real-time interactive technologies that are expected to enhance the design process through real-time prototyping and visualisation, better decision-making, higher quality communication and collaboration, lessor error and reduced design cycles. Effective employment and adoption of innovative design methods that ensure products are delivered on time, and within budget, are of the highest quality and meet customer expectations are becoming of ever increasing importance. Such tools and concepts are outlined and their roles in the industries they currently serve are identified. Case studies from differing fields are also studied. It is also suggested that Virtual Reality interfaces should be used and given access to Computer Aided Design (CAD) model information and data so that users may interrogate virtual models for additional information and functionality. Adoption and appliance of such integrated technologies over the Internet and their relevance to electronic commerce is also discussed. Finally, emerging software and hardware technologies are outlined and case studies from the architecture, electronic games, and retail industries among others are discussed, the benefits are subsequently put forward to support the argument. The requirements for adopting such technologies in financial, skills required and process management terms are also considered and outlined.
series CAADRIA
email
last changed 2022/06/07 07:54

_id 9b44
authors Ahmad Rafi, M.E. and Karboulonis, P.
year 2000
title The Importance of Virtual Environments in the Design of Electronic Games and Their Relevance to Architecture
doi https://doi.org/10.52842/conf.ecaade.2000.181
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 181-185
summary Ever increasing complexity in architectural design and the need to deliver a cost effective solution requires the employment and adoption of innovative design methods. Although technological changes have entered the field of architecture at a slower pace, the recent adoption of 3D modelling, Virtual Environment and multimedia represent significant changes in architectural design, visualisation and presentation. These now include tools for conceptualisation, design synthesis, design presentation, desktop publishing, animation, Internet and hypermedia authoring. Uddin argues that the major activities involved in the creative and dynamic process of architectural design deal with conceptualisation, visualisation and expression of alternative ideas through two-dimensional and three-dimensional model. This paper highlights the need for the employment of emerging computer based real-time interactive technologies that are expected to enhance the design process through better decision-making, higher quality communication and collaboration, error reduction, spatial awareness, interactive design and real-time visualisation.
keywords CAD, Game Design, Virtual Reality, Virtual Environments, Virtual Prototyping, Internet Technologies, Architecture
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 449f
authors Aish, Robert
year 2000
title Collaborative Design using Long Transactions and "Change Merge"
doi https://doi.org/10.52842/conf.ecaade.2000.107
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 107-111
summary If our goal is implement collaborative engineering across temporal, spatial and discipline dimensions, then it is suggested that we first have to address the necessary pre-requisites, which include both the deployment of "enterprise computing" and an understanding of the computing concepts on which such enterprise systems are based. This paper will consider the following computing concepts and the related concepts in the world of design computing, and discuss how these concepts have been realised in Bentley SystemsÕ ProjectBank collaborative engineering data repository: Computing Concept Related Design Concept Normalisation Model v. Report (or Drawing) Transaction Consistency of Design Long Transaction Parallelisation of Design Change Merge Coordination (synchronisation) Revisions Coordination (synchronisation) While we are most probably familiar with the applications of existing datadase concepts (such as Normalisation and Transaction Management) to the design process, the intent of this paper to focus
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 456a
authors Alvarado, R.G., Parra, J.C., Vergara, R.L. and Chateau, H.B.
year 2000
title Architectural References to Virtual Environments Design
doi https://doi.org/10.52842/conf.ecaade.2000.151
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 151-155
summary Based on a comparison between the perception of digital and real construction, the development of virtual systems and the review of additional sources, this paper states some differences between the design of virtual environments and architectural spaces. Virtual-reality technologies provide advanced capabilities to simulate real situations, and also to create digital worlds not referred to physical places, such as imaginary landscapes or environments devoted to electronic activities, like entertainment, learning or commerce. Some on-line services already use 3D-stages, resembling building halls and domestic objects, and several authors have mentioned virtual modeling as a job opportunity to architects. But it will argue in this paper that the design of those environments should consider their own digital characteristics. Besides, the use of virtual installations on networks impells a convergence with global media, like Internet or TV. Virtual environments can be a 3Devolution of communicational technologies, which have an increasing participation in culture, reaching a closer relationship to contemporary architecture.
keywords Virtual Environments, Spatial Perception, Design Methodology
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 9638
authors Aouad, G, M, Ormerod, M., Sun, M., Sarshar, P. Barrett, P. and Alshawi, M.
year 2000
title Visualisation of construction information: A process view
source CIDAC, Volume 2 Issue 4 November 2000, pp. 207-215
summary This paper addresses the issue of information visualisation within the context of business process integration. Visual technologies offer appropriate information interfaces that facilitate the integration of mainstream construction applications. This paper assesses the needs of visualisation by the construction sector. It then describes recent developments in the areas of 4/5 dimensional modelling. This paper also investigates the state of maturity and uptake of these technologies by the industry. Following this, the results of various projects conducted by Salford within the area of information visualisation are presented. The paper concludes with a set of recommendations for the better use of visual technologies by the construction sector.
keywords 4D, Construction Process, Maturity, Virtual Reality, Visualisation, Uptake
series journal paper
last changed 2003/05/15 21:23

_id 0c0d
authors Asanowicz, Aleksander
year 2000
title Computer as an Metaphorisation Machine
doi https://doi.org/10.52842/conf.ecaade.2000.283
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 283-286
summary Digital media is transforming the practice and teaching of design. Information technologies offer not only better production and rendering tools but also the ability to model, manipulate, and understand design in new ways. A new era in CAAD has started. One of the aspects of this situation is the increase in the number of computers in design offices and architectural schools (many of our students have their own computers, which a re often better than the computers we have at our school). We can submit a proposition that the critical point in the creative use of computers is over, and we should think how computers and new media may extend the designer’s perception and imagination.
keywords Creation of a Form, Imagination, Metaphors, Computer Support of Form Searching
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 1f5c
authors Beesley, Philip and Seebohm, Thomas
year 2000
title Digital Tectonic Design
doi https://doi.org/10.52842/conf.ecaade.2000.287
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 287-290
summary Digital tectonic design is a fresh approach to architectural design methodology. Tectonics means a focus on assemblies of construction elements. Digital tectonics is an evolving methodology that integrates use of design software with traditional construction methods. We see digital tectonic design as a systematic use of geometric and spatial ordinances, used in combination with details and components directly related to contemporary construction. The current approach will, we hope, lead to an architectural curriculum based on generative form making where the computer can be used to produce systems of forms algorithmically. Digital design has tended to remain abstract, emphasizing visual and spatial arrangements often at the expense of materials and construction. Our pursuit is translation of these methods into more fully realized physical qualities. This method offers a rigorous approach based on close study of geometry and building construction elements. Giving a context for this approach, historical examples employing systematic tectonic design are explored in this paper. The underlying geometric ordinance systems and the highly tuned relationships between the details in these examples offer design vocabularies for use within the studio curriculum. The paper concludes with a detailed example from a recent studio project demonstrating particular qualities developed within the method. The method involves a wide range of scales, relating large-scale gestural and schematic studies to detailed assembly systems. Designing in this way means developing geometric strategies and, in parallel, producing detailed symbols or objects to be inserted. These details are assembled into a variety of arrays and groups. The approach is analogous to computer-aided designÕs tradition of shape grammars in which systems of spatial relationships are used to control the insertion of shapes within a space. Using this approach, a three-dimensional representation of a building is iteratively refined until the final result is an integrated, systematically organized complex of symbols representing physical building components. The resulting complex offers substantial material qualities. Strategies of symbol insertions and hierarchical grouping of elements are familiar in digital design practice. However these strategies are usually used for automated production of preconceived designs. In contrast to thsse normal approaches this presentation focuses on emergent qualities produced directly by means of the complex arrays of symbol insertions. The rhyth
keywords 3D CAD Systems, Design Practice, 3D Design Strategies
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 3f35
authors Bermudez, Julio and King, Kevin
year 2000
title Media interaction and design process: establishing a knowledge base
source Automation in Construction 9 (1) (2000) pp. 37-56
summary Integrating computers in architectural design means to negotiate between centuries-old analog design methods and the new digital systems of production. Analog systems of architectural production use tracing paper, vellum, graphite and ink, clipboard, clay, balsa wood, plastic, metal, etc. Analog systems have also been termed "handmade", "manual", "material" or "physical". Digital systems of architectural production use scanning, image manipulation, visualization, solid modeling, computer aided drafting, animation, rendering, etc. Digital systems have also been called "electronic", "computer-aided", "virtual", etc. The difficulty lies in the underdeveloped state of the necessary methods, techniques, and theories to relate traditional and new media. Recent investigations on the use of multiple iterations between manual and electronic systems to advance architectural work show promising results. However, these experiments have not been sufficiently codified, cross-referenced and third party tested to conform a reliable knowledge base. This paper addresses this shortcoming by bringing together reported experiences from diverse researchers over the past decade. This summary is informed by more than three years of continuous investigation in the impacts of analog-digital conversations in the design process. The goal is to establish a state-of-the-art common foundation that permits instructors, researchers and practitioners to refer to, utilize, test, criticize and develop. An appendix is included providing support for the paper's arguments.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id f73b
authors Brady, Darlene A.
year 2000
title Percept vs. Precept: Digital Media & the Creative Process
doi https://doi.org/10.52842/conf.ecaade.2000.261
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 261-264
summary The design of architecture, as well as all of the arts, is a creative act concerned with the expression of ideas through culturally significant and relevant form. In order for the creative act to transcend the authority or dictates of precedents or trends, it must be informed and guided by a process and not a product; one which reveals, but does not dictate, expressive, functional form. The initial impact of digital media on architectural design has been the ability to render the look of a final project or to create shapes that reflect the facility of the tool. Digital media also enables the composition and structure of space and form to be discovered simultaneously and relationally with the phenomena of color and kinetics, to generate and visualize an idea as form, and to represent form as experience. This requires interweaving computing with a creative process in which percept, rather than precept, is the driving force of the investigation. This paper explores the role of ideation, tectonic color and kinetics as an intentional design strategy and formgiver for architecture. The role of the computer is to enable the designer to generate meaningful architecture beyond precepts of image and style. Design as a making in the mind uses our rational and imaginative faculties. Complete freedom is not a necessity for inventiveness. Research on creativity indicates that "constraining options and focusing thought in a specific, rigorous and discerning direction" play an important role. The key is a balance of structured and discursive inquiry that encourages a speculative, free association of ideas. Tim Berners-Lee, one of the creators of the World Wide Web, likened creativity to a weblike process that is nonlinear but also not random; which when placed in an environment rich with information will float ideas so the mind "can jiggle them into an insight." Geoffrey Vickers in his essay, "Rationality and Intuition" described this symbiotic relationship as "...two functions which in practice are never wholly separated but which are, nonetheless, logically distinct as two reciprocating phases in a recurrent process of mental activity." The rational is formative and intuition is generative; both are essential to creativity.
keywords Percept, Creativity, Ideation, Tectonic Color, Kinetics
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id f2f1
authors Breen, Jack and Nottrot, Robert
year 2000
title Project a2W. A Dialogue on New Media Perspectives
doi https://doi.org/10.52842/conf.ecaade.2000.291
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 291-296
summary This paper documents an initiative taking the form of a "dialogue". The format which has been developed is somewhat similar to that of the "conversation" which Mondrian conceived in 1919, taking place between two fictitious characters - A and B - discussing the new direction in art, which he called "Nieuwe Beelding" and which contributed to the "De Stijl" movement (the dialogue was followed later that year by a "trialogue" between X, Y and Z on a virtual walk taking them from the countryside to the city) 1 . This time the issue is not so much the evolvement of a new artistic or architectural style, but the role of "new media" in architecture... The present dialogue takes place between two fictitious media proponents ("Alpha" and "Omega"). They take turns questioning several issues and exchanging proposals... What are the values - and the promises - of computer supported instruments in creative design and research - concerning the art and science shaping the built environment? How do the present applications measure up, how do they compare to the expectations and ambitions expressed a number of years ago? The form of a dialogue means that issues and ideas, which are not often aired within the confines of academic discourse, can be played back and forth and a measure of exaggeration was intended from the beginning... This contribution does not in any way pretend to be all-inclusive. Rather, the paper is meant to put forward ideas and experiences - from the perspective of the Delft Media group, in practice, in teaching and in research - which may stimulate (or even irritate?) but will hopefully activate. The aim is to open up discussions, to allow other (hidden) agendas for the future to become more visible and to look for platforms for sharing concepts and fascinations, however improbable they might be...
keywords A Dialogue on New Media
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 2ccf
authors Brown, A., Gavin, L., Berridge, Ph., Achten, H. and Knight, M.
year 2000
title Virtual eCAADe Galleries and Meeting Places
doi https://doi.org/10.52842/conf.ecaade.2000.157
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 157-163
summary This paper describes the first steps taken to establish a virtual gallery as a device to enable the display and sharing of information, both within the eCAADe organisation and for other interested or related parties. Initially an important role of the gallery would be to display student work from all of the member states of eCAADe. With this feature established we might then want to move on to providing additional elements within the world which could allow exchange of views; discussion; points of contact; and the provision of educational and research information relating to CAAD. The paper will describe the potential of the different kinds of gallery that might be appropriate. The worlds reviewed will deal with sites which offer a collaborative environment represented in a three dimensional form. We will comment on some specific relevant examples, and review their appropriateness against a set of relevant criteria. The proposals that we make will be open to review and comment by eCAADe members before a fully working site is constructed.
keywords eCAADe, Virtual Meeting Places, Internet
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_104119 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002