CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 740

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 2004_024
id 2004_024
authors Holmgren, S., Rüdiger, B., Storgaard, K. and Tournay, B.
year 2004
title The Electronic Neighbourhood - A New Urban Space
doi https://doi.org/10.52842/conf.ecaade.2004.024
source Architecture in the Network Society [22nd eCAADe Conference Proceedings / ISBN 0-9541183-2-4] Copenhagen (Denmark) 15-18 September 2004, pp. 24-34
summary During the event Cultural Market Days on 23 and 24 August 2003 at Noerrebro Park in Copenhagen, visitors could also enter the marketplace from their home via the Internet, as a digital 3D model had been constructed that showed the marketplace with all its information booths and activities. This virtual marketplace functioned as an extension of the urban space, allowing you to take part in the flow of information, activities and experiences that were offered in the marketplace. And this just by a click on the Internet address: http://www.e-kvarter.dk. Furthermore at certain times of the day you could chat with people from some of the many working groups of the urban regeneration project in Noerrebro. The digital 3D model is similar to the marketplace, but it creates its own universe in the green surroundings of Noerrebro Park. And now, when the Cultural Market Days are finished and the booths and people have gone, the Electronic Marketplace still remains on the Internet, with a potential for developing a new public space for information, dialogue and cooperation between the actors of the urban regeneration project. This paper presents the results of a 3-year research project, The Electronic Neighbourhood (2000-2004). Researchers have developed and tested a digital model of the urban area and other digital tools for supporting the dialogue and cooperation between professionals and citizens in an urban regeneration project in Copenhagen. The Danish Agency for Enterprise and Housing, the Ministry for Refugees, Immigration and Integration and Copenhagen Municipality have financed the research, which is planned to be published 2004. The results can also be followed on the Internet www.e-kvarter.dk.
keywords 3D Modelling; Virtual Environments; Design Process; Human-Computer Interaction; Collaborative Design; Urban Planning
series eCAADe
last changed 2022/06/07 07:50

_id cd17
authors Bermudez, J., Agutter, J., Westenskow, D., Foresti, S., Zhang, Y., Gondeck-Becker, D., Syroid, N., Lilly, B., Strayer, .D. and Drews, F.
year 2000
title Data Representation Architecture: Visualization Design Methods, Theory and Technology Applied to Anesthesiology
doi https://doi.org/10.52842/conf.acadia.2000.091
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 91-102
summary The explosive growth of scientific visualization in the past 10 years demonstrate a consistent and tacit agreement among scientists that visualization offers a better representation system for displaying complex data than traditional charting methods. However, most visualization works have not been unable to exploit the full potential of visualization techniques. The reason may be that these attempts have been largely executed by scientists. While they have the technical skills for conducting research, they do not have the design background that would allow them to display data in easy to understand formats. This paper presents the architectural methodology, theory, technology and products that are being employed in an ongoing multidisciplinary research in anesthesiology. The project’s main goal is to develop a new data representation technology to visualize physiologic information in real time. Using physiologic data, 3-D objects are generated in digital space that represent physiologic changes within the body and show functional relationships that aid in the detection, diagnosis, and treatment of critical events. Preliminary testing results show statistically significant reduction in detection times. The research outcome, potential, and recently received NIH grant supporting the team’s scientific methods all point to the contributions that architecture may offer to the growing field of data visualization.
series ACADIA
email
last changed 2022/06/07 07:52

_id 8805
authors Flemming, U., Erhan, H.I. and Ozkaya, I.
year 2001
title Object-Oriented Application Development in CAD
source Technical Report 48-01-01. Pittsburgh, PA: Carnegie Mellon University, Institute of Complex Engineered Systems
summary This report describes a graduate interdisciplinary course offered to students in the graduate program of the School of Architecture at Carnegie Mellon and related departments in fall 2000. The motivation was the realization that when commercial CAD (Computer-Aided Design) systems recently switched from procedural application programming languages to object-oriented ones, third-party application must undergo a significant cognitive retooling"; i. e. they must know more than the syntax and semantics of the new programming language to be used and must be able to employ appropriate software development strategies that are appropriate for the new paradigm. especially with respect to the importance of modeling, a distinguishing characteristic of object-oriented programming. The goal of the course was (a) to introduce and test strategies of object-oriented application development in general and in the context of MicroStation, a state-of-the-art commercial CAD package; (b) to develop-as a course team project-an interesting application that gives students practice with these strategies and team work; and (c) to document our approach and findings so that others can learn from them. The strategies introduced were the use-case approach of Jacobson et al. and the complementary object-modeling tools of Rumbaugh that were recently integrated into the Unified Modeling Language UML. The software platform supporting the course comprised MicroStation, JMDL (a superset of Java) and ProjectBank on the CAD side and RationalRose on the modeling side. The application developed by students in the course supports the generation of drawings for remodeling projects from a set of dgn files describing the existing state of the building to be remodeled. The course was supported by a grant and in-kind contributions from Bentley with matching funds from the Pennsylvania Infrastructure Technology Alliance (PITA)."
series report
email
last changed 2003/04/23 15:50

_id d931
authors Gabryszewski, Artur B.
year 1999
title Idea of an Intelligent Building - Development Prospects
doi https://doi.org/10.52842/conf.ecaade.1999.739
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 739-743
summary An ever-increasing number of offices as also residential buildings are being realised by designers and investors in accordance with the concept of an intelligent building. Houses of the new generation are being constructed. This is possible thanks to dynamic progress in the development of computer and microprocessor engineering techniques. Putting into reality the idea of the 'intelligent building' will become one of the most interesting assignments of Polish building industry in the rapidly approaching XXI century. The term 'intelligent building' first appeared in the eighties. The idea behind this conception is aspiring to create a friendly, work supporting, effective environment. The revolution in telecommunications and information technology along with change in the standards of office work, have caused computer networks and modem systems of automation and protection, to invade buildings. From the technical point of view, an intelligent building is an object in which all the subsystems co-operate with each other, forming a friendly environment for man. For users of an intelligent building, the most important issue is realisation of the following aims: object management which includes both control of human resources and automation systems in the building and also efficient management of the building space in such a way that the costs of its utilisation are minimised. The possibility of optional installation of modern systems and equipment should be facilitated by the architecture itself. Therefore, the specifics of all the building elements should be taken into account right at the designing stage. The following features characterise an intelligent building: integration of telecommunication systems in the building, central management and supervision system and utilisation of structural cabling as the carrier of signals controlling most of the systems in the building. Presently, there is no building in Poland that could be characterised by the three features mentioned.
keywords High-tech Architecture, Ecology, CAAD
series eCAADe
email
last changed 2022/06/07 07:50

_id 988d
authors Russell, Peter and Forgber, Uwe
year 2000
title The E-Talier: Inter-university Networked Design Studios
doi https://doi.org/10.52842/conf.ecaade.2000.045
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 45-50
summary The widespread infiltration of internet based variations of traditional areas of society (e-commerce, e-business, e-mail etc.) will not spare the halls of academia in its propagation. The term courseware is well nigh 20 years old and considerable research and development has been done in bringing network based distributed courses to university consortiums including those in architecture and civil engineering. Indeed, the European Commission has recently approved funding for a 3-year web-based virtual university of architecture and construction technology: the WINDS project led by the University of Ancona. Such attempts to create e-courses are largely an extension of typical courseware where the syllabus is quantified and divided into lessons for use by the students alone or in conjunction with their tutors and professors. This is quite adequate in conveying the base knowledge of the profession. However, the tenants of being an architect or engineer involve the deft use of that unwieldy named and deliciously imprecise tool called "design". Teaching design sooner or later involves the design studio: a pedagogically construed environment of simulation intended to train, not teach the skills of designing. This is fundamentally different from normal courseware. A network based design studio (Etalier) must be able to reflect the nature of learning design. Design studios typically involve specifically chosen design problems, researched supporting information to assist design decisions, focussed discussions, individual consultation and criticism, group criticism, public forums for presentation discussion and criticism as well as a myriad of informal undocumented communication among the students themselves. So too must an Etalier function. Essentially, it must allow collaboration through communication. Traditional barriers to collaboration include language, culture (both national and professional) and distance. Through the internet's capricious growth and the widespread use of English as a second language, the largest hurdle to attaining fruitful collaboration is probably cultural. In the case of an Etalier in a university setting, the cultural difficulties arise from administrative rules, the pedagogical culture of specific universities and issues such as scheduling and accreditation. Previous experiments with virtual design studios have demonstrated the criticality of such issues. The proposed system allows participating members to specify the degree and breadth with which they wish to partake. As opposed to specifying the conditions of membership, we propose to specify the conditions of partnership. Through the basic principal of reciprocity, issues such as accreditation and work load sharing can be mitigated. Further, the establishment of a studio market will allow students, tutors and professors from participating institutions to partake in studio projects of their choosing in accordance with their own constraints, be they related to schedule, expertise, legal or other matters. The paper describes these mechanisms and some possible scenarios for collaboration in the Etalier market.
keywords e-Studio, Virtual Design Studio, Courseware, CSCW
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:56

_id caadria2000_000
id caadria2000_000
authors Tan, Beng-Kiang; Tan, Milton; Wong, Yunn-Chii (eds.)
year 2000
title CAADRIA 2000
doi https://doi.org/10.52842/conf.caadria.2000
source Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, 519 p.
summary Ever since the advent of computer graphics in the sixties, computer-aided architectural design (CAAD) has made a great impact in architectural education and practice. Its central role as a new media for the representation and analysis of designs will ensure that it will continue to do so. The teaching and research in CAAD in Asia have also been growing in scope and in quality. In the 21st century, the challenges of architectural education and practice in the new millennium will open up new fronts in CAAD research. This conference is an important platform to evaluate the challenge and opportunities and will enable researchers to exchange ideas and collaboration in projects with specific relevance to CADD for Asia. This compilation of 48 papers were elected through a blind review by an international panel and presented at the conference in Singapore on 18 - 19 May 2000. The chapters are organised according to the main topics covered by the conference -- Collaborative Design, Simulation, Design Education, Knowledge Representation, Design Process, Information Systems, Design Tools, Virtual Reality and Computer Media. The Collaborative Design section consists of papers which deal with Collaborative Design Process interfaces to databases, Collaborative Design System for Citizen Participation, Team Awareness in Collaboration and Computer Environment for supporting Design Collaboration. The Simulation section deals with lighting studies, colour assessment, simulation of urban growth patterns, dynamic simulations in buildings and way-finding. The Design Education section consists of papers on design pedagogy in design studios using computers, virtual studios and virtual learning. The Knowledge Representation section consists of papers that deal with knowledge-based systems, design representation and shape grammar. The Design Process section consists of papers on design process and cognition, design creativity and the computer media. The Information Systems section consists of papers on information navigation, information management, design information repository and databases. The Design Tools section consists of papers on design tools based on generative systems, a new method for 3D animation and movement-in-architectural-space representation. The Virtual Reality and Computer Media section deals with virtual reality applications and tools in architecture, designing virtual environments and computer media and visualization.
series CAADRIA
last changed 2022/06/07 07:49

_id 28f3
authors Alvarado, R.G., Vildósola, G.V., Parra, J.C. and Jara, M.R.
year 2000
title Creacion/Creatividad: Evaluando Diseños Arquitectónicos con Realidad Virtual (Creation/Creativity: Evaluating Architectural Designs by means of Virtual Reality)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 243-246
summary ¿Can the computer improves the architectural creativity? This question is explored through a Virtual-Reality system developed for the modeling of timber structures, based on parametric elements, constructive programming and immersive visualization on real-time. Making experiences of evaluation with advanced students of architecture, whose use the system in the beginning of projects, compared with other group use not the system. This research faces the possibilities to rationalizate part of the creative process in architecture, broading the role of computer and its contribution to quality of design, and extending the possibilities to teach and share the creation of project. It is argue that major potential in this field is the swiftness, formal variety and spatial living of design, challenging the differences between objective and subjective.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ddssar0002
id ddssar0002
authors Aoki, Yoshitsugu and Inage, Makoto
year 2000
title Linguistic Operation System for Design of Architectural Form
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary In a process of architectural design, an architect not only draws by himself/herself but also lets another person modify a design by given a linguistic instruction expressing how the design ought to be. In the case of utilization of CAD systems, it is useful if the system modifies the design according to the linguistic instruction. On the other hand, because of the recent increase of the opportunities of designing a building whose roof has complicated curved surface, it extremely takes labor to change the design. This paper proposes a linguistic operation system that modifies a design according to the linguistic instruction of the modification by the user to support design of a complicated form with curved surface. The proposed system is expected to be integrated with a CAD system. First, the system presents a perspective sketch of a designed form. From the values of the design variables that characterize the form in the system, the system calculates the position of the form in “the association image space.” Second, the designer puts a linguistic instruction i.e., words as like as “let it be more light” to modify the form. The words used for the instruction have the position in the association image space. In the association image space, the system moves the position of the form to a new position that gets to be near the position of the given word. The system calculates the values of the design variables of the form corresponding to the new position. We need a mapping from every vector representing the position of the changed form in the association image space to the corresponding vector representing the values of the design variables. To find the mapping, we construct a neural network system with three levels. Finally, the system presents a perspective sketch of changed form using the calculated values of design variables.
series DDSS
last changed 2003/11/21 15:15

_id f73b
authors Brady, Darlene A.
year 2000
title Percept vs. Precept: Digital Media & the Creative Process
doi https://doi.org/10.52842/conf.ecaade.2000.261
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 261-264
summary The design of architecture, as well as all of the arts, is a creative act concerned with the expression of ideas through culturally significant and relevant form. In order for the creative act to transcend the authority or dictates of precedents or trends, it must be informed and guided by a process and not a product; one which reveals, but does not dictate, expressive, functional form. The initial impact of digital media on architectural design has been the ability to render the look of a final project or to create shapes that reflect the facility of the tool. Digital media also enables the composition and structure of space and form to be discovered simultaneously and relationally with the phenomena of color and kinetics, to generate and visualize an idea as form, and to represent form as experience. This requires interweaving computing with a creative process in which percept, rather than precept, is the driving force of the investigation. This paper explores the role of ideation, tectonic color and kinetics as an intentional design strategy and formgiver for architecture. The role of the computer is to enable the designer to generate meaningful architecture beyond precepts of image and style. Design as a making in the mind uses our rational and imaginative faculties. Complete freedom is not a necessity for inventiveness. Research on creativity indicates that "constraining options and focusing thought in a specific, rigorous and discerning direction" play an important role. The key is a balance of structured and discursive inquiry that encourages a speculative, free association of ideas. Tim Berners-Lee, one of the creators of the World Wide Web, likened creativity to a weblike process that is nonlinear but also not random; which when placed in an environment rich with information will float ideas so the mind "can jiggle them into an insight." Geoffrey Vickers in his essay, "Rationality and Intuition" described this symbiotic relationship as "...two functions which in practice are never wholly separated but which are, nonetheless, logically distinct as two reciprocating phases in a recurrent process of mental activity." The rational is formative and intuition is generative; both are essential to creativity.
keywords Percept, Creativity, Ideation, Tectonic Color, Kinetics
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 9384
authors Burry, M., Datta, S. and Anson, S.
year 2000
title Introductory Computer Programming as a Means for Extending Spatial and Temporal Understanding
doi https://doi.org/10.52842/conf.acadia.2000.129
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 129-135
summary Should computer programming be taught within schools of architecture? Incorporating even low-level computer programming within architectural education curricula is a matter of debate but we have found it useful to do so for two reasons: as an introduction or at least a consolidation of the realm of descriptive geometry and in providing an environment for experimenting in morphological time-based change. Mathematics and descriptive geometry formed a significant proportion of architectural education until the end of the 19th century. This proportion has declined in contemporary curricula, possibly at some cost for despite major advances in automated manufacture, Cartesian measurement is still the principal ‘language’ with which to describe building for construction purposes. When computer programming is used as a platform for instruction in logic and spatial representation, the waning interest in mathematics as a basis for spatial description can be readdressed using a left-field approach. Students gain insights into topology, Cartesian space and morphology through programmatic form finding, as opposed to through direct manipulation. In this context, it matters to the architect-programmer how the program operates more than what it does. This paper describes an assignment where students are given a figurative conceptual space comprising the three Cartesian axes with a cube at its centre. Six Phileban solids mark the Cartesian axial limits to the space. Any point in this space represents a hybrid of one, two or three transformations from the central cube towards the various Phileban solids. Students are asked to predict the topological and morphological outcomes of the operations. Through programming, they become aware of morphogenesis and hybridisation. Here we articulate the hypothesis above and report on the outcome from a student group, whose work reveals wider learning opportunities for architecture students in computer programming than conventionally assumed.
series ACADIA
email
last changed 2022/06/07 07:54

_id ddssar0006
id ddssar0006
authors Ciftcioglu, Ö., Durmisevic, S. and Sariyildiz, S.
year 2000
title Multi-objective design for space layout topology
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary A novel method to produce space layout topologies for architectural design is described. From the uniformly distributed design solutions in the solution space the corresponding design requirements are computed according to a given norm and metric function. The system is based on graph representation of the layout so that the desired relations between the pairs of nodes are considered to be independent variables of appropriate series of multivariable functions mapping the requirements into the solution space. The system so established is used as a knowledge-base for robust layout design where knowledge base having been established, the layout design requirements are introduced to the system as design constraints and the output is identified in the multidimensional solution space by means of interpolation. Since the smoothness of the interpolation is guaranteed, robust design layout, in the form of node locations, is obtained.
series DDSS
last changed 2003/08/07 16:36

_id ga0007
id ga0007
authors Coates, Paul and Miranda, Pablo
year 2000
title Swarm modelling. The use of Swarm Intelligence to generate architectural form
source International Conference on Generative Art
summary .neither the human purposes nor the architect's method are fully known in advance. Consequently, if this interpretation of the architectural problem situation is accepted, any problem-solving technique that relies on explicit problem definition, on distinct goal orientation, on data collection, or even on non-adaptive algorithms will distort the design process and the human purposes involved.' Stanford Anderson, "Problem-Solving and Problem-Worrying". The works concentrates in the use of the computer as a perceptive device, a sort of virtual hand or "sense", capable of prompting an environment. From a set of data that conforms the environment (in this case the geometrical representation of the form of the site) this perceptive device is capable of differentiating and generating distinct patterns in its behavior, patterns that an observer has to interpret as meaningful information. As Nicholas Negroponte explains referring to the project GROPE in his Architecture Machine: 'In contrast to describing criteria and asking the machine to generate physical form, this exercise focuses on generating criteria from physical form.' 'The onlooking human or architecture machine observes what is "interesting" by observing GROPE's behavior rather than by receiving the testimony that this or that is "interesting".' The swarm as a learning device. In this case the work implements a Swarm as a perceptive device. Swarms constitute a paradigm of parallel systems: a multitude of simple individuals aggregate in colonies or groups, giving rise to collaborative behaviors. The individual sensors can't learn, but the swarm as a system can evolve in to more stable states. These states generate distinct patterns, a result of the inner mechanics of the swarm and of the particularities of the environment. The dynamics of the system allows it to learn and adapt to the environment; information is stored in the speed of the sensors (the more collisions, the slower) that acts as a memory. The speed increases in the absence of collisions and so providing the system with the ability to forget, indispensable for differentiation of information and emergence of patterns. The swarm is both a perceptive and a spatial phenomenon. For being able to Interact with an environment an observer requires some sort of embodiment. In the case of the swarm, its algorithms for moving, collision detection, and swarm mechanics conform its perceptive body. The way this body interacts with its environment in the process of learning and differentiation of spatial patterns constitutes also a spatial phenomenon. The enactive space of the Swarm. Enaction, a concept developed by Maturana and Varela for the description of perception in biological terms, is the understanding of perception as the result of the structural coupling of an environment and an observer. Enaction does not address cognition in the currently conventional sense as an internal manipulation of extrinsic 'information' or 'signals', but as the relation between environment and observer and the blurring of their identities. Thus, the space generated by the swarm is an enactive space, a space without explicit description, and an invention of the swarm-environment structural coupling. If we consider a gestalt as 'Some property -such as roundness- common to a set of sense data and appreciated by organisms or artefacts' (Gordon Pask), the swarm is also able to differentiate space 'gestalts' or spaces of some characteristics, such as 'narrowness', or 'fluidness' etc. Implicit surfaces and the wrapping algorithm. One of the many ways of describing this space is through the use of implicit surfaces. An implicit surface may be imagined as an infinitesimally thin band of some measurable quantity such as color, density, temperature, pressure, etc. Thus, an implicit surface consists of those points in three-space that satisfy some particular requirement. This allows as to wrap the regions of space where a difference of quantity has been produced, enclosing the spaces in which some particular events in the history of the Swarm have occurred. The wrapping method allows complex topologies, such as manifoldness in one continuous surface. It is possible to transform the information generated by the swarm in to a landscape that is the result of the particular reading of the site by the swarm. Working in real time. Because of the complex nature of the machine, the only possible way to evaluate the resulting behavior is in real time. For this purpose specific applications had to be developed, using OpenGL for the Windows programming environment. The package consisted on translators from DXF format to a specific format used by these applications and viceversa, the Swarm "engine", a simulated parallel environment, and the Wrapping programs, to generate the implicit surfaces. Different versions of each had been produced, in different stages of development of the work.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 6c45
authors Drewe, Paul
year 2000
title In Search of New Concepts of Physical and Virtual Space
source CORP 2000, Vienna, pp. 37-44
summary Physical space is the material object of spatial planning and urbanism. It comprises, traditionally, zonesadapted to activities and channels of communication providing links between zones, catering to transport. Orvarious types of buildings, if one includes architecture. Virtual space opened by ICT, still is less familiar. Itis, after all, "no more than abstract flows of electronic signals, coded as information, representation andexchange" (Graham). This partly explains the frequent use of metaphors to describe it, among them spatialmetaphors (Graham, 1997). In dealing with the interactions between physical and virtual space, spatialmetaphors tend to obscure the issues and therefore better be avoided.Physical and virtual space must be defined as distinct entities. After all, only utopians believe in urbandissolution with all information supposed to become available at all times and places to all people. What arethe most important interactions between physical and virtual space?
series other
email
more www.corp.at
last changed 2002/12/19 12:15

_id 5d19
authors Gómez Arvelo, Susana Carolina
year 2001
title Simulador de proyecciones de sombras sobre modelos computarizados en 3d. Herramienta para evaluar la eficiencia de modelos de proteccion solar. [Shade simulator On 3D Computer Models. A Tool to Evaluate the Efficiency of Models for Solar Protection]
source 2da Conferencia Venezolana sobre Aplicación de Computadores en Arquitectura, Maracaibo (Venezuela) december 2001, pp. 156-165
summary A Program of Graphic Computing, developed in the Language of Programming AUTOLISP and run in AUTOCAD 2000, which is guided toward the Investigation in Bioclimatic Architecture, is presented. Before a model of solar protection in 3D, and loading the input data of the geographical localization and orientation, time and evaluation date (chosen by the user), the program calculates and projects the simulation of the corresponding shade contours on every plane that constitutes the 3D pattern (openings, walls, protections, floor...). In this research different areas of knowledge concur: Plane and spherical trigonometry applied to the solar ray and to the Bioclimatic Architecture, space geometry, plane graphical representation of three-dimensional objects, a concept of the transformation of vision for the three-dimensional representation of the objects in computers, and modern programming techniques.
keywords Bioclimatic Architecture; Heat Gaining Control; 3D Shades Simulator; Solar Protection
series other
email
last changed 2003/02/14 08:29

_id 394a
authors Jabi, Wassim
year 2000
title WebOutliner: A Web-Based Tool for Collaborative Space Programming and Design
doi https://doi.org/10.52842/conf.acadia.2000.195
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 195-201
summary This paper discusses a web-based tool that allows members of a design team to collaboratively specify a hierarchical spatial program for an architectural project. Given its object orientation, the represented artifacts have built-in data and methods that allow them to respond to user actions and manage their own sub-artifacts. Given that these components are hierarchical allows users to filter information, analyze and compare design parameters and aggregate hierarchical amounts in realtime. Furthermore, the software goes beyond outlining functions to support synchronous collaborative design by linking each item in the spatial program to a detail page that allows file uploading, realtime group marking of images, and textual chat. Thus, the software offers a seamless transition from the largely asynchronous definition of an architectural program to synchronous collaboration. In addition, and in contrast to commercially available groupware, the software allows multiple collaboration sessions to run at the same time. These sessions are artifact-based in the sense that they get automatically initiated once participants visit the same architectural space in the program hierarchy. The software employs a three-tier object-oriented, web-based scheme for a richer representation of hierarchical artifacts coupled with a relational database for server-side storage. The prototype integrates this technology with Java-based tools for synchronous web-based collaboration.
series ACADIA
email
last changed 2022/06/07 07:51

_id d64b
authors Kieferle, Joachim B.
year 2000
title Virtual Space - New Tasks for Architects
doi https://doi.org/10.52842/conf.ecaade.2000.205
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 205-208
summary The meaning of architecture is extended due to the new media. As never before, computers help architects to handle huge amounts of information or give them a freedom to handle complex shaped models. However, it is not the shapes, but the space and its qualities they are created in, that imposes a new kind of architecture. This article focuses in an abridged version on some attributes of virtual space, its expanding features for real space and what the chances for architecture might be. But - what is space? Is it something objective? How is it perceived by man? This questions have to be answered first to understand the following hypothesis.
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:52

_id ddssar0015
id ddssar0015
authors Koutamanis, Alexander
year 2000
title Recognition of spatial grouping in rectangular arrangements
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary Rectangular arrangements are an efficient technique for generating an exhaustive catalogue of a class of designs. Moreover, they offer the possibility of retrieving designs from such a catalogue on the basis of geometric or topological features. The paper describes an extension of the possibilities of rectangular arrangements in indexing and retrieving catalogues of architectural floor plans through the recognition of spatial grouping. Using an adaptation of the chain code, each space in a shape arrangement is labeled in terms of its bilateral geometric relationships with contiguous spaces. This means that each space is maximally labeled as many times as the number of its contiguous spaces. The labels of a space are ordered on the basis of a priority list that reflects the stylistic preferences of the particular design class. Grouping of spaces uses the ordered space labels as criteria. The groups returned by this process agree with human intuitive perception of spatial grouping in the floor plan, as well as with expert architectural knowledge. For example, Palladian floor plans are consistently grouped into a central space group flanked by two symmetric space groups.
series DDSS
last changed 2003/08/07 16:36

_id 4ba2
authors Sariyildiz, Sevil
year 2000
title ICT influence on Spatial Planning, Building and the Built Environment
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 61-63
summary The building sector is entering a new era. Developments in ICT have an impact throughout the entire life cycle of a building and the built environment. Through changes in daily life it will influence; the spatial planning, the urban structure of the future, our cities and the living environment. It shows already its influence in our way of living, our habits. The gap between creative design, which is done by means of advanced modelling software and the building technical aspect of designs, is getting bigger. ICT and Internet technology provide a closer link between the participants in the building process, their activities, knowledge, and information. Collaboration and communication within ICT techniques will be the future of the building. This paper provides a vision on the influences of the future ICT developments in spatial planning, architecture in general and focuses on the influences of the building sector in the above-mentioned fields.
series SIGRADI
email
last changed 2016/03/10 09:59

_id ddssar0026
id ddssar0026
authors Steadman, Philip and Waddoups, Linda
year 2000
title A catalogue of built forms, using a binary representation
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary A technique is described for the representation of a class of rectangular built forms. Each individual form is produced by applying a series of transformations to a single generic or ‘archetypal’ form, which is designed to take care of the broad constraints, on built space, of close-packing and the requirements for natural light and views. Parts of the archetype which are selected for inclusion in any particular built form are then designated by 1s, and parts which are suppressed by 0s. This makes it possible to assign a unique binary code to each different (undimensioned) built form produced from the archetype. Binary codes corresponding to all legitimate forms may then be arranged in ascending order, to create a comprehensive catalogue. The paper describes such a catalogue comprising forms with up to four courtyards, described by 22-digit binary strings. Metric values may be assigned to the various dimensions of each form, making it a matter of simple arithmetic to compute such attributes as volume, surface area, minimum site area or floor space index. From logical operations on the binary strings it is possible to identify a series of configurational characteristics of the corresponding forms, such as their overall plan shapes, the number of courtyards or the potential for symmetry. The catalogue may thus be searched for built forms fulfilling some set of specifications, for example total floor area, site size and certain desired shape attributes. Worked examples are illustrated from the design of multi-storey office buildings. Possible applications are suggested for this approach, in architectural science and the early strategic stages of architectural design.
series DDSS
last changed 2003/08/07 16:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 36HOMELOGIN (you are user _anon_830813 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002