CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 749

_id d11a
authors Den Hartog, J. P. and Koutamanis, A.
year 2000
title Teaching design simulation
doi https://doi.org/10.52842/conf.ecaade.2000.197
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 197-200
summary The democratization of information and communication technologies (ICT) has promoted integration of computing in the design studio and of design activities in the CAAD courses. In addition it has also shifted the focus of CAAD courses from technical skills and general theoretical issues to current, specific design issues, such as the relationship between geometric modeling and construction, design communication and design analysis. CAAD courses (especially advanced ones) increasingly attempt to introduce these issues and corresponding advanced ICT in a design context that outlines the possibilities of these technologies and the underlying computational design methodology and bring research closer to teaching. One such issue is design analysis, especially in the early design stages when many fundamental decisions are taken on the basis of incomplete and insecure information. Simulation provides the computational means for projecting building behaviour and performance. The paper describes the application of a specific simulation technique, computational fluid dynamics (CFD), for the analysis of airflow in and around buildings in the context of an advanced CAAD course. In this course students are required to design a multifunctional exposition building. Even though students are unfamiliar with the particular CFD system, as well as with part of the simulation subject matter, they are able to produce descriptions of their designs with effectiveness and efficiency.
keywords Design Analysis, Simulation, CFD, Airflow
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id ga0010
id ga0010
authors Moroni, A., Zuben, F. Von and Manzolli, J.
year 2000
title ArTbitrariness in Music
source International Conference on Generative Art
summary Evolution is now considered not only powerful enough to bring about the biological entities as complex as humans and conciousness, but also useful in simulation to create algorithms and structures of higher levels of complexity than could easily be built by design. In the context of artistic domains, the process of human-machine interaction is analyzed as a good framework to explore creativity and to produce results that could not be obtained without this interaction. When evolutionary computation and other computational intelligence methodologies are involved, every attempt to improve aesthetic judgement we denote as ArTbitrariness, and is interpreted as an interactive iterative optimization process. ArTbitrariness is also suggested as an effective way to produce art through an efficient manipulation of information and a proper use of computational creativity to increase the complexity of the results without neglecting the aesthetic aspects [Moroni et al., 2000]. Our emphasis will be in an approach to interactive music composition. The problem of computer generation of musical material has received extensive attention and a subclass of the field of algorithmic composition includes those applications which use the computer as something in between an instrument, in which a user "plays" through the application's interface, and a compositional aid, which a user experiments with in order to generate stimulating and varying musical material. This approach was adopted in Vox Populi, a hybrid made up of an instrument and a compositional environment. Differently from other systems found in genetic algorithms or evolutionary computation, in which people have to listen to and judge the musical items, Vox Populi uses the computer and the mouse as real-time music controllers, acting as a new interactive computer-based musical instrument. The interface is designed to be flexible for the user to modify the music being generated. It explores evolutionary computation in the context of algorithmic composition and provides a graphical interface that allows to modify the tonal center and the voice range, changing the evolution of the music by using the mouse[Moroni et al., 1999]. A piece of music consists of several sets of musical material manipulated and exposed to the listener, for example pitches, harmonies, rhythms, timbres, etc. They are composed of a finite number of elements and basically, the aim of a composer is to organize those elements in an esthetic way. Modeling a piece as a dynamic system implies a view in which the composer draws trajectories or orbits using the elements of each set [Manzolli, 1991]. Nonlinear iterative mappings are associated with interface controls. In the next page two examples of nonlinear iterative mappings with their resulting musical pieces are shown.The mappings may give rise to attractors, defined as geometric figures that represent the set of stationary states of a non-linear dynamic system, or simply trajectories to which the system is attracted. The relevance of this approach goes beyond music applications per se. Computer music systems that are built on the basis of a solid theory can be coherently embedded into multimedia environments. The richness and specialty of the music domain are likely to initiate new thinking and ideas, which will have an impact on areas such as knowledge representation and planning, and on the design of visual formalisms and human-computer interfaces in general. Above and bellow, Vox Populi interface is depicted, showing two nonlinear iterative mappings with their resulting musical pieces. References [Manzolli, 1991] J. Manzolli. Harmonic Strange Attractors, CEM BULLETIN, Vol. 2, No. 2, 4 -- 7, 1991. [Moroni et al., 1999] Moroni, J. Manzolli, F. Von Zuben, R. Gudwin. Evolutionary Computation applied to Algorithmic Composition, Proceedings of CEC99 - IEEE International Conference on Evolutionary Computation, Washington D. C., p. 807 -- 811,1999. [Moroni et al., 2000] Moroni, A., Von Zuben, F. and Manzolli, J. ArTbitration, Las Vegas, USA: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program – GECCO, 143 -- 145, 2000.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id d8df
authors Naticchia, Berardo
year 1999
title Physical Knowledge in Patterns: Bayesian Network Models for Preliminary Design
doi https://doi.org/10.52842/conf.ecaade.1999.611
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 611-619
summary Computer applications in design have pursued two main development directions: analytical modelling and information technology. The former line has produced a large number of tools for reality simulation (i.e. finite element models), the latter is producing an equally large amount of advances in conceptual design support (i.e. artificial intelligence tools). Nevertheless we can trace rare interactions between computation models related to those different approaches. This lack of integration is the main reason of the difficulty of CAAD application to the preliminary stage of design, where logical and quantitative reasoning are closely related in a process that we often call 'qualitative evaluation'. This paper briefly surveys the current development of qualitative physical models applied in design and propose a general approach for modelling physical behaviour by means of Bayesian network we are employing to develop a tutoring and coaching system for natural ventilation preliminary design of halls, called VENTPad. This tool explores the possibility of modelling the causal mechanism that operate in real systems in order to allow a number of integrated logical and quantitative inference about the fluid-dynamic behaviour of an hall. This application could be an interesting connection tool between logical and analytical procedures in preliminary design aiding, able to help students or unskilled architects, both to guide them through the analysis process of numerical data (i.e. obtained with sophisticate Computational Fluid Dynamics software) or experimental data (i.e. obtained with laboratory test models) and to suggest improvements to the design.
keywords Qualitative Physical Modelling, Preliminary Design, Bayesian Networks
series eCAADe
email
last changed 2022/06/07 07:59

_id ddssar0011
id ddssar0011
authors Hartog, J.P. den, Koutamanis, A. and Luscuere, P.G.
year 2000
title Possibilities and limitations of CFD simulation for indoor climate analysis
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary With the democratization of information and communication technologies, simulation techniques that used to be computationally expensive and time-consuming are becoming feasible instruments for the analysis of architectural design. Simulation is an indispensable ingredient of the descriptive design approach, which provides the designer with precise and accurate projections of the performance and behavior of a design. The paper describes the application of a particular class of simulation techniques, computational fluid dynamics (CFD), to the analysis and evaluation of indoor climate. Using two different CFD systems as representatives of the class, we describe: relevant computational possibilities and limitations of CFD simulation; the accessibility of CFD simulation for architects, especially concerning the handling of simulation variables; the compatibility of CFD representations of built space with similar representations in standard CAD and modeling systems, including possibilities for feedback; The relations between geometric representation and accuracy / precision in CFD simulation. We propose that CFD simulation can become an operational instrument for the designer, provided that CFD simulation does not become a trial and error game trying to master computational techniques. A promising solution to this problem is the use of case based reasoning. A case base of analyzed, evaluated and verified buildings provides a flexible source of information (guidance and examples) for both the CFD simulation and the designer.
series DDSS
last changed 2003/08/07 16:36

_id aa7f
authors Bollinger, Elizabeth and Hill, Pamela
year 1993
title Virtual Reality: Technology of the Future or Playground of the Cyberpunk?
doi https://doi.org/10.52842/conf.acadia.1993.121
source Education and Practice: The Critical Interface [ACADIA Conference Proceedings / ISBN 1-880250-02-0] Texas (Texas / USA) 1993, pp. 121-129
summary Jaron Lanier is a major spokesperson of our society's hottest new technology: VR or virtual reality. He expressed his faith in the VR movement in this quote which appears in The User's Guide to the New Edge published by Mondo 2000. In its most technical sense, VR has attracted the attention of politicians in Washington who wonder if yet another technology developed in the United States will find its application across the globe in Asia. In its most human element, an entire "cyberpunk movement" has appealed to young minds everywhere as a seemingly safe form of hallucination. As architecture students, educators, and practitioners around the world are becoming attracted to the possibilities of VR technology as an extension of 3D modeling, visualization, and animation, it is appropriate to consider an overview of virtual reality.

In virtual reality a user encounters a computersimulated environment through the use of a physical interface. The user can interact with the environment to the point of becoming a part of the experience, and the experience becomes reality. Natural and

instinctive body movements are translated by the interface into computer commands. The quest for perfection in this human-computer relationship seems to be the essence of virtual reality technology.

To begin to capture the essence of virtual reality without first-hand experience, it is helpful to understand two important terms: presence and immersion. The sense of presence can be defined as the degree to which the user feels a part of the actual environment. The more reality the experience provides, the more presence it has. Immersion can be defined as the degree of other simulation a virtual reality interface provides for the viewer. A highly immersive system might provide more than just visual stimuli; for example, it may additionally provide simulated sound and motion, and simultaneously prevent distractions from being present.

series ACADIA
email
last changed 2022/06/07 07:52

_id ga0007
id ga0007
authors Coates, Paul and Miranda, Pablo
year 2000
title Swarm modelling. The use of Swarm Intelligence to generate architectural form
source International Conference on Generative Art
summary .neither the human purposes nor the architect's method are fully known in advance. Consequently, if this interpretation of the architectural problem situation is accepted, any problem-solving technique that relies on explicit problem definition, on distinct goal orientation, on data collection, or even on non-adaptive algorithms will distort the design process and the human purposes involved.' Stanford Anderson, "Problem-Solving and Problem-Worrying". The works concentrates in the use of the computer as a perceptive device, a sort of virtual hand or "sense", capable of prompting an environment. From a set of data that conforms the environment (in this case the geometrical representation of the form of the site) this perceptive device is capable of differentiating and generating distinct patterns in its behavior, patterns that an observer has to interpret as meaningful information. As Nicholas Negroponte explains referring to the project GROPE in his Architecture Machine: 'In contrast to describing criteria and asking the machine to generate physical form, this exercise focuses on generating criteria from physical form.' 'The onlooking human or architecture machine observes what is "interesting" by observing GROPE's behavior rather than by receiving the testimony that this or that is "interesting".' The swarm as a learning device. In this case the work implements a Swarm as a perceptive device. Swarms constitute a paradigm of parallel systems: a multitude of simple individuals aggregate in colonies or groups, giving rise to collaborative behaviors. The individual sensors can't learn, but the swarm as a system can evolve in to more stable states. These states generate distinct patterns, a result of the inner mechanics of the swarm and of the particularities of the environment. The dynamics of the system allows it to learn and adapt to the environment; information is stored in the speed of the sensors (the more collisions, the slower) that acts as a memory. The speed increases in the absence of collisions and so providing the system with the ability to forget, indispensable for differentiation of information and emergence of patterns. The swarm is both a perceptive and a spatial phenomenon. For being able to Interact with an environment an observer requires some sort of embodiment. In the case of the swarm, its algorithms for moving, collision detection, and swarm mechanics conform its perceptive body. The way this body interacts with its environment in the process of learning and differentiation of spatial patterns constitutes also a spatial phenomenon. The enactive space of the Swarm. Enaction, a concept developed by Maturana and Varela for the description of perception in biological terms, is the understanding of perception as the result of the structural coupling of an environment and an observer. Enaction does not address cognition in the currently conventional sense as an internal manipulation of extrinsic 'information' or 'signals', but as the relation between environment and observer and the blurring of their identities. Thus, the space generated by the swarm is an enactive space, a space without explicit description, and an invention of the swarm-environment structural coupling. If we consider a gestalt as 'Some property -such as roundness- common to a set of sense data and appreciated by organisms or artefacts' (Gordon Pask), the swarm is also able to differentiate space 'gestalts' or spaces of some characteristics, such as 'narrowness', or 'fluidness' etc. Implicit surfaces and the wrapping algorithm. One of the many ways of describing this space is through the use of implicit surfaces. An implicit surface may be imagined as an infinitesimally thin band of some measurable quantity such as color, density, temperature, pressure, etc. Thus, an implicit surface consists of those points in three-space that satisfy some particular requirement. This allows as to wrap the regions of space where a difference of quantity has been produced, enclosing the spaces in which some particular events in the history of the Swarm have occurred. The wrapping method allows complex topologies, such as manifoldness in one continuous surface. It is possible to transform the information generated by the swarm in to a landscape that is the result of the particular reading of the site by the swarm. Working in real time. Because of the complex nature of the machine, the only possible way to evaluate the resulting behavior is in real time. For this purpose specific applications had to be developed, using OpenGL for the Windows programming environment. The package consisted on translators from DXF format to a specific format used by these applications and viceversa, the Swarm "engine", a simulated parallel environment, and the Wrapping programs, to generate the implicit surfaces. Different versions of each had been produced, in different stages of development of the work.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

_id ga0027
id ga0027
authors E. Bilotta, P. Pantano and V. Talarico
year 2000
title Music Generation through Cellular Automata
source International Conference on Generative Art
summary Cellular automata (CA), like every other dynamical system, can be used to generate music. In fact, starting from any initial state and applying to them simple transition rules, such models are able to produce numerical sequences that can be successively associated to typically musical physical parameters. This approach is interesting because, maintaining fixed the set of rules and varying the initial data, many different, though correlated, numerical sequences can be originated (this recalls the genotype-phenotype dualism). Later on a musification (rendering) process can tie one or more physical parameters typical of music to various mathematical functions: as soon as the generative algorithm produces a numerical sequence this process modifies the physical parameter thus composing a sequence of sounds whose characteristic varies during the course of time. Many so obtained musical sequences can be selected by a genetic algorithm (CA) that promotes their evolution and refinement. The aim of this paper is to illustrate a series of musical pieces generated by CA. In the first part attention is focused on the effects coming from the application of various rendering processes to one dimensional multi state CA; typical behaviours of automata belonging to each of the four families discovered by Wolfram have been studied: CA evolving to a uniform state, CA evolving to a steady cycle, chaotic and complex CA. In order to make this part of the study Musical Dreams, a system for the simulation and musical rendering of one dimensional CA, has been used. In the second phase various CA obtained both by random generation and deriving from those studied in the first part are organised into families and, successively, made evolve through a genetic algorithm. This phase has been accomplished by using Harmony Seeker, a system for the generation of evolutionary music based on GA. The obtained results vary depending on the rendering systems used but, in general, automata belonging to the first family seem more indicated for the production of rhythmical patterns, while elements belonging to the second and fourth family seem to produce better harmonic patterns. Chaotic systems have been seen to produce good results only in presence of simple initial states. Experiments made in the second part have produced good harmonic results starting mainly from CA belonging to the second family.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ddssar0013
id ddssar0013
authors Hensen, J.L.M. and Clarke, J.A.
year 2000
title Building systems and indoor environment: simulation for design decision support
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary This paper outlines the state-of-the-art in integrated building simulation for design support. The ESP-r system is used as an example where integrated simulation is a core philosophy behind the development. The paper finishes with indicating a number of barriers, which hinder routine application of simulation for building design.
series DDSS
last changed 2003/08/07 16:36

_id 2711
authors Howe, A. Scott
year 2000
title Designing for automated construction
source Automation in Construction 9 (3) (2000) pp. 259-276
summary The majority of automated construction research and development has been bottom-up, from the construction/engineering side rather than top-down from the design end. Section 2 of this paper looks at precedents in automated construction research and identifies an apparent gap in design related themes. Section 3 is devoted to the introduction of a research programme which addressed topics related to the conceptual design of robotic systems for construction, and developing overall design principles for top-down architect/designer applications. The research included the derivation of simple shape grammars and a simulation research programme for understanding component connections and robotic manipulation, using a model robotic construction system remote controlled over the Internet. Section 4 presents a report of the research carried out according to the programme, and introduces an example concept automated construction system designed according to the principles derived from the investigation outlined in Section 3.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id c839
authors Hwang, Jie-Eun
year 2002
title SpaceScope: Developing a Spatial Information Retrieval System - Focused on Apartment Unit Floor Plans -
source Yonsei University, Dept. of Housing & Interior Design
summary This research investigates the spatial information retrieval (IR) in architecture focused on constructing efficient metadata that is crucial for data retrieval. Generally speaking, metadata is ‘structured data about data’ to describe resources especially in a digital format. In this research, metadata is a sort of data object to be useful in searching spatial information. Metadata is also used to describe raw spatial data object as not only attribute data but also content structurally and semantic ally. There are two issues that motivate this research; 1) what is the spatial information – that materializes the intangible space as a data object, and 2) how we can search the information efficiently – the content-based information retrieval. Although knowledge of a building’s spatial content is most important in architecture, there has been no logical method to manage it.

From the viewpoint of content-based retrieval, the researcher analyzes spatial information of a floor plan, with a focus on the apartment unit floor plan common in Korea. Then the metadata items are extracted in a structured manner. To manage the items efficiently, the researcher develops a data model for spatial information according to the concept of the “Structured Floor Plan”. The main object of content to retrieve is a spatial network that consists of nodes of spaces and their linkages. There are two ways to organize the metadata: the traditional index files and the RDF (Resource Description Framework). While the index files are still efficient with computability, the RDF applies greater options to retrieve, such as fuzzy predicates, semantic predicates, and so on. To exploit the metadata, this research shows several possibilities of query operations that present a set of sample queries about L-DK(Living room – Dining room – Kitchen). Implementation of the prototype system is divided into three parts: 1) a modeling module using Vitruvius; 2) an indexing module using MS SQL Server? 2000 in conjunction XML; and 3) a browsing module using the SpaceScope browser.

The future works may consider XML-based databases and a knowledge based query language, such as RQL/XQL, working on such databases. The more specific domain knowledge is involved, the more practical systems would be. Even in architecture, there may be a diverse range of domain knowledge, such as design, building performance, facility management, energy management, post occupied evaluation, historical research, and so on. Also the issue of interface should be investigated in depth, so that it will be adequate to the needs of the architectural field.

keywords Content-based Information Retrieval; Metadata; RDF; XML; Spatial Information; Apartment Floor Plan; Semantics
series thesis:MSc
email
last changed 2003/04/25 07:27

_id sigradi2007_af103
id sigradi2007_af103
authors Juarez Moara, Santos Franco; Luciana Silva Salgado
year 2007
title Conception and analysis of structural system of membrane in 3DS Max and SAP2000 [Concepção e análise de sistema estrutural de membrana em 3DS Max e SAP2000]
source SIGraDi 2007 - [Proceedings of the 11th Iberoamerican Congress of Digital Graphics] México D.F. - México 23-25 October 2007, pp. 58-63
summary This paper presents the limitations and the potentialities of the joint job of the programs 3DS MAX and SAP2000 in the conception and analysis of structural system of membrane. The modeling for method of the dependent surfaces of curves NURBS was compared with surfaces defined for mathematical expressions in 3DS MAX; the creative potentialities of the clones, the stacks of modifiers and extension MATH MAX had been collated with the restrictions of project, as well as presented data-exchange procedures for simulation of efforts in SAP2000.
keywords CAE; Membrane; 3DS Max; Math Max; SAP 2000
series SIGRADI
email
last changed 2016/03/10 09:53

_id 0960
authors Kamat, Vineet Rajendra
year 2000
title Enabling 3D Visualization of Simulated Construction Operations
source Virginia Polytechnic Institute and State University
summary Simulation modeling and visualization can substantially help in designing complex construction operations and in making optimal decisions where traditional methods prove ineffective or are unfeasible. However, there has been limited use of simulation in planning construction operations due to the unavailability of appropriate visual communication tools that can provide users with a more realistic and comprehensible feedback from simulation analyses. Visualizing simulated construction operations in 3D can significantly help in establishing the credibility of simulation models. In addition, 3D visualization can provide valuable insight into the subtleties of construction operations that are otherwise non-quantifiable and presentable. New software development technologies emerge at incredible rates that allow engineers and scientists to create novel, domain-specific applications. This study capitalized on a computer graphics technology based on the concept of the Scene Graph to design and implement a general-purpose 3D Visualization System that is Simulation and CAD-software independent. This system, the Dynamic Construction Visualizer, enables realistic visualization of modeled construction operations and the resulting products in 3D and can be used in conjunction with a wide variety of simulation tools. This thesis describes the Dynamic Construction Visualizer as well as the Scene Graph architecture and the Frame Updating algorithms used in its design.
keywords Scene Graphs; 3D Visualization; Animation; Simulation; Construction Operations; Computer Graphics
series thesis:MSc
email
more http://scholar.lib.vt.edu/theses/available/etd-10232000-19390056/
last changed 2004/06/02 19:12

_id ga0008
id ga0008
authors Koutamanis, Alexander
year 2000
title Redirecting design generation in architecture
source International Conference on Generative Art
summary Design generation has been the traditional culmination of computational design theory in architecture. Motivated either by programmatic and functional complexity (as in space allocation) or by the elegance and power of representational analyses (shape grammars, rectangular arrangements), research has produced generative systems capable of producing new designs that satisfied certain conditions or of reproducing exhaustively entire classes (such as all possible Palladian villas), comprising known and plausible new designs. Most generative systems aimed at a complete spatial design (detailing being an unpopular subject), with minimal if any intervention by the human user / designer. The reason for doing so was either to give a demonstration of the elegance, power and completeness of a system or simply that the replacement of the designer with the computer was the fundamental purpose of the system. In other words, the problem was deemed either already resolved by the generative system or too complex for the human designer. The ongoing democratization of the computer stimulates reconsideration of the principles underlying existing design generation in architecture. While the domain analysis upon which most systems are based is insightful and interesting, jumping to a generative conclusion was almost always based on a very sketchy understanding of human creativity and of the computer's role in designing and creativity. Our current perception of such matters suggests a different approach, based on the augmentation of intuitive creative capabilities with computational extensions. The paper proposes that architectural generative design systems can be redirected towards design exploration, including the development of alternatives and variations. Human designers are known to follow inconsistent strategies when confronted with conflicts in their designs. These strategies are not made more consistent by the emerging forms of design analysis. The use of analytical means such as simulation, couple to the necessity of considering a rapidly growing number of aspects, means that the designer is confronted with huge amounts of information that have to be processed and integrated in the design. Generative design exploration that can combine the analysis results in directed and responsive redesigning seems an effective method for the early stages of the design process, as well as for partial (local) problems in later stages. The transformation of generative systems into feedback support and background assistance for the human designer presupposes re-orientation of design generation with respect to the issues of local intelligence and autonomy. Design generation has made extensive use of local intelligence but has always kept it subservient to global schemes that tended to be holistic, rigid or deterministic. The acceptance of local conditions as largely independent structures (local coordinating devices) affords a more flexible attitude that permits not only the emergence of internal conflicts but also the resolution of such conflicts in a transparent manner. The resulting autonomy of local coordinating devices can be expanded to practically all aspects and abstraction levels. The ability to have intelligent behaviour built in components of the design representation, as well as in the spatial and building elements they signify, means that we can create the new, sharper tools required by the complexity resulting from the interpretation of the built environment as a dynamic configuration of co-operating yet autonomous parts that have to be considered independently and in conjunction with each other.   P.S. The content of the paper will be illustrated by a couple of computer programs that demonstrate the princples of local intelligence and autonomy in redesigning. It is possible that these programs could be presented as independent interactive exhibits but it all depends upon the time we can make free for the development of self-sufficient, self-running demonstrations until December.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 5222
authors Moloney, Jules
year 1999
title Bike-R: Virtual Reality for the Financially Challenged
doi https://doi.org/10.52842/conf.ecaade.1999.410
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 410-413
summary This paper describes a 'low tech' approach to producing interactive virtual environments for the evaluation of design proposals. The aim was to produce a low cost alternative to such expensive installations as CAVE virtual reality systems. The system utilises a library of pre-rendered animation, video and audio files and hence is not reliant on powerful hardware to produce real time simulation. The participant sits astride a bicycle exercise machine and animation is triggered by the pedal revolution. Navigation is achieved by steering along and around the streets of the animated design. This project builds on the work of Desmond Hii. ( Hii, 1997) The innovations are the bicycle interface and the application to urban scale simulation.
keywords Virtual, Design, Interface, Urban
series eCAADe
email
last changed 2022/06/07 07:58

_id 9d3a
authors Morozumi, M., Uchiyama, T., Homma, R. and Tanae, M.
year 2000
title A City Model for Studies of a Citizen's Way-Finding Behaviors
doi https://doi.org/10.52842/conf.caadria.2000.077
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 77-87
summary This paper discusses the necessary features for a QTVR (cylinder-VR) based simulation system to study a citizen's behavior of finding their way to particular points, as well as observations found in the case studies that used several prototypes developed as a step in the studies. The authors tested prototype systems developed for a downtown shopping area of Kumamoto City, and observed answers to questionnaires in which 30 students who are familiar with the site compared the three prototypes. After observing cognitive maps sketched by nine strangers to the site, and after virtual walks with one of those prototypes: prototype-III, the authors concluded that it could provide a necessary level of visual representation and system operations as a tool for simulating citizens' travel behaviors.
series CAADRIA
email
last changed 2022/06/07 07:59

_id 329a
authors Muro, Tatsuro and Shigematsu, Takahisa
year 2000
title Automation and optimal design method of a wheeled vehicle operating over sloped weak sandy terrain
source Automation in Construction 9 (3) (2000) pp. 277-297
summary In this paper, a mathematical model of wheeled vehicle tractive or braking performance was developed and verified by experimental data. Then, various center of gravity and height of application force movement effects were analysed by simulation analysis. For a given set of vehicle dimensions and terrain wheel system constants, the simulation calculated effective tractive or braking effort and rear wheel sinkage, slip ratio or skid of a special designed wheeled robotic vehicle running over sloped weak sandy terrain for straight forward motion. For a 5.88 kN weight vehicle, the optimal eccentricity of center of gravity, the optimal application height and the maximum slope angle of terrain could be determined for rear-wheel drive (RWD), front-wheel drive (FWD), four-wheel drive (4WD) or rear-wheel brake (RWB), front-wheel brake (FWB), and four-wheel brake (4WB) travel systems.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 6072
authors Orzechowski, M.A., Timmermans, H.J.P. and De Vries, B.
year 2000
title Measuring user satisfaction for design variations through virtual reality
source Timmermans, H.J.P. & Vries, B. de (eds.) Design & Decision Support Systems in Architecture - Proceedings of the 5th International Conference, August 22-25 2000, Nijkerk, pp. 278-288
summary Virtual Reality (VR), and Artificial Intelligence (AI) technology have become increasingly more common in all disciplines of modern life. These new technologies range from simple software assistants to sophisticated modeling of human behavior. In this research project, we are creating an AI agent environment that helps architects to identify user preferences through a Virtual Reality Interface. At the current stage of development, the research project has resulted in a VR application - MuseV2 that allows users to instantly modify an architectural design. The distinctive feature of this application is that a space is considered as a base for all user modifications and as a connection between all design elements. In this paper we provide some technical information about MuseV2. Presentation of a design through VR allows AI agents to observe user-induced modifications and to gather preference information. In addition to allowing for an individualized design, this information generalized across a sample of users should provide the basis for developing basic designs for particular market segments and predict the market potential of those designs. The system that we envision should not become an automated design tool, but an adviser and viewer for users, who have limited knowledge or no knowledge at all about CAD systems, and architectural design. This tool should help investors to assess preferences for new community housing in order to meet the needs of future inhabitants.
series other
email
last changed 2003/04/23 15:50

_id 1743
authors Ozel, Filiz
year 2000
title Spatial Databases and the Analysis of Dynamic Processes in Buildings
doi https://doi.org/10.52842/conf.caadria.2000.097
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 97-106
summary This article investigates the potential applications of geographic information systems (GIS) in the analysis and simulation of dynamic processes in buildings and explores it within the context of life safety analysis of buildings. In doing so, the primary focus of the article is to look at how architectural components and spaces can be represented in a spatial database system and what types of methods must be used in the analysis of such a database. Until now GIS applications have primarily been seen as tools suitable for the analysis of urban design and planning problems, therefore an additional objective here is to bring GIS to the attention of architectural researchers as a potential tool for the representation and analysis of spatial data in architecture.
series CAADRIA
email
last changed 2022/06/07 08:00

_id ddssar0022
id ddssar0022
authors Peng, C., Cerulli, C., Lawson, B., Cooper, G., Rezqui, Y. and Jackson, M.
year 2000
title Recording and managing design decision-making processes through an object-oriented framework
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary In this paper we describe our current research into an object-oriented approach to the recording and managing of design decision-making in the processes of building design. The Advanced Design Support for the Construction Design Process (ADS) project, funded under the Innovative Manufacturing Initiative by the UK Engineering and Physical Sciences Research Council (EPSRC), aims to exploit and demonstrate the benefits of a CAD-based Design Decision Support System. The research focuses on how to provide designers with tools for recording and managing the group dynamics of design decision making in a project's life time without intruding too much on the design process itself. In collaboration with Building Design Partnership, a large multidisciplinary construction design practice, we look at design projects that require decision-making on an extraordinarily wide range of complex issues, and many different professional consultants were involved in making and approving these decisions. We are interested in developing an advanced CAD tool that will facilitate capturing designers' rationales underlying their design decision making throughout the project. The system will also enable us to explore how a recorded project history of decision-making can be searched and browsed by members of the project team during and after design development.
series DDSS
last changed 2003/08/07 16:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_371247 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002