CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 751

_id 8a18
authors Loose, Duane
year 2000
title 3D Studio Max 3.0 Workshop
source Hayden Books
summary 3D Studio MAX 3.0 Workshop focuses on developing the skills of beginning and intermediate 31) Studio MAX users by teaching them how to take advantage of 3the first object-oriented animation system designed for Microsoft Windows NT . Written from the point of view of a professional industrial designer, art director, animator, and design educator, this book uses a single holistic project, composed of interrelated tutorials to guide you through a professional project development process. By beginning with the end in mind, this workshop will show you how to structure your use of MAX to create professional-quality imagery using the basic tools provided in MAX. 3D Studio MAX 3.0 Workshop boosts the beginning to intermediate user to a higher level of MAX proficiency in the shortest time possible. The workshop focuses on basic principles, elements, and tools used in MAX to create models, materials, lighting, special effects, and animation; and you will learn how professionals develop CGI shots in MAX by using layers and compositing.
series other
last changed 2003/02/26 18:58

_id f34b
authors Nir, Eyal
year 2000
title Smart, Green and in Between - Rethinking the Office Tower
doi https://doi.org/10.52842/conf.acadia.2000.010
source ACADIA Quarterly, vol. 19, no. 1, pp. 10-11
summary The towers that paint Montreal’s skyline are relics of the 20th century. Towers that express the power of capital on the outside turn out to be almost empty from within. It looks like there was a race to reach the skies - to touch the Mount Royal peak. I remember an attorney working in one of those skyscrapers telling me “the windows are for the lawyers and here in the dark open space is where you can find the slaves.” His words took my imagination to think of a boat in the ancient times where slaves where rowing to the rhythm of the drums. But then I realized the contradiction here - I told him “you should place your ‘slaves’ next to the windows if you want them to be able to row and bring your boat to safe land.”
series ACADIA
last changed 2022/06/07 07:58

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ddssar0031
id ddssar0031
authors Witt, Tom
year 2000
title Indecision in quest of design
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary Designers all start with a solution (Darke, 1984), with what is known (Rittel, 1969, 1970). Hans Menghol, Svein Gusrud and Peter Opvik did so with the chair in the 1970s. Not content with the knowledge of the chair, however, they walked backward to the ignorance of the question that has always elicited the solution of chair and asked themselves the improbable question, “What is a chair?” Their answer was the Balans chair. “Until the introduction of the Norwegian Balans (balance) chair, the multi-billion dollar international chair industry had been surprisingly homogeneous. This chair is the most radical of the twentieth century and probably since the invention of the chair-throne itself (Cranz 1998). Design theorists have tried to understand in a measurable way what is not measurable: the way that designers think. Rather than attempt to analyze something that cannot be taken apart, I attempt to illuminate methods for generating new knowledge through ways of seeing connections that are not logical, and in fact are sometimes ironic. Among the possibilities discussed in this dialogue are the methodological power of language in the form of metaphor, the power of the imagination in mind experiments, the power of mythological story telling, and the power of immeasurable intangibles in the generation of the new knowledge needed to design.
series DDSS
last changed 2003/08/07 16:36

_id b0e7
authors Ahmad Rafi, M.E. and Karboulonis, P.
year 2000
title The Re-Convergence of Art and Science: A Vehicle for Creativity
doi https://doi.org/10.52842/conf.caadria.2000.491
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 491-500
summary Ever-increasing complexity in product design and the need to deliver a cost-effective solution that benefits from a dynamic approach requires the employment and adoption of innovative design methods which ensure that products are of the highest quality and meet or exceed customers' expectations. According to Bronowski (1976) science and art were originally two faces of the same human creativity. However, as civilisation advances and works became specialised, the dichotomy of science and art gradually became apparent. Hence scientists and artists were born, and began to develop work that was polar opposite. The sense of beauty itself became separated from science and was confined within the field of art. This dichotomy existed through mankind's efforts in advancing civilisation to its present state. This paper briefly examines the relationship between art and science through the ages and discusses their relatively recent re-convergence. Based on this hypothesis, this paper studies the current state of the convergence between arts and sciences and examines the current relationship between the two by considering real world applications and products. The study of such products and their successes and impact they had in the marketplace due to their designs and aesthetics rather than their advanced technology that had partially failed them appears to support this argument. This text further argues that a re-convergence between art and science is currently occurring and highlights the need for accelerating this process. It is suggested that re-convergence is a result of new technologies which are adopted by practitioners that include effective visualisation and communication of ideas and concepts. Such elements are widely found today in multimedia and Virtual Environments (VEs) where such tools offer increased power and new abilities to both scientists and designers as both venture in each other's domains. This paper highlights the need for the employment of emerging computer based real-time interactive technologies that are expected to enhance the design process through real-time prototyping and visualisation, better decision-making, higher quality communication and collaboration, lessor error and reduced design cycles. Effective employment and adoption of innovative design methods that ensure products are delivered on time, and within budget, are of the highest quality and meet customer expectations are becoming of ever increasing importance. Such tools and concepts are outlined and their roles in the industries they currently serve are identified. Case studies from differing fields are also studied. It is also suggested that Virtual Reality interfaces should be used and given access to Computer Aided Design (CAD) model information and data so that users may interrogate virtual models for additional information and functionality. Adoption and appliance of such integrated technologies over the Internet and their relevance to electronic commerce is also discussed. Finally, emerging software and hardware technologies are outlined and case studies from the architecture, electronic games, and retail industries among others are discussed, the benefits are subsequently put forward to support the argument. The requirements for adopting such technologies in financial, skills required and process management terms are also considered and outlined.
series CAADRIA
email
last changed 2022/06/07 07:54

_id 8ccf
authors Alvarez, Darío
year 2000
title Atravesando el portal digital: la novísima Arquitectura de los tiempos de la Internet. - (Crossing the Digital Gateway: The Latest Architecture of the Times of the Internet)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 30-33
summary Our architectonical environment is based on the material concept - entity whose control marks the relevance of the XX century: the atom. Across the threshold of the XXI century a new virtual entity - concept: the bit, spreads to became the basic unit of power - control - production, being its more dynamic evidence the phenomenon known as Internet, establishing complex relationships with groups constituted in the net like Virtual Communities, outlining metaphors that involve Urbanists and Architects inviting them as protagonist. Against this newest reality the Architect should change his vision of the typical CAAD work in relative isolation with his computer, until crossing the doors of the “digital reality”; we search to show the contemporary Architect as a manager coordinating multiple resources with different importance: into the alternative of building digital realities, inviting the architectonical students to integrated this Virtual Communities or conform his owns.
series SIGRADI
email
last changed 2016/03/10 09:47

_id fbcb
authors Anders, Peter
year 2000
title Places of Mind: Implications of Narrative Space for the Architecture of Information Environments
doi https://doi.org/10.52842/conf.acadia.2000.085
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 85-89
summary Virtual reality and cyberspace are extended spaces of the mind different from, yet related to, the spaces of fiction and ancient myth. These earlier spaces reveal how electronic media, too, may come to define our selves and our culture. Indeed, a better understanding of how we use space to think can lead to the design of better information environments. This paper will describe a range of traditional narrative spaces, revealing their varied relationships with the physical world. It will demonstrate the purposes of such spaces and how their function changes with their level of abstraction. A concluding review of current technologies will show how electronic environments carry on the traditions of these spaces in serving our cultural and psychological needs.
keywords Cyberspace, Narrative, Space, Anthropic Cyberspace, Cybrids
series ACADIA
email
last changed 2022/06/07 07:54

_id 60e7
authors Bailey, Rohan
year 2000
title The Intelligent Sketch: Developing a Conceptual Model for a Digital Design Assistant
doi https://doi.org/10.52842/conf.acadia.2000.137
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 137-145
summary The computer is a relatively new tool in the practice of Architecture. Since its introduction, there has been a desire amongst designers to use this new tool quite early in the design process. However, contrary to this desire, most Architects today use pen and paper in the very early stages of design to sketch. Architects solve problems by thinking visually. One of the most important tools that the Architect has at his disposal in the design process is the hand sketch. This iterative way of testing ideas and informing the design process with images fundamentally directs and aids the architect’s decision making. It has been said (Schön and Wiggins 1992) that sketching is about the reflective conversation designers have with images and ideas conveyed by the act of drawing. It is highly dependent on feedback. This “conversation” is an area worthy of investigation. Understanding this “conversation” is significant to understanding how we might apply the computer to enhance the designer’s ability to capture, manipulate and reflect on ideas during conceptual design. This paper discusses sketching and its relation to design thinking. It explores the conversations that designers engage in with the media they use. This is done through the explanation of a protocol analysis method. Protocol analysis used in the field of psychology, has been used extensively by Eastman et al (starting in the early 70s) as a method to elicit information about design thinking. In the pilot experiment described in this paper, two persons are used. One plays the role of the “hand” while the other is the “mind”- the two elements that are involved in the design “conversation”. This variation on classical protocol analysis sets out to discover how “intelligent” the hand should be to enhance design by reflection. The paper describes the procedures entailed in the pilot experiment and the resulting data. The paper then concludes by discussing future intentions for research and the far reaching possibilities for use of the computer in architectural studio teaching (as teaching aids) as well as a digital design assistant in conceptual design.
keywords CAAD, Sketching, Protocol Analysis, Design Thinking, Design Education
series ACADIA
last changed 2022/06/07 07:54

_id 9bc4
authors Bhavnani, S.K. and John, B.E.
year 2000
title The Strategic Use of Complex Computer Systems
source Human-Computer Interaction 15 (2000), 107-137
summary Several studies show that despite experience, many users with basic command knowledge do not progress to an efficient use of complex computer applications. These studies suggest that knowledge of tasks and knowledge of tools are insufficient to lead users to become efficient. To address this problem, we argue that users also need to learn strategies in the intermediate layers of knowledge lying between tasks and tools. These strategies are (a) efficient because they exploit specific powers of computers, (b) difficult to acquire because they are suggested by neither tasks nor tools, and (c) general in nature having wide applicability. The above characteristics are first demonstrated in the context of aggregation strategies that exploit the iterative power of computers.Acognitive analysis of a real-world task reveals that even though such aggregation strategies can have large effects on task time, errors, and on the quality of the final product, they are not often used by even experienced users. We identify other strategies beyond aggregation that can be efficient and useful across computer applications and show how they were used to develop a new approach to training with promising results.We conclude by suggesting that a systematic analysis of strategies in the intermediate layers of knowledge can lead not only to more effective ways to design training but also to more principled approaches to design systems. These advances should lead users to make more efficient use of complex computer systems.
series other
email
last changed 2003/11/21 15:16

_id f73b
authors Brady, Darlene A.
year 2000
title Percept vs. Precept: Digital Media & the Creative Process
doi https://doi.org/10.52842/conf.ecaade.2000.261
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 261-264
summary The design of architecture, as well as all of the arts, is a creative act concerned with the expression of ideas through culturally significant and relevant form. In order for the creative act to transcend the authority or dictates of precedents or trends, it must be informed and guided by a process and not a product; one which reveals, but does not dictate, expressive, functional form. The initial impact of digital media on architectural design has been the ability to render the look of a final project or to create shapes that reflect the facility of the tool. Digital media also enables the composition and structure of space and form to be discovered simultaneously and relationally with the phenomena of color and kinetics, to generate and visualize an idea as form, and to represent form as experience. This requires interweaving computing with a creative process in which percept, rather than precept, is the driving force of the investigation. This paper explores the role of ideation, tectonic color and kinetics as an intentional design strategy and formgiver for architecture. The role of the computer is to enable the designer to generate meaningful architecture beyond precepts of image and style. Design as a making in the mind uses our rational and imaginative faculties. Complete freedom is not a necessity for inventiveness. Research on creativity indicates that "constraining options and focusing thought in a specific, rigorous and discerning direction" play an important role. The key is a balance of structured and discursive inquiry that encourages a speculative, free association of ideas. Tim Berners-Lee, one of the creators of the World Wide Web, likened creativity to a weblike process that is nonlinear but also not random; which when placed in an environment rich with information will float ideas so the mind "can jiggle them into an insight." Geoffrey Vickers in his essay, "Rationality and Intuition" described this symbiotic relationship as "...two functions which in practice are never wholly separated but which are, nonetheless, logically distinct as two reciprocating phases in a recurrent process of mental activity." The rational is formative and intuition is generative; both are essential to creativity.
keywords Percept, Creativity, Ideation, Tectonic Color, Kinetics
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 8e02
authors Brown, A.G.P. and Coenen, F.P.
year 2000
title Spatial reasoning: improving computational efficiency
source Automation in Construction 9 (4) (2000) pp. 361-367
summary When spatial data is analysed the result is often very computer intensive: even by the standards of contemporary technologies, the machine power needed is great and the processing times significant. This is particularly so in 3-D and 4-D scenarios. What we describe here is a technique, which tackles this and associated problems. The technique is founded in the idea of quad-tesseral addressing; a technique, which was originally applied to the analysis of atomic structures. It is based on ideas concerning Hierarchical clustering developed in the 1960s and 1970s to improve data access time [G.M. Morton, A computer oriented geodetic database and a new technique on file sequencing, IBM Canada, 1996.], and on atomic isohedral (same shape) tiling strategies developed in the 1970s and 1980s concerned with group theory [B. Grunbaum, G.C. Shephard, Tilings and Patterns, Freeman, New York, 1987.]. The technique was first suggested as a suitable representation for GIS in the early 1980s when the two strands were brought together and a tesseral arithmetic applied [F.C. Holdroyd, The Geometry of Tiling Hierarchies, Ars Combanitoria 16B (1983) 211–244.; S.B.M. Bell, B.M. Diaz, F.C. Holroyd, M.J.J. Jackson, Spatially referenced methods of processing raster and vector data, Image and Vision Computing 1 (4) (1983) 211–220.; Diaz, S.B.M. Bell, Spatial Data Processing Using Tesseral Methods, Natural Environment Research Council, Swindon, 1986.]. Here, we describe how that technique can equally be applied to the analysis of environmental interaction with built forms. The way in which the technique deals with the problems described is first to linearise the three-dimensional (3-D) space being investigated. Then, the reasoning applied to that space is applied within the same environment as the definition of the problem data. We show, with an illustrative example, how the technique can be applied. The problem then remains of how to visualise the results of the analysis so undertaken. We show how this has been accomplished so that the 3-D space and the results are represented in a way which facilitates rapid interpretation of the analysis, which has been carried out.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id e816
authors Bruno, Louise
year 2000
title Atlas Eletrônico de Minas Gerais: Uma análise da organização do espaço mineiro (Minas Gerais Electronic Atlas: An Analysis of the "Mineiro" Space Organization)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 217-219
summary This article presents the Electronic Atlas of Minas Gerais that is being taking place according to an international cooperation between the Paris École Normale Supérieure and the Universidade Federal de Minas Gerais with the support of the FIEMG. Minas Gerais has been chosen because of its different landscapes - physicals, economics, socials and politics ones - that represent a mirror of the Brazilian society. It’s an evolutionary atlas that will be regular actualized and offered to the public in the Net. The methodology adopted involves instruments of digital cartography and methods developed by the French geography - such as graphic modelization and the coremàtica or the synthetic cartography - in order to identify the structures of the Minas' space. This atlas intends to offer the students, professors, researchers, as well as the governments and private initiative, an instrument to comprehend and administrate your territory and a valuable instrument to exercising the citizenship.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 684a
authors Bucchard, Bill and Bucchard, Alli
year 2000
title Inside AutoCAD 2000
source New Riders, Indianapolis
summary Companies with multiple seats of AutoCAD have issues that are unique to only them when they are getting ready to upgrade their software. They run into advanced customization issues, networking and file sharing problems brought on by the upgrade, and other problems associated with a new software purchase. Inside AutoCAD 2000, Limited Edition focuses on these special needs while also providing complete, hands-on coverage of AutoCAD 2000. This Limited Edition includes the entire contents from Inside AutoCAD 2000 as well as seven entirely new chapters, and is 25% larger. These additional chapters cover: Visual LISP; Advanced Customization (toolbars, menus, etc.); VBA; Migration Assistant; DIESEL; Installing 2000 in the Business Environment (setting up AutoCAD over a network), and Advanced Plotting. Inside AutoCAD 2000, Limited Edition takes the hands-on approach to getting the most out of AutoCAD's features. Chapters progress from the most common tasks and functions to the most advanced and customizable. You learn by doing, and everything you learn can be extrapolated to your own unique AutoCAD needs.
series other
last changed 2003/04/23 15:14

_id ga0019
id ga0019
authors Ceccato, Cristiano
year 2000
title On the Translation of Design Data into Design Form in Evolutionary Design
source International Conference on Generative Art
summary The marriage of advanced computational methods and new manufacturing technologies give rise to new paradigms in design process and execution. Specifically, the research concerns itself with the application of Generative and Evolutionary computation to the production of mass-customized products and building components. The work is based on the premise that CAD-CAM should evolve into a dynamic, intelligent, multi-user environment that encourages creativity and actively supports the evolution of individual, mass-customized designs that exhibit common features. The concept of Parametric Design is well established, and chiefly concerns itself with generating design sets that exists within the boundaries of pre-set parametric values. Evolutionary Design extends the notion of parametric control by using rule-based generative algorithms to evolve common families of individual design solutions. These can be optimized according to particular criteria, or can form a wide variety of hierarchically related design solutions, while supporting design intuition. The integration of Evolutionary Design with CAD-CAM, in particular the areas of flexible manufacturing and mass-customization, creates a unique scenario which exploits the full power of both approaches to create a new design-process paradigm that can generate limitless possibilities in a non-deterministic manner within a variable search-space of possible solutions.This paper concerns itself with the technical and philosophical aspects of the codification, generation and translation of data within the evolutionary-parametric design process. The efficiency and relevance of different methods for treating design data form the most fundamental aspect within the realm of CAD/CAM and are crucial to the successful implementation of Evolutionary Design mechanisms. This begins at the level of seeding and progresses through the entire evolutionary sequence, including the codification for evaluation criteria. Furthermore, the integration of digital design mechanisms with CAM and CNC technologies requires further translation of data into manufacturable formats. This paper examines different methods available to system designers and discussed their effect on new paradigms of digital design methods.
keywords Evolutionary, Parametric, Generative, Data, Format, Objects, Codification
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 9d16
authors Chan, Chiu-Shui
year 2000
title A Virtual Reality Tool to Implement City Building Codes on Capitol View Preservation
doi https://doi.org/10.52842/conf.acadia.2000.203
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 203-209
summary In urban planning, the urban environment is a very complicated system with many layers of building codes cross-referenced and interacting together to guide urban growth. Especially, if a new urban design is located in a historical area, additional restrictions will be imposed upon regular zoning regulations to maintain the area’s historical characteristics. Often, urban regulations read as text are difficult to understand. A tool that generates adequate urban information and a quick visualization of the design will ease decision-making and enhance urban design processes. The goal of this research project is to develop a virtual reality (VR) tool with high resolution, speedy computation, and a userfriendly environment. This project initiates an interactive visualization tool to enforce city-planning regulations on viewing access to the state capitol building in Des Moines, Iowa. The capitol building houses the Iowa Legislature and is a symbol of state power. Maintaining the view from surrounding areas will preserve the building’s monumental and symbolic meaning. To accomplish this, the City Community Development Department and the Capitol Planning Committee developed a Capitol View Corridor Project, which sets up seven visual corridors to prevent the view toward the capitol from being blocked by any future designs. Because city regulations are not easy for the public and designers to interpret and comprehend, this project intends to develop a VR tool to create a transparent environment for visualizing the city ordinances.
series ACADIA
last changed 2022/06/07 07:56

_id 08ea
authors Clayton, Mark J. and Vasquez de Velasco, Guillermo P. (Eds.)
year 2000
title ACADIA 2000: Eternity, Infinity and Virtuality in Architecture
doi https://doi.org/10.52842/conf.acadia.2000
source Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8 / Washington D.C. 19-22 October 2000, 284 p.
summary Eternity, time without end, infinity, space without limits and virtuality, perception without constraints; provide the conceptual framework in which ACADIA 2000 is conceived. It is in human nature to fill what is empty and to empty what is full. Today, thanks to the power of computer processing we can also make small what is too big, make big what is too small, make fast what is too slow, make slow what is too fast, make real what does not exist, and make our reality omni-present at global scale. These are capabilities for which we have no precedents. What we make of them is our privilege and responsibility. Information about a building flows past our keyboards and on to other people. Although we, as architects, add to the information, it originated before us and will go beyond our touch in time, space and understanding. A building description acquires a life of its own that may surpass our own lives as it is stored, transferred, transformed, and reused by unknown intellects, both human and artificial, and in unknown processes. Our actions right now have unforeseen effects. Digital media blurs the boundaries of space, time and our perception of reality. ACADIA 2000 explores the theme of time, space and perception in relation to the information and knowledge that describes architecture. Our invitation to those who are finding ways to apply computer processing power in architecture received overwhelming response, generating paper submissions from five continents. A selected group of reviewers recommended the publication of 24 original full papers out of 42 submitted and 13 short papers out of 30 submitted. Forty-two projects were submitted to the Digital Media Exhibit and 12 were accepted for publication. The papers cover subjects in design knowledge, design process, design representation, design communication, and design education. Fundamental and applied research has been carefully articulated, resulting in developments that may have an important impact on the way we practice and teach architecture in the future.
series ACADIA
email
more www.acadia.org
last changed 2022/06/07 07:49

_id d0aa
authors Colajanni, Benedetto, Concialdi, Salvatore and Pellitteri, Giuseppe
year 1999
title CoCoMa: a Collaborative Constraint Management System for the Collaborative Design
doi https://doi.org/10.52842/conf.ecaade.1999.364
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 364-369
summary Collaborative Design is a topic of particular current interest. Existing software allows a multiplicity of designers to work on the same project. What the software really allows is accessing to a part of the information of the project and changing it. Sometimes there is a hierarchical distribution of the power of change: some participants can be permitted to operate only on some limited layers of the object representation. In this case the changes they propose are to be accepted by a general manager of the design process. What is lacking in this kind of software is the explicit management on the reciprocal constraints posed by different participants. In this paper, an elementary Collaborative Design System is presented whose main concern is just the management of constraints. Each participant designs the part of the project of his/her concern instantiating objects comprised of geometric description, alphanumeric variables and constraints on both. Constraints can be of two types: absolute or defined by a range of allowed values of the constrained variable. A participant intervening later can accept the constraint, choosing a value in the permitted range, or decide to violate it. In this case the proposed violation is signalled to whom posed it.
keywords Collaborative Design, Design Process, Management System, Participant Designs, Constraints Violation
series eCAADe
email
last changed 2022/06/07 07:56

_id ec4d
authors Croser, J.
year 2001
title GDL Object
source The Architect’s Journal, 14 June 2001, pp. 49-50
summary It is all too common for technology companies to seek a new route to solving the same problem but for the most part the solutions address the effect and not the cause. The good old-fashioned pencil is the perfect example where inventors have sought to design-out the effect of the inherent brittleness of lead. Traditionally different methods of sharpening were suggested and more recently the propelling pencil has reigned king, the lead being supported by the dispensing sleeve thus reducing the likelihood of breakage. Developers convinced by the Single Building Model approach to design development have each embarked on a difficult journey to create an easy to use feature packed application. Unfortunately it seems that the two are not mutually compatible if we are to believe what we see emanating from Technology giants Autodesk in the guise of Architectural Desktop 3. The effect of their development is a feature rich environment but the cost and in this case the cause is a tool which is far from easy to use. However, this is only a small part of a much bigger problem, Interoperability. You see when one designer develops a model with one tool the information is typically locked in that environment. Of course the geometry can be distributed and shared amongst the team for use with their tools but the properties, or as often misquoted, the intelligence is lost along the way. The effect is the technological version of rubble; the cause is the low quality of data-translation available to us. Fortunately there is one company, which is making rapid advancements on the whole issue of collaboration, and data sharing. An old timer (Graphisoft - famous for ArchiCAD) has just donned a smart new suit, set up a new company called GDL Technology and stepped into the ring to do battle, with a difference. The difference is that GDL Technology does not rely on conquering the competition, quite the opposite in fact their success relies upon the continued success of all the major CAD platforms including AutoCAD, MicroStation and ArchiCAD (of course). GDL Technology have created a standard data format for manufacturers called GDL Objects. Product manufacturers such as Velux are now able to develop product libraries using GDL Objects, which can then be placed in a CAD model, or drawing using almost any CAD tool. The product libraries can be stored on the web or on CD giving easy download access to any building industry professional. These objects are created using scripts which makes them tiny for downloading from the web. Each object contains 3 important types of information: · Parametric scale dependant 2d plan symbols · Full 3d geometric data · Manufacturers information such as material, colour and price Whilst manufacturers are racing to GDL Technologies door to sign up, developers and clients are quick to see the benefit too. Porsche are using GDL Objects to manage their brand identity as they build over 300 new showrooms worldwide. Having defined the building style and interior Porsche, in conjunction with the product suppliers, have produced a CD-ROM with all of the selected building components such as cladding, doors, furniture, and finishes. Designing and detailing the various schemes will therefore be as straightforward as using Lego. To ease the process of accessing, sizing and placing the product libraries GDL Technology have developed a product called GDL Object Explorer, a free-standing application which can be placed on the CD with the product libraries. Furthermore, whilst the Object Explorer gives access to the GDL Objects it also enables the user to save the object in one of many file formats including DWG, DGN, DXF, 3DS and even the IAI's IFC. However, if you are an AutoCAD user there is another tool, which has been designed especially for you, it is called the Object Adapter and it works inside of AutoCAD 14 and 2000. The Object Adapter will dynamically convert all GDL Objects to AutoCAD Blocks during placement, which means that they can be controlled with standard AutoCAD commands. Furthermore, each object can be linked to an online document from the manufacturer web site, which is ideal for more extensive product information. Other tools, which have been developed to make the most of the objects, are the Web Plug-in and SalesCAD. The Plug-in enables objects to be dynamically modified and displayed on web pages and Sales CAD is an easy to learn and use design tool for sales teams to explore, develop and cost designs on a Notebook PC whilst sitting in the architects office. All sales quotations are directly extracted from the model and presented in HTML format as a mixture of product images, product descriptions and tables identifying quantities and costs. With full lifecycle information stored in each GDL Object it is no surprise that GDL Technology see their objects as the future for building design. Indeed they are not alone, the IAI have already said that they are going to explore the possibility of associating GDL Objects with their own data sharing format the IFC. So down to the dirty stuff, money and how much it costs? Well, at the risk of sounding like a market trader in Petticoat Lane, "To you guv? Nuffin". That's right as a user of this technology it will cost you nothing! Not a penny, it is gratis, free. The product manufacturer pays for the license to host their libraries on the web or on CD and even then their costs are small costing from as little as 50p for each CD filled with objects. GDL Technology has come up trumps with their GDL Objects. They have developed a new way to solve old problems. If CAD were a pencil then GDL Objects would be ballistic lead, which would never break or loose its point. A much better alternative to the strategy used by many of their competitors who seek to avoid breaking the pencil by persuading the artist not to press down so hard. If you are still reading and you have not already dropped the magazine and run off to find out if your favorite product supplier has already signed up then I suggest you check out the following web sites www.gdlcentral.com and www.gdltechnology.com. If you do not see them there, pick up the phone and ask them why.
series journal paper
email
last changed 2003/04/23 15:14

_id a153
id a153
authors d’Estrée Sterk, Tristan
year 2000
title The Synthetic Dialect And Cybernetic Architectural Form
source Emerging Technologies and Design: The Intersection of Design and Technology. Proceedings of the 2000 ACSA Technology Conference, MIT Cambridge (Massachusetts) 4-7 July 2000, pp.117-122
summary Recently a significant philosophical split has appeared within the discipline of architecture. The split exists because the architectural profession is adopting a new digital framework, from which it can challenge the traditional cultural and technical pursuits of the discipline. This paper is about this split within the profession and about using it to develop challenging contemporary architectural forms that work to fill the ‘gap.’

So where does the split come from? Our discipline and its associated discourses have over time been informed by the technologies used to construct it, design it, and mediate it, but also constrained by these things and our understandings of them. With this in mind, one can realize that it is the technologies of the time that in fact shape the philosophical positions and styles adopted by both individual designers and entire genres.

This gap isn’t an easy thing to pin down. It takes on several forms all of which seem to stem from the same source, that being the influence of information constructs on space. If anything this paper aims to uncover the differences and similarities of these constructs, and use them to understand the digital genre that presently surrounds us.

keywords Synthetic Form, Information And Space, Modernism, Cybernetic Architectural Form
series other
type normal paper
email
more admin
last changed 2017/04/10 13:08

_id 40c1
authors Erickson, Thomas
year 2000
title Lingua Francas for Design: Sacred Places and Pattern Languages Pattern Languages
source Proceedings of DIS'00: DesigningInteractive Systems: Processes, Practices, Methods, & Techniques 2000 pp. 357-368
summary A central challenge in interaction design has to do with its diversity. Designers, engineers, managers, marketers, researchers and users all have important contributions to make to the design process. But at the same time they lack shared concepts, experiences and perspectives. How is the process of design-which requires communication, negotiation and compromise-to effectively proceed in the absence of a common ground? I argue that an important role for the interaction designer is to help stakeholders in the design process to construct alingua franca. To explore this issue, which has received remarkably little attention in HCI, I turn to work in urban design and architecture. I begin by discussing a case study in community design, reported by Hester [10], that demonstrates the power of alingua franca for a particular design project. I then describe the concept of pattern languages and discuss how they might be adapted to the needs of interaction design in general, and used, in particular, as meta-languages for generating lingua francas for particular design projects.
keywords Architecture; Design Methods; Interaction Design; Interdisciplinary Design; Pattern Language; Patterns; Urban Design
series other
last changed 2002/07/07 16:01

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_633788 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002