CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 722

_id 53c8
authors Donath, Dirk and Lömker, Thorsten Michael
year 2000
title Illusion, Frustration and Vision in Computer-Aided Project Planning: A Reflection and Outlook on the Use of Computing in Architecture
doi https://doi.org/10.52842/conf.acadia.2000.003
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 3-9
summary This paper examines the progressive and pragmatic use of computers and CAAD systems in the architectural practice. With the aid of three scenarios, this paper will illustrate gainful implementation of computer aided project planning in architecture. The first scenario describes an actual situation of implementation and describes conceptual abortive developments in office organization as well as in software technology. Scenario two outlines the essential features of an integrated building design system and the efforts involved in its implementation in the architectural practice. It clearly defines preconditions for implementation and focuses on feasible concepts for the integration of different database management systems. A glance at paradigms of conceptual work currently under development will be taken. The third scenario deals with the structure and integration of innovative concepts and the responsibility the architect will bear with regard to necessary alterations in office and workgroup organization. A future-oriented building design system will be described that distinguishes itself from existing programs because of its modular, net-based structure. With reference to today’s situation in architectural offices and according to realizable improvements, this article will demonstrate courses for future IT-support on the basis of an ongoing research project. The presented project is part of the special research area 524 “Materials and Constructions for the Revitalization of Existing Buildings” which is funded by the Deutsche Forschungsgemeinschaft. It deals with the integration of various parties that are involved in the revitalization process of existing buildings as well as with the provision of adequate information within the planning process resting upon the survey of existing building substance. Additional concepts that might change the way an architect’s work is organized will also be presented. “Case-based-reasoning” methods will make informal knowledge available, leading to a digital memory of preservable solutions.
series ACADIA
email
last changed 2022/06/07 07:55

_id ebb4
authors Koutamanis, Alexander
year 2000
title Digital architectural visualization
source Automation in Construction 9 (4) (2000) pp. 347-360
summary The democratization of computer technologies is changing architectural visualization in two significant ways. The first is that the availability of digital media promotes wider and intensive application of computer visualization. The second concerns the extension of architectural design to visualization in information systems. The transition from analogue to digital visualization relates to fundamental questions ranging from the role of geometric representations in architecture and the relationships between analysis and visualization to the structure of abstraction. In addition, it requires technology and knowledge transfer also from areas other than computer science. The integration of such transfers suggests a flexible, modular approach that contradicts the holistic, integral principles of computer-aided architectural design.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ca8f
authors Lieberman, Oren
year 2000
title The Application of Object-oriented Software Concepts in Architectural Pedagogy
doi https://doi.org/10.52842/conf.ecaade.2000.027
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 27-33
summary Architecture, a complex discipline that involves many people and things and the relationships amongst them, requires a pedagogical approach by which the student, even in her first year, must be able to think "complexly" across many subjects. The object-oriented analysis and design software programming paradigm, which models complex "realities", or "models the way people understand and process reality", holds promising concepts for architectural education. It is not my intention to extract slavishly all possible concepts from object-orientation (OO) and accept them as a "recipe" for educating the architect. Indeed, one of the reasons I find OO so elegant is that it provides a strategy, a non-prescriptive framework, with which both teachers and students can explore their own architectural investigations. It also provides the possibility of a common language, offering a structure in which, for example, certain standards can be measured within departments, or with which we can negotiate compatibility across different national credit systems to facilitate and encourage cross-cultural (border) exchange.
keywords Object-Oriented, Aspect, Subject-Oriented, Concern Spaces, Reusability, Abstraction/Compression, Encapsulation, Maintenance
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:59

_id 3e01
authors Linnert, C., Encarnacao, M., Storck, A. and Koch, V.
year 2000
title Virtual Building Lifecycle - Giving architects access to the future of buildings by visualizing lifecycle data
source ICCCBE8, Stanford, August 2000
summary Today’s software for architects and civil engineers is lacking support for the evaluation and improvement of building lifecycles. Facility Management Systems and 4D-CAD try to integrate lifecycle data and make them better accessible, but miss the investigation of the development of the structure itself. Much money is inappropriately spent when materials with different life expectancies are combined in the wrong way and building parts are repaired or replaced too early or too late. With the methods of scientific visualization and real-time 3Dgraphics these deficiencies can be eliminated. The project “Virtual Building Lifecycle” (short VBLC, [W-VBLC]) connects 3D geometrical information to research data such as life expectancy and emissions and to standard database information like prices. The automated visualization of critical points of the structure in the past, presence and future is a huge advantage and helps engineers to improve the duration of the lifecycle and reduce the costs.
keywords Visualization; lifecycle; virtual building; realtime 3D graphics; architectural database; 4D-CAD; Facility Management
series other
email
last changed 2003/02/26 18:58

_id ecaade2018_213
id ecaade2018_213
authors Lohse, Theresa, Fujii, Ryuta and Werner, Liss C.
year 2018
title Multi-Dimensional Interface Based Spatial Adaption - A Prototype For A Multi-Sensory User Interface Employing Elastic Materials
doi https://doi.org/10.52842/conf.ecaade.2018.2.169
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 169-176
summary Patten and Ishii (2000) discovered that people are employing more versatile strategies for spatial distribution when using a tangible user interface (TUI) as opposed to a graphics user interface (GUI) (Patten & Ishii, 2000). Besides, the generated information outputs of conventional two-dimensional interacting screens are currently almost entirely addressing the visual and acoustic senses but lacking in other sensory stimuli - such as haptic, body equilibrium and sense of gravity. With the experiment described here, the multi-dimensionality of both the input on the interface and the output of the human interaction will be challenged. This paper aims to introduce a method to a real world versatile three-dimensional interface actuating a simulated spatial environment that substantiates the more unconventional sensory perception mentioned above. A physical prototype using an Arduino will be assembled to test the feasibility of the structure.
keywords spatial formation; virtual reality; tangible user interface; body equilibrium; physical computing
series eCAADe
email
last changed 2022/06/07 07:59

_id 8a18
authors Loose, Duane
year 2000
title 3D Studio Max 3.0 Workshop
source Hayden Books
summary 3D Studio MAX 3.0 Workshop focuses on developing the skills of beginning and intermediate 31) Studio MAX users by teaching them how to take advantage of 3the first object-oriented animation system designed for Microsoft Windows NT . Written from the point of view of a professional industrial designer, art director, animator, and design educator, this book uses a single holistic project, composed of interrelated tutorials to guide you through a professional project development process. By beginning with the end in mind, this workshop will show you how to structure your use of MAX to create professional-quality imagery using the basic tools provided in MAX. 3D Studio MAX 3.0 Workshop boosts the beginning to intermediate user to a higher level of MAX proficiency in the shortest time possible. The workshop focuses on basic principles, elements, and tools used in MAX to create models, materials, lighting, special effects, and animation; and you will learn how professionals develop CGI shots in MAX by using layers and compositing.
series other
last changed 2003/02/26 18:58

_id 3888
authors Reffat, Rabee M.
year 2000
title Computational Situated Learning in Designing - Application to Architectural Shape Semantics
source The University of Sydney, Faculty of Architecture
summary Learning the situatedness (applicability conditions), of design knowledge recognised from design compositions is the central tenet of the research presented in this thesis. This thesis develops and implements a computational system of situated learning and investigates its utility in designing. Situated learning is based on the concept that "knowledge is contextually situated and is fundamentally influenced by its situation". In this sense learning is tuned to the situations within which "what you do when you do matters". Designing cannot be predicted and the results of designing are not based on actions independent of what is being designed or independent of when, where and how it was designed. Designers' actions are situation dependent (situated), such that designers work actively with the design environment within the specific conditions of the situation where neither the goal state nor the solution space is completely predetermined. In designing, design solutions are fluid and emergent entities generated by dynamic and situated activities instead of fixed design plans. Since it is not possible in advance to know what knowledge to use in relation to any situation we need to learn knowledge in relation to its situation, i.e. learn the applicability conditions of knowledge. This leads towards the notion of the situation as having the potential role of guiding the use of knowledge.

Situated Learning in Designing (SLiDe) is developed and implemented within the domain of architectural shape composition (in the form of floor plans), to construct the situatedness of shape semantics. An architectural shape semantic is a set of characteristics with a semantic meaning based on a particular view of a shape such as reflection symmetry, adjacency, rotation and linearity. Each shape semantic has preconditions without which it cannot be recognised. Such preconditions indicate nothing about the situation within which this shape semantic was recognised. The situatedness or the applicability conditions of a shape semantic is viewed as, the interdependent relationships between this shape semantic as the design knowledge in focus, and other shape semantics across the observations of a design composition. While designing, various shape semantics and relationships among them emerge in different representations of a design composition. Multiple representations of a design composition by re-interpretation have been proposed to serve as a platform for SLiDe. Multiple representations provide the opportunity for different shape semantics and relationships among them to be found from a single design composition. This is important if these relationships are to be used later because it is not known in advance which of the possible relationships could be constructed are likely to be useful. Hence, multiple representations provide a platform for different situations to be encountered. A symbolic representation of shape and shape semantics is used in which the infinite maximal lines form the representative primitives of the shape.

SLiDe is concerned with learning the applicability conditions (situatedness), of shape semantics locating them in relation to situations within which they were recognised (situation dependent), and updating the situatedness of shape semantics in response to new observations of the design composition. SLiDe consists of three primary modules: Generator, Recogniser and Incremental Situator. The Generator is used by the designer to develop a set of multiple representations of a design composition. This set of representations forms the initial design environment of SLiDe. The Recogniser detects shape semantics in each representation and produces a set of observations, each of which is comprised of a group of shape semantics recognised at each corresponding representation. The Incremental Situator module consists of two sub-modules, Situator and Restructuring Situator, and utilises an unsupervised incremental clustering mechanism not affected by concept drift. The Situator module locates recognised shape semantics in relation to their situations by finding regularities of relationships among them across observations of a design composition and clustering them into situational categories organised in a hierarchical tree structure. Such relationships change over time due to the changes taken place in the design environment whenever further representations are developed using the Generator module and new observations are constructed by the Recogniser module. The Restructuring Situator module updates previously learned situational categories and restructures the hierarchical tree accordingly in response to new observations.

Learning the situatedness shape semantics may play a crucial role in designing if designers pursue further some of these shape semantics. This thesis illustrates an approach in which SLiDe can be utilised in designing to explore the shapes in a design composition in various ways; bring designers! attention to potentially hidden features and shape semantics of their designs; and maintain the integrity of the design composition by using the situatedness of shape semantics. The thesis concludes by outlining future directions for this research to learn and update the situatedness of design knowledge within the context of use; considering the role of functional knowledge while learning the situatedness of design knowledge; and developing an autonomous situated agent-based designing system.

series thesis:PhD
email
last changed 2003/05/06 11:34

_id 0e2f
authors Stach, Edgar
year 2000
title EXPO 2000 Pavilion and Exposition: Precedent Studies
doi https://doi.org/10.52842/conf.acadia.2000.018
source ACADIA Quarterly, vol. 19, no. 1, pp. 18-20
summary Included in this article are two second year architecture graduate student precedent studies to understand the complexity of a built project and its functional, structural and spatial design concept. Students were instructed to ‘disassemble’ the building according to Form & Function, Structure & Construction, Materials, and Display Methods. Through the use of computer-generated models the students were able to understand the relationship between space and structure without having to physically travel to the pavilion sites. The computer offered the unique ability to explore a spatial study of buildings and places that no longer exist (such as the IBM Pavilion by Renzo Piano), as well as to anticipate the spatial qualities of spaces that are not yet built (similar to the Swiss Pavilion by Peter Zumthor). Final analysis drawings were created through manipulating the computer models to explain the Space & Form (spatial hierarchies), Spatial Sequence (circulation, path & place, and exhibition sequencing), and Space & Order (structure, proportion, and systems).
series ACADIA
last changed 2022/06/07 07:56

_id 4eb5
authors Stellingwerff, Martijn and Verbeke, Johan (Eds.)
year 2001
title ACCOLADE - Architecture, Collaboration, Design
source Delft University Press (DUP Science) / ISBN 90-407-2216-1Ý/ The Netherlands, 202 p. [Book ordering info: m.c.stellingwerff@bk.tudelft.nl]
summary This book is the outcome of the Euro-Workshop {ACCOLADE} which took place from 28th of August till 1st of September 2000. The Euro-Workshop was funded by the European Commission through the Fifth Framework of Research. Young and senior researchers worked together on the theme of Architectural Collaborative Design. The set of traditional papers is supplemented by a report on the brainstorm and working sessions which produced a lot of materials for future research directions. They are summarized in a research agenda. The global scheme gives a structure for the different sub-themes ranging from communication language, communication behaviour, communication environment, goals and roles and education. The combination of technical reflections and human aspects makes this book a unique position in the field of collaborative design. The name {ACCOLADE} is an acronym for Architectural Collaborative Design. The association of this name is positive because the accolade sign brings a number of different words together in a group. E.g. {England, Belgium, the Netherlands, Italy, ...}. The meaning of the word in English is 'a mark of honour' and the French meaning of the word is a 'solemn embrace'. It also refers to the multi-disciplinary design process. These connotations can be useful for a collaboration project in which many different people and parties plan to make a joint design effort.
series other
email
last changed 2001/09/14 21:30

_id ga0101
id ga0101
authors Tanzini, Luca
year 2000
title Universal City
source International Conference on Generative Art
summary "Universal City" is a multimedia performance that documents the evolution of the city in history. Whereas in the past the city was symbolically the world, today the world has become a city. The city rose up in an area once scattered and disorganized for so long that most of its ancient elements of culture were destroyed. It absorbed and re synthesized the remnants of this culture, cultivating power and efficiency. By means of this concentration of physical and cultural power, the city accelerated the rhythm of human relationships and converted their products into forms that are easily stockpiled and reproduced. Along with monuments, written documents and ordered associative organizations amplified the impact of all human activities, extending backwards and forwards over time. Since the beginning however, law and order stood alongside brute force, and power was always determined by these new institutions. Written law served to produce a canon of justice and equality that claimed a higher principle: the king's will, synonymous with divine command. The Urban Neolithic Revolution is comparable only to the Industrial Revolution, and the Media Technology in our own era. There is of course a substantial difference: ours is an era of immeasurable technological progress as an end in itself, which leads to the explosion of the city, and the consequent dissemination of its structure across the countryside. The old walled city has not only fallen, it's buried its foundations. Our civilization flees from every possibility of control, by means of its own extra resources not controllable by the egregious ambitions of man. The image of modern industrialization that Charlie Chaplin resurrected from the past in "Modern Times" is the exact opposite of contemporary metropolitan reality. He figured the worker as a slave chained to his machine and fed by machinery as he continued to work at maintaining the machine itself. Today the workplace is not so brutal, but automation has made it much more oppressive. Energy and dedication once directed towards the production process are today shifted towards consumption. The metropolis in the final phase of its evolution, is becoming a collective mechanism for maintaining the function of this system, and for giving the illusion of power, wealth, happiness, and total success, to those who are, in actuality, its victims. It is a concept foreign to the modern metropolitan mentality that life should be an occasion to Live, and not an excuse for generating newspaper articles, television interviews, or mass spectacles for those who know nothing better. Instead the process continues, until people prefer the simulacrum to the real, where image dominates over object, the copy over the original, representation over reality, appearance over Being. The first phase of the Economy's domination over social life brought about the visible degradation of every human accomplishment from "Being" into "Having". The present phase of social life's total occupation by the accumulated effects of the Economy is leading to a general downslide from "Having" into "Seeming". The performance is based on the instantaneous interaction between video and music: the video component is assembled in real time with RandomCinema a software that I developed and projected on a screen. The music-noise is the product of human radical improvisation togheter automatic-computer process. Everything is based on the consideration of the element of chance as a stimulus for the construction of the most options. The unpredictable helps to reveal things as they happen. The montage, the music, and their interaction, are born and die and the same moment: there are no stage directions or scripts.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 766f
authors Tunçer, Bige and Stouffs, Rudi
year 2000
title A Representational Framework for Architectural Analysis
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 206-208
summary Architectural objects are expressed through a variety of abstractions, each presenting a different aspect. In an architectural analysis, abstractions can be treated as individual entities, categorized, and hyperlinked within an organizational structure. However, such systems lack the possibility to distinguish individual components within the abstractions and to relate these within and between abstractions. Instead, by adopting a uniform language such as XML as a common syntax for representing these abstractions, these can be interpreted and broken up into components, these components related, and the relationships added to the representation. The result is a richer information structure: an integrated structure of components and relationships represented in a uniform way. This information structure can provide new views not inherent to the original structure of abstractions, offering new interpretations that can lead to new abstractions. This paper discusses a prototype application for representing abstractions using XML, and the strengths and limitations of XML for this task.
series SIGRADI
email
last changed 2016/03/10 10:01

_id ga0007
id ga0007
authors Coates, Paul and Miranda, Pablo
year 2000
title Swarm modelling. The use of Swarm Intelligence to generate architectural form
source International Conference on Generative Art
summary .neither the human purposes nor the architect's method are fully known in advance. Consequently, if this interpretation of the architectural problem situation is accepted, any problem-solving technique that relies on explicit problem definition, on distinct goal orientation, on data collection, or even on non-adaptive algorithms will distort the design process and the human purposes involved.' Stanford Anderson, "Problem-Solving and Problem-Worrying". The works concentrates in the use of the computer as a perceptive device, a sort of virtual hand or "sense", capable of prompting an environment. From a set of data that conforms the environment (in this case the geometrical representation of the form of the site) this perceptive device is capable of differentiating and generating distinct patterns in its behavior, patterns that an observer has to interpret as meaningful information. As Nicholas Negroponte explains referring to the project GROPE in his Architecture Machine: 'In contrast to describing criteria and asking the machine to generate physical form, this exercise focuses on generating criteria from physical form.' 'The onlooking human or architecture machine observes what is "interesting" by observing GROPE's behavior rather than by receiving the testimony that this or that is "interesting".' The swarm as a learning device. In this case the work implements a Swarm as a perceptive device. Swarms constitute a paradigm of parallel systems: a multitude of simple individuals aggregate in colonies or groups, giving rise to collaborative behaviors. The individual sensors can't learn, but the swarm as a system can evolve in to more stable states. These states generate distinct patterns, a result of the inner mechanics of the swarm and of the particularities of the environment. The dynamics of the system allows it to learn and adapt to the environment; information is stored in the speed of the sensors (the more collisions, the slower) that acts as a memory. The speed increases in the absence of collisions and so providing the system with the ability to forget, indispensable for differentiation of information and emergence of patterns. The swarm is both a perceptive and a spatial phenomenon. For being able to Interact with an environment an observer requires some sort of embodiment. In the case of the swarm, its algorithms for moving, collision detection, and swarm mechanics conform its perceptive body. The way this body interacts with its environment in the process of learning and differentiation of spatial patterns constitutes also a spatial phenomenon. The enactive space of the Swarm. Enaction, a concept developed by Maturana and Varela for the description of perception in biological terms, is the understanding of perception as the result of the structural coupling of an environment and an observer. Enaction does not address cognition in the currently conventional sense as an internal manipulation of extrinsic 'information' or 'signals', but as the relation between environment and observer and the blurring of their identities. Thus, the space generated by the swarm is an enactive space, a space without explicit description, and an invention of the swarm-environment structural coupling. If we consider a gestalt as 'Some property -such as roundness- common to a set of sense data and appreciated by organisms or artefacts' (Gordon Pask), the swarm is also able to differentiate space 'gestalts' or spaces of some characteristics, such as 'narrowness', or 'fluidness' etc. Implicit surfaces and the wrapping algorithm. One of the many ways of describing this space is through the use of implicit surfaces. An implicit surface may be imagined as an infinitesimally thin band of some measurable quantity such as color, density, temperature, pressure, etc. Thus, an implicit surface consists of those points in three-space that satisfy some particular requirement. This allows as to wrap the regions of space where a difference of quantity has been produced, enclosing the spaces in which some particular events in the history of the Swarm have occurred. The wrapping method allows complex topologies, such as manifoldness in one continuous surface. It is possible to transform the information generated by the swarm in to a landscape that is the result of the particular reading of the site by the swarm. Working in real time. Because of the complex nature of the machine, the only possible way to evaluate the resulting behavior is in real time. For this purpose specific applications had to be developed, using OpenGL for the Windows programming environment. The package consisted on translators from DXF format to a specific format used by these applications and viceversa, the Swarm "engine", a simulated parallel environment, and the Wrapping programs, to generate the implicit surfaces. Different versions of each had been produced, in different stages of development of the work.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 1f5c
authors Beesley, Philip and Seebohm, Thomas
year 2000
title Digital Tectonic Design
doi https://doi.org/10.52842/conf.ecaade.2000.287
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 287-290
summary Digital tectonic design is a fresh approach to architectural design methodology. Tectonics means a focus on assemblies of construction elements. Digital tectonics is an evolving methodology that integrates use of design software with traditional construction methods. We see digital tectonic design as a systematic use of geometric and spatial ordinances, used in combination with details and components directly related to contemporary construction. The current approach will, we hope, lead to an architectural curriculum based on generative form making where the computer can be used to produce systems of forms algorithmically. Digital design has tended to remain abstract, emphasizing visual and spatial arrangements often at the expense of materials and construction. Our pursuit is translation of these methods into more fully realized physical qualities. This method offers a rigorous approach based on close study of geometry and building construction elements. Giving a context for this approach, historical examples employing systematic tectonic design are explored in this paper. The underlying geometric ordinance systems and the highly tuned relationships between the details in these examples offer design vocabularies for use within the studio curriculum. The paper concludes with a detailed example from a recent studio project demonstrating particular qualities developed within the method. The method involves a wide range of scales, relating large-scale gestural and schematic studies to detailed assembly systems. Designing in this way means developing geometric strategies and, in parallel, producing detailed symbols or objects to be inserted. These details are assembled into a variety of arrays and groups. The approach is analogous to computer-aided designÕs tradition of shape grammars in which systems of spatial relationships are used to control the insertion of shapes within a space. Using this approach, a three-dimensional representation of a building is iteratively refined until the final result is an integrated, systematically organized complex of symbols representing physical building components. The resulting complex offers substantial material qualities. Strategies of symbol insertions and hierarchical grouping of elements are familiar in digital design practice. However these strategies are usually used for automated production of preconceived designs. In contrast to thsse normal approaches this presentation focuses on emergent qualities produced directly by means of the complex arrays of symbol insertions. The rhyth
keywords 3D CAD Systems, Design Practice, 3D Design Strategies
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 01a5
authors Willer, B.
year 2000
title Lightweight Structures in Technical Engineering
doi https://doi.org/10.52842/conf.acadia.2000.016
source ACADIA Quarterly, vol. 19, no. 3, pp. 16-17
summary The model of the space shuttle was a precendent study given to help understand light weight structures and technical engineering and how they might be later applied to the design of a building. The project requested a three-dimensional model of the problem and further research into the technical matters of the problem. Structural analysis was requested both through the use of the model as a visual tool and in depth research as its counter. Materials and construction types were all looked at and researched for the precendent study, as well as, spacial relationships.
series ACADIA
last changed 2022/06/07 07:56

_id 9d26
authors Adriane Borda Da Silva, A., Félix, N.R., Magallón Lacarta, J.A., Serón Arbeloa, F.J.
year 2000
title Da Representação à Modelagem (From Representation Towards Modeling)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 280-282
summary This work intends to structure a conceptual and technical referential to guide the development of the “Post-Graduate Drawing Course - from traditional tracing to computer graphics” (DTGC-IFM,UFPel, RS, Brasil), related to the process of using the computer technology for problem-solving in graphics representation. The referential intends to evaluate the level of development, and also orientate the investments with qualification of the staff, hardware and software. This study refers only to the process of solving problems using computer graphics techniques for Geometric and Visual Modeling.
series SIGRADI
email
last changed 2016/03/10 09:47

_id eabb
authors Boeykens, St. Geebelen, B. and Neuckermans, H.
year 2002
title Design phase transitions in object-oriented modeling of architecture
doi https://doi.org/10.52842/conf.ecaade.2002.310
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 310-313
summary The project IDEA+ aims to develop an “Integrated Design Environment for Architecture”. Its goal is providing a tool for the designer-architect that can be of assistance in the early-design phases. It should provide the possibility to perform tests (like heat or cost calculations) and simple simulations in the different (early) design phases, without the need for a fully detailed design or remodeling in a different application. The test for daylighting is already in development (Geebelen, to be published). The conceptual foundation for this design environment has been laid out in a scheme in which different design phases and scales are defined, together with appropriate tests at the different levels (Neuckermans, 1992). It is a translation of the “designerly” way of thinking of the architect (Cross, 1982). This conceptual model has been translated into a “Core Object Model” (Hendricx, 2000), which defines a structured object model to describe the necessary building model. These developments form the theoretical basis for the implementation of IDEA+ (both the data structure & prototype software), which is currently in progress. The research project addresses some issues, which are at the forefront of the architect’s interest while designing with CAAD. These are treated from the point of view of a practicing architect.
series eCAADe
email
last changed 2022/06/07 07:52

_id f73b
authors Brady, Darlene A.
year 2000
title Percept vs. Precept: Digital Media & the Creative Process
doi https://doi.org/10.52842/conf.ecaade.2000.261
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 261-264
summary The design of architecture, as well as all of the arts, is a creative act concerned with the expression of ideas through culturally significant and relevant form. In order for the creative act to transcend the authority or dictates of precedents or trends, it must be informed and guided by a process and not a product; one which reveals, but does not dictate, expressive, functional form. The initial impact of digital media on architectural design has been the ability to render the look of a final project or to create shapes that reflect the facility of the tool. Digital media also enables the composition and structure of space and form to be discovered simultaneously and relationally with the phenomena of color and kinetics, to generate and visualize an idea as form, and to represent form as experience. This requires interweaving computing with a creative process in which percept, rather than precept, is the driving force of the investigation. This paper explores the role of ideation, tectonic color and kinetics as an intentional design strategy and formgiver for architecture. The role of the computer is to enable the designer to generate meaningful architecture beyond precepts of image and style. Design as a making in the mind uses our rational and imaginative faculties. Complete freedom is not a necessity for inventiveness. Research on creativity indicates that "constraining options and focusing thought in a specific, rigorous and discerning direction" play an important role. The key is a balance of structured and discursive inquiry that encourages a speculative, free association of ideas. Tim Berners-Lee, one of the creators of the World Wide Web, likened creativity to a weblike process that is nonlinear but also not random; which when placed in an environment rich with information will float ideas so the mind "can jiggle them into an insight." Geoffrey Vickers in his essay, "Rationality and Intuition" described this symbiotic relationship as "...two functions which in practice are never wholly separated but which are, nonetheless, logically distinct as two reciprocating phases in a recurrent process of mental activity." The rational is formative and intuition is generative; both are essential to creativity.
keywords Percept, Creativity, Ideation, Tectonic Color, Kinetics
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id cef3
authors Bridges, Alan H.
year 1992
title Computing and Problem Based Learning at Delft University of Technology Faculty of Architecture
doi https://doi.org/10.52842/conf.ecaade.1992.289
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 289-294
summary Delft University of Technology, founded in 1842, is the oldest and largest technical university in the Netherlands. It provides education for more than 13,000 students in fifteen main subject areas. The Faculty of Architecture, Housing, Urban Design and Planning is one of the largest faculties of the DUT with some 2000 students and over 500 staff members. The course of study takes four academic years: a first year (Propaedeuse) and a further three years (Doctoraal) leading to the "ingenieur" qualification. The basic course material is delivered in the first two years and is taken by all students. The third and fourth years consist of a smaller number of compulsory subjects in each of the department's specialist areas together with a wide range of option choices. The five main subject areas the students may choose from for their specialisation are Architecture, Building and Project Management, Building Technology, Urban Design and Planning, and Housing.

The curriculum of the Faculty has been radically revised over the last two years and is now based on the concept of "Problem-Based Learning". The subject matter taught is divided thematically into specific issues that are taught in six week blocks. The vehicles for these blocks are specially selected and adapted case studies prepared by teams of staff members. These provide a focus for integrating specialist subjects around a studio based design theme. In the case of second year this studio is largely computer-based: many drawings are produced by computer and several specially written computer applications are used in association with the specialist inputs.

This paper describes the "block structure" used in second year, giving examples of the special computer programs used, but also raises a number of broader educational issues. Introduction of the block system arose as a method of curriculum integration in response to difficulties emerging from the independent functioning of strong discipline areas in the traditional work groups. The need for a greater level of selfdirected learning was recognised as opposed to the "passive information model" of student learning in which the students are seen as empty vessels to be filled with knowledge - which they are then usually unable to apply in design related contexts in the studio. Furthermore, the value of electives had been questioned: whilst enabling some diversity of choice, they may also be seen as diverting attention and resources from the real problems of teaching architecture.

series eCAADe
email
last changed 2022/06/07 07:54

_id b4c4
authors Carrara, G., Fioravanti, A. and Novembri, G.
year 2000
title A framework for an Architectural Collaborative Design
doi https://doi.org/10.52842/conf.ecaade.2000.057
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 57-60
summary The building industry involves a larger number of disciplines, operators and professionals than other industrial processes. Its peculiarity is that the products (building objects) have a number of parts (building elements) that does not differ much from the number of classes into which building objects can be conceptually subdivided. Another important characteristic is that the building industry produces unique products (de Vries and van Zutphen, 1992). This is not an isolated situation but indeed one that is spreading also in other industrial fields. For example, production niches have proved successful in the automotive and computer industries (Carrara, Fioravanti, & Novembri, 1989). Building design is a complex multi-disciplinary process, which demands a high degree of co-ordination and co-operation among separate teams, each having its own specific knowledge and its own set of specific design tools. Establishing an environment for design tool integration is a prerequisite for network-based distributed work. It was attempted to solve the problem of efficient, user-friendly, and fast information exchange among operators by treating it simply as an exchange of data. But the failure of IGES, CGM, PHIGS confirms that data have different meanings and importance in different contexts. The STandard for Exchange of Product data, ISO 10303 Part 106 BCCM, relating to AEC field (Wix, 1997), seems to be too complex to be applied to professional studios. Moreover its structure is too deep and the conceptual classifications based on it do not allow multi-inheritance (Ekholm, 1996). From now on we shall adopt the BCCM semantic that defines the actor as "a functional participant in building construction"; and we shall define designer as "every member of the class formed by designers" (architects, engineers, town-planners, construction managers, etc.).
keywords Architectural Design Process, Collaborative Design, Knowledge Engineering, Dynamic Object Oriented Programming
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id be17
authors Chen, Yen-Jen and Chen, Ching-Yu
year 2000
title The Representation of Information Structure in the Cyber World. A Space Cognition Approach
doi https://doi.org/10.52842/conf.caadria.2000.351
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 351-356
summary The Internet, the place that people called "cyberspace", is a new place that people can explore in now. But we usually fell "astray" in there because there are no signs like roads, bridges, like it is in the physical world. This paper tries to cite the Lynch's (1960) urban design theory, then to develop a new Internet search mechanism's graphic user interface, and tries to help people explore in Internet more effectively.
series CAADRIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 36HOMELOGIN (you are user _anon_109007 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002