CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 746

_id fa1b
authors Haapasalo, H.
year 2000
title Creative computer aided architectural design An internal approach to the design process
source University of Oulu (Finland)
summary This survey can be seen as quite multidisciplinary research. The basis for this study has been inapplicability of different CAD user interfaces in architectural design. The objective of this research is to improve architectural design from the creative problem-solving viewpoint, where the main goal is to intensify architectural design by using information technology. The research is linked to theory of methods, where an internal approach to design process means studying the actions and thinking of architects in the design process. The research approach has been inspired by hermeneutics. The human thinking process is divided into subconscious and conscious thinking. The subconscious plays a crucial role in creative work. The opposite of creative work is systematic work, which attempts to find solutions by means of logical inference. Both creative and systematic problem solving have had periods of predominance in the history of Finnish architecture. The perceptions in the present study indicate that neither method alone can produce optimal results. Logic is one of the tools of creativity, since the analysis and implementation of creative solutions require logical thinking. The creative process cannot be controlled directly, but by creating favourable work conditions for creativity, it can be enhanced. Present user interfaces can make draughting and the creation of alternatives quicker and more effective in the final stages of designing. Only two thirds of the architects use computers in working design, even the CAD system is being acquired in greater number of offices. User interfaces are at present inflexible in sketching. Draughting and sketching are the basic methods of creative work for architects. When working with the mouse, keyboard and screen the natural communication channel is impaired, since there is only a weak connection between the hand and the line being drawn on the screen. There is no direct correspondence between hand movements and the lines that appear on the screen, and the important items cannot be emphasized by, for example, pressing the pencil more heavily than normally. In traditional sketching the pen is a natural extension of the hand, as sketching can sometimes be controlled entirely by the unconscious. Conscious efforts in using the computer shift the attention away from the actual design process. However, some architects have reached a sufficiently high level of skill in the use of computer applications in order to be able to use them effectively in designing without any harmful effect on the creative process. There are several possibilities in developing CAD systems aimed at architectural design, but the practical creative design process has developed during a long period of time, in which case changing it in a short period of time would be very difficult. Although CAD has had, and will have, some evolutionary influences on the design process of architects as an entity, the future CAD user interface should adopt its features from the architect's practical and creative design process, and not vice versa.
keywords Creativity, Systematicism, Sketching
series thesis:PhD
email
more http://herkules.oulu.fi/isbn9514257545/
last changed 2003/02/12 22:37

_id c6db
authors Heylighen, Ann
year 2000
title In Case of Architectural Design. Critique and Praise of Case-Based Design in Architecture
source Dissertation - Doct. Toegepaste wetenschappen, KU Leuven, Fac. Toegepaste wetenschappen, Dep. architectuur, stedebouw en ruimtelijke ordening (ISBN 90-5682-248-9)
summary Architects are said to learn design by experience. Learning design by experience is the essence of Case-Based Design (CBD), a sub-domain of Artificial Intelligence. Part I critically explores the CBD approach from an architectural point of view, tracing its origins in the Theory of Dynamic Memory and highlighting its potential for architectural design. Seven CBD systems are analysed, experienced architects and design teachers are interviewed, and an experiment is carried out to examine how cases affect the design performance of architecture students. The results of this exploration show that despite its sound view on how architects acquire (design) knowledge, CBD is limited in important respects: it reduces architectural design to problem solving, is difficult to implement and has to contend with prejudices among the target group. With a view to stretching these limits, part II covers the design, implementation and evaluation of DYNAMO (Dynamic Architectural Memory On-line). This Web-based design tool tailors the CBD approach to the complexity of architectural design by effecting three transformations: extending the concern with design products towards design processes, turning static case bases into dynamic memories and upgrading users from passive case consumers to active case-based designers.
keywords Architectural Design; Case-Based Design
series thesis:PhD
email
last changed 2002/12/14 19:29

_id 96a7
authors Li, Heng and Love, Peter E.D.
year 2000
title Genetic search for solving construction site-level unequal-area facility layout problems
source Automation in Construction 9 (2) (2000) pp. 217-226
summary A construction site represents a conflux of concerns, constantly calling for a broad and multi-criteria approach to solving problems related to site planning and design. As an important part of site planning and design, the objective of site-level facility layout is to allocate appropriate locations and areas for accommodating temporary site-level facilities such as warehouses, job offices, workshops and batch plants. Depending on the size, location and nature of the project, the required temporary facilities may vary. The layout of facilities can influence on the production time and cost in projects. In this paper, a construction site-level facility layout problem is described as allocating a set of predetermined facilities into a set of predetermined places, while satisfying layout constraints and requirements. A genetic algorithm system, which is a computational model of Darwinian evolution theory, is employed to solve the facilities layout problem. A case study is presented to demonstrate the efficiency of the genetic algorithm system in solving the construction site-level facility layout problems.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ddssar0020
id ddssar0020
authors Mardjono, Fitri
year 2000
title Development of a decision support system for bamboo building design
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary Bamboo, the fastest growing woody plant, is used as a common building material in bamboo-growing countries and recently also in non-bamboo-growing countries. In spite of this fact, building designers or users of a building have problems using bamboo as a building material since they lack information and guidance in how to use bamboo. This paper proposes a decision support system (DSS) that might be useful for designers when they design a bamboo building. It presents an early-stage design process of bamboo building and the development of a DSS. The architecture of this system is based on the theory of DSS and knowledge of bamboo that should be integrated in the design process of bamboo building. So there are three components: a DSS, design process, and knowledge of bamboo. The process starts with determination of the building system, database construction of bamboo building parts, and the rule for using bamboo in each building part. The process focuses on systematisation of each design stage and integration of the building parts to construct a monolith bamboo building. The purpose of systematisation is to offer designers a means of categorising problem solving during the design process in terms of, for example, assumption, criteria, alternatives, and acceptable solutions.
series DDSS
last changed 2003/08/07 16:36

_id b7ff
authors Mullins, Michael and Van Zyl, Douw
year 2000
title Self-Selecting Digital Design Students
doi https://doi.org/10.52842/conf.ecaade.2000.085
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 85-88
summary Recent years have seen the increasing use of digital media in undergraduate architectural education at UND, and which has been fuelled by students themselves taking up the tools available to practising architects. This process of self-selection may hold valuable lessons for the development of architectural curricula. An experimental design studio offered as an elective to UND undergraduates in 1999 has indicated that the design work produced therein, most often differed remarkably from the previous work of the same students using only traditional media. In so far as digital environments rapidly provide new and strange objects and images for students to encounter, those students are driven to interpret, transform or customise that environment in innovative ways, thereby making it their own. It is clear that the full integration of digital environments into architectural education will profoundly effect the outcomes of student work. We have observed that some self-selecting students struggle in expressing ideas through repre-sentative form in traditional studios. The question arises whether these students are "onto something" which they intuitively understand as better suited to their abilities, or whether in fact they are see digital tools as a means to avoid those areas in design in which they experience difficulties. Through observation of a group of "self-selectors" the authors attempt to lead useful generalisations; to develop a theory and method for facilitators to deal with specific students; and to work toward the development of suitable curricula for these cases.
keywords Architectural Education, Digital Media, Learning Styles
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:59

_id 3642
authors Asojo, Abimbola Oluwatoni
year 2000
title Design Algorithms after Le Corbusier
doi https://doi.org/10.52842/conf.acadia.2000.017
source ACADIA Quarterly, vol. 19, no. 4, pp. 17-24
summary Some views of design are the act as puzzle making, problem solving, evolutionary, and decision-making. All these focus on form generation as constructive, therefore characterizing design as a path-planning problem through a space of possibilities. Design problems consist sets of information divided into initial, intermediate, and goal states. Design in its simplest state consist of a set of operators, sequences (or paths) between initial and goals states. In this paper, I present design algorithms for Le Corbusier because of his distinct compositional techniques particularly for his “White Villas” in which some elements have been identified to recursively occur.
series ACADIA
last changed 2022/06/07 07:54

_id ga0007
id ga0007
authors Coates, Paul and Miranda, Pablo
year 2000
title Swarm modelling. The use of Swarm Intelligence to generate architectural form
source International Conference on Generative Art
summary .neither the human purposes nor the architect's method are fully known in advance. Consequently, if this interpretation of the architectural problem situation is accepted, any problem-solving technique that relies on explicit problem definition, on distinct goal orientation, on data collection, or even on non-adaptive algorithms will distort the design process and the human purposes involved.' Stanford Anderson, "Problem-Solving and Problem-Worrying". The works concentrates in the use of the computer as a perceptive device, a sort of virtual hand or "sense", capable of prompting an environment. From a set of data that conforms the environment (in this case the geometrical representation of the form of the site) this perceptive device is capable of differentiating and generating distinct patterns in its behavior, patterns that an observer has to interpret as meaningful information. As Nicholas Negroponte explains referring to the project GROPE in his Architecture Machine: 'In contrast to describing criteria and asking the machine to generate physical form, this exercise focuses on generating criteria from physical form.' 'The onlooking human or architecture machine observes what is "interesting" by observing GROPE's behavior rather than by receiving the testimony that this or that is "interesting".' The swarm as a learning device. In this case the work implements a Swarm as a perceptive device. Swarms constitute a paradigm of parallel systems: a multitude of simple individuals aggregate in colonies or groups, giving rise to collaborative behaviors. The individual sensors can't learn, but the swarm as a system can evolve in to more stable states. These states generate distinct patterns, a result of the inner mechanics of the swarm and of the particularities of the environment. The dynamics of the system allows it to learn and adapt to the environment; information is stored in the speed of the sensors (the more collisions, the slower) that acts as a memory. The speed increases in the absence of collisions and so providing the system with the ability to forget, indispensable for differentiation of information and emergence of patterns. The swarm is both a perceptive and a spatial phenomenon. For being able to Interact with an environment an observer requires some sort of embodiment. In the case of the swarm, its algorithms for moving, collision detection, and swarm mechanics conform its perceptive body. The way this body interacts with its environment in the process of learning and differentiation of spatial patterns constitutes also a spatial phenomenon. The enactive space of the Swarm. Enaction, a concept developed by Maturana and Varela for the description of perception in biological terms, is the understanding of perception as the result of the structural coupling of an environment and an observer. Enaction does not address cognition in the currently conventional sense as an internal manipulation of extrinsic 'information' or 'signals', but as the relation between environment and observer and the blurring of their identities. Thus, the space generated by the swarm is an enactive space, a space without explicit description, and an invention of the swarm-environment structural coupling. If we consider a gestalt as 'Some property -such as roundness- common to a set of sense data and appreciated by organisms or artefacts' (Gordon Pask), the swarm is also able to differentiate space 'gestalts' or spaces of some characteristics, such as 'narrowness', or 'fluidness' etc. Implicit surfaces and the wrapping algorithm. One of the many ways of describing this space is through the use of implicit surfaces. An implicit surface may be imagined as an infinitesimally thin band of some measurable quantity such as color, density, temperature, pressure, etc. Thus, an implicit surface consists of those points in three-space that satisfy some particular requirement. This allows as to wrap the regions of space where a difference of quantity has been produced, enclosing the spaces in which some particular events in the history of the Swarm have occurred. The wrapping method allows complex topologies, such as manifoldness in one continuous surface. It is possible to transform the information generated by the swarm in to a landscape that is the result of the particular reading of the site by the swarm. Working in real time. Because of the complex nature of the machine, the only possible way to evaluate the resulting behavior is in real time. For this purpose specific applications had to be developed, using OpenGL for the Windows programming environment. The package consisted on translators from DXF format to a specific format used by these applications and viceversa, the Swarm "engine", a simulated parallel environment, and the Wrapping programs, to generate the implicit surfaces. Different versions of each had been produced, in different stages of development of the work.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ec4d
authors Croser, J.
year 2001
title GDL Object
source The Architect’s Journal, 14 June 2001, pp. 49-50
summary It is all too common for technology companies to seek a new route to solving the same problem but for the most part the solutions address the effect and not the cause. The good old-fashioned pencil is the perfect example where inventors have sought to design-out the effect of the inherent brittleness of lead. Traditionally different methods of sharpening were suggested and more recently the propelling pencil has reigned king, the lead being supported by the dispensing sleeve thus reducing the likelihood of breakage. Developers convinced by the Single Building Model approach to design development have each embarked on a difficult journey to create an easy to use feature packed application. Unfortunately it seems that the two are not mutually compatible if we are to believe what we see emanating from Technology giants Autodesk in the guise of Architectural Desktop 3. The effect of their development is a feature rich environment but the cost and in this case the cause is a tool which is far from easy to use. However, this is only a small part of a much bigger problem, Interoperability. You see when one designer develops a model with one tool the information is typically locked in that environment. Of course the geometry can be distributed and shared amongst the team for use with their tools but the properties, or as often misquoted, the intelligence is lost along the way. The effect is the technological version of rubble; the cause is the low quality of data-translation available to us. Fortunately there is one company, which is making rapid advancements on the whole issue of collaboration, and data sharing. An old timer (Graphisoft - famous for ArchiCAD) has just donned a smart new suit, set up a new company called GDL Technology and stepped into the ring to do battle, with a difference. The difference is that GDL Technology does not rely on conquering the competition, quite the opposite in fact their success relies upon the continued success of all the major CAD platforms including AutoCAD, MicroStation and ArchiCAD (of course). GDL Technology have created a standard data format for manufacturers called GDL Objects. Product manufacturers such as Velux are now able to develop product libraries using GDL Objects, which can then be placed in a CAD model, or drawing using almost any CAD tool. The product libraries can be stored on the web or on CD giving easy download access to any building industry professional. These objects are created using scripts which makes them tiny for downloading from the web. Each object contains 3 important types of information: · Parametric scale dependant 2d plan symbols · Full 3d geometric data · Manufacturers information such as material, colour and price Whilst manufacturers are racing to GDL Technologies door to sign up, developers and clients are quick to see the benefit too. Porsche are using GDL Objects to manage their brand identity as they build over 300 new showrooms worldwide. Having defined the building style and interior Porsche, in conjunction with the product suppliers, have produced a CD-ROM with all of the selected building components such as cladding, doors, furniture, and finishes. Designing and detailing the various schemes will therefore be as straightforward as using Lego. To ease the process of accessing, sizing and placing the product libraries GDL Technology have developed a product called GDL Object Explorer, a free-standing application which can be placed on the CD with the product libraries. Furthermore, whilst the Object Explorer gives access to the GDL Objects it also enables the user to save the object in one of many file formats including DWG, DGN, DXF, 3DS and even the IAI's IFC. However, if you are an AutoCAD user there is another tool, which has been designed especially for you, it is called the Object Adapter and it works inside of AutoCAD 14 and 2000. The Object Adapter will dynamically convert all GDL Objects to AutoCAD Blocks during placement, which means that they can be controlled with standard AutoCAD commands. Furthermore, each object can be linked to an online document from the manufacturer web site, which is ideal for more extensive product information. Other tools, which have been developed to make the most of the objects, are the Web Plug-in and SalesCAD. The Plug-in enables objects to be dynamically modified and displayed on web pages and Sales CAD is an easy to learn and use design tool for sales teams to explore, develop and cost designs on a Notebook PC whilst sitting in the architects office. All sales quotations are directly extracted from the model and presented in HTML format as a mixture of product images, product descriptions and tables identifying quantities and costs. With full lifecycle information stored in each GDL Object it is no surprise that GDL Technology see their objects as the future for building design. Indeed they are not alone, the IAI have already said that they are going to explore the possibility of associating GDL Objects with their own data sharing format the IFC. So down to the dirty stuff, money and how much it costs? Well, at the risk of sounding like a market trader in Petticoat Lane, "To you guv? Nuffin". That's right as a user of this technology it will cost you nothing! Not a penny, it is gratis, free. The product manufacturer pays for the license to host their libraries on the web or on CD and even then their costs are small costing from as little as 50p for each CD filled with objects. GDL Technology has come up trumps with their GDL Objects. They have developed a new way to solve old problems. If CAD were a pencil then GDL Objects would be ballistic lead, which would never break or loose its point. A much better alternative to the strategy used by many of their competitors who seek to avoid breaking the pencil by persuading the artist not to press down so hard. If you are still reading and you have not already dropped the magazine and run off to find out if your favorite product supplier has already signed up then I suggest you check out the following web sites www.gdlcentral.com and www.gdltechnology.com. If you do not see them there, pick up the phone and ask them why.
series journal paper
email
last changed 2003/04/23 15:14

_id 5007
authors Elezkurtaj, Tomor and Franck, Georg
year 1999
title Genetic Algorithms in Support of Creative Architectural Design
doi https://doi.org/10.52842/conf.ecaade.1999.645
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 645-651
summary The functions supported by commercial CAAD software are drawing, construction and presentation. Up to now few programs supporting the creative part of architectural problem solving have become available. The grand hopes of symbolic AI to program creative architectural design have been disappointing. In the meantime, methods called referred to as New AI have become available. Such methods includegenetic algorithms (GA). But GA, though successfully applied in other fields of engineering, still waits to be applied broadly in architectural design. A main problem lies in defining function in architecture. It is much harder to define the function of a building than that of a machine. Without specifying the function of the artifact, the fitness function of the design variants participating in the survival game of artificial evolution remains undetermined. It is impossible to fully specify the fitness function of architecture. The approach presented is one of circumventing a full specification through dividing labor between the GA software and its user. The fitness function of architectural ground plans is typically defined in terms only of the proportions of the room to be accommodated and certain topological relations between them. The rest is left to the human designer who interactively intervenes in the evolution game as displayed on the screen.
keywords Genetic Algorithms, Creative Architectural Design
series eCAADe
email
last changed 2022/06/07 07:55

_id f91f
authors Elezkurtaj, Tomor and Franck, Georg
year 2000
title Geometry and Topology. A User-Interface to Artificial Evolution in Architectural Design
doi https://doi.org/10.52842/conf.ecaade.2000.309
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 309-312
summary The paper presents a system that supports architectural floor plan design interactively. The method of problem solving implemented is a combination of an evolutionary strategy (ES) and a genetic algorithm (GA). The problem to be solved consists of fitting a number of rooms (n) into an outline by observing functional requirements. The rooms themselves are specified concerning size, function and preferred proportion. The functional requirements entering the fitness functions are expressed in terms of the proportions of the rooms and the neighbourhood relations between them. The system is designed to deal with one of the core problems of computer supported creativity in architecture. For architecture, form not only, but also function is relevant. Without specifying the function that a piece of architecture is supposed to fulfil, it is hard to support its design by computerised methods of problem solving and optimisation. In architecture, however, function relates to comfort, easiness of use, and aesthetics as well. Since it is extraordinary hard, if not impossible, to operationalise aesthetics, computer aided support of creative architectural design is still in its infancy.
keywords New AI, Genetic Algorithms, Artificial Evolution, creative Architectural Design, Interactive Design, Topology
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:55

_id ddssar0023
id ddssar0023
authors Jens Pohl, Art Chapman, and Kym Jason Pohl
year 2000
title Computer-aided design systems for the 21st century: some design guidelines
source Timmermans, Harry (Ed.), Fifth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings (Nijkerk, the Netherlands)
summary This paper proposes nine design principles for a new generation of computer-aided design (CAD) systems that actively support the decision making and problem solving activities of environmental design. Foremost among these are: a meaningful internal object-based representation of the artifact being designed within its environmental context; a collaborative problem solving paradigm in which the human designer and the computer form a complementary partnership; and, the notion of decision-support tools rather than predefined solutions. Two prototype computer-aided design systems implemented by the CAD Research Center that embody most of these concepts are described. ICADS (Intelligent Computer-Aided Design System) incorporates multiple expert agents in domains such as natural and artificial lighting, noise control, structural system selection, climatic determinants, and energy conservation. Given a particular building design context, the agents in ICADS draw upon their own expertise and several knowledgebases as they monitor the actions of the human designer and collaborate opportunistically. KOALA (Knowledge-Based Object-Agent Collaboration) builds on the multi-agent concepts embodied in ICADS by the addition of two kinds of agents. Mentor agents represent the interests of selected objects within the ontology of the design environment. In the implemented KOALA system building spaces are represented by agents capable of collaborating with each other, with domain agents for the provision of expert services, and with the human designer. Facilitator agents listen in on the communications among mentor agents to detect conflicts and moderate arguments. While both of these prototype systems are limited in scope by focussing on the earliest design stages and restricted in their understanding of the inherent complexity of a design state, they nevertheless promise a paradigm shift in computer-aided design.
series DDSS
last changed 2003/08/07 16:36

_id 37b2
authors Johansson, P.
year 2000
title Case-Based Structural Design - using weakly structured product and process information
source Chalmers University of Technology, Division of Steel and Timber Structures, Publ. S 00:7, Göteborg
summary Empirical knowledge plays a significant role in the human reasoning process. Previous experiences help in understanding new situations and in finding solutions to new problems. Experience is used when performing different tasks, both those of routine character and those that require specific skill. This is also the case for structural designers. Over 50% of the work done by the designer on a day-to-day basis is routine design that consists of modifying past designs (Moore 1993). That is, most of the design problems that the designer solves have been solved before, in many cases over and over again. In recent years, researchers have started to study if cases (information about specific problem-solving experiences) could be used as a representation of experiential knowledge. Making use of past experience in the form of cases is commonly known as Case-Based Reasoning (CBR). A requirement for Case-Based Design (Case-Based Reasoning applied in design) to be successful is that the design information is computerized. One information type used in structural design that is starting to become computerized is the one in design calculation documents. Such information is weakly structured (which holds for much of the information representing experience) and it contains both product and process information. In this thesis it is shown how the weak structure of this information can be used to subdivide it into components, which in turn makes it possible to apply the object-oriented abstraction principles also to this kind of information. It is also shown how the detailed design process can be represented and how this representation can facilitate automatic acquisition, retrieval of relevant old design information, and adaptation of this information. Two prototypes BridgeBase and ARCADE have been developed, where the principles described above are applied. Using ARCADE, the more general of these two prototypes, it is presented how information in computerized design calculation documents, gathered from real projects, can serve as containers and carriers for both project information and experience. The experience from the two prototypes shows that Case-Based Design can be usable as a tool for structural engineers.
series other
last changed 2003/04/23 15:14

_id ga0008
id ga0008
authors Koutamanis, Alexander
year 2000
title Redirecting design generation in architecture
source International Conference on Generative Art
summary Design generation has been the traditional culmination of computational design theory in architecture. Motivated either by programmatic and functional complexity (as in space allocation) or by the elegance and power of representational analyses (shape grammars, rectangular arrangements), research has produced generative systems capable of producing new designs that satisfied certain conditions or of reproducing exhaustively entire classes (such as all possible Palladian villas), comprising known and plausible new designs. Most generative systems aimed at a complete spatial design (detailing being an unpopular subject), with minimal if any intervention by the human user / designer. The reason for doing so was either to give a demonstration of the elegance, power and completeness of a system or simply that the replacement of the designer with the computer was the fundamental purpose of the system. In other words, the problem was deemed either already resolved by the generative system or too complex for the human designer. The ongoing democratization of the computer stimulates reconsideration of the principles underlying existing design generation in architecture. While the domain analysis upon which most systems are based is insightful and interesting, jumping to a generative conclusion was almost always based on a very sketchy understanding of human creativity and of the computer's role in designing and creativity. Our current perception of such matters suggests a different approach, based on the augmentation of intuitive creative capabilities with computational extensions. The paper proposes that architectural generative design systems can be redirected towards design exploration, including the development of alternatives and variations. Human designers are known to follow inconsistent strategies when confronted with conflicts in their designs. These strategies are not made more consistent by the emerging forms of design analysis. The use of analytical means such as simulation, couple to the necessity of considering a rapidly growing number of aspects, means that the designer is confronted with huge amounts of information that have to be processed and integrated in the design. Generative design exploration that can combine the analysis results in directed and responsive redesigning seems an effective method for the early stages of the design process, as well as for partial (local) problems in later stages. The transformation of generative systems into feedback support and background assistance for the human designer presupposes re-orientation of design generation with respect to the issues of local intelligence and autonomy. Design generation has made extensive use of local intelligence but has always kept it subservient to global schemes that tended to be holistic, rigid or deterministic. The acceptance of local conditions as largely independent structures (local coordinating devices) affords a more flexible attitude that permits not only the emergence of internal conflicts but also the resolution of such conflicts in a transparent manner. The resulting autonomy of local coordinating devices can be expanded to practically all aspects and abstraction levels. The ability to have intelligent behaviour built in components of the design representation, as well as in the spatial and building elements they signify, means that we can create the new, sharper tools required by the complexity resulting from the interpretation of the built environment as a dynamic configuration of co-operating yet autonomous parts that have to be considered independently and in conjunction with each other.   P.S. The content of the paper will be illustrated by a couple of computer programs that demonstrate the princples of local intelligence and autonomy in redesigning. It is possible that these programs could be presented as independent interactive exhibits but it all depends upon the time we can make free for the development of self-sufficient, self-running demonstrations until December.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 8b8e
authors Kvan, Th., Wong, J.T.H. and Vera, A.H.
year 2000
title Supporting Structural Activities in Design: A Multiple-Case Study
source Proceedings, Fifth International Conference on Computer Supported Cooperative Work in Design (CSCWD2000), Hong Kong, November 29 – December 2, 2000, pp. 116-120
summary This paper describes case studies in design teaching and their analysis; examining the role of structural activities and other solution searching activities in design learning and problem solving. The case studies follow students working on the same problem under two conditions – one group is taught using traditional face-to-face teaching while the other group is supported by a text-based web board. The design activities of two students were followed in each condition through a semester; followed by in-depth interviews at the end of semester. Interviews and logs were coded according to an activity-based model of design activity. The results show that cases with above average design work involved more structural activities than the mediocre cases. It also showed that design problem dissections are more organized in the better cases. These successful cases engaged in textual expression of their design solutions. Computer tools for design should therefore support textual representation in addition to graphic; video or audio.
keywords Collaborative Design; Computer Supported Collaborative Work; Structure Activities; Text
series other
email
last changed 2002/11/15 18:29

_id fcb5
authors Lee, Yuan-Jang
year 2000
title The Relationship between Problem-Finding and Computing Media in Design Creativity
doi https://doi.org/10.52842/conf.caadria.2000.277
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 277-285
summary Designing is defined as a process of problem-finding and problem-solving. According to studies, the problem-finding during the early period of designing is the key point for influencing creativity, and the study also indicates that the computer originally used for presenting during the late period of designing can also be used during the early stage, but now we lack studies about creativity and computers. This study uses protocol analysis as an experimental methodology. We hope to clarify the relationship between computers and problem-solving, and to compare the differences between traditional materials and computers when used to discover problems.
series CAADRIA
email
last changed 2022/06/07 07:52

_id 5b5d
authors Li, S.-P., Frazer, J.H. and Tang M.-X.
year 2000
title A Constraint Based Generative System for Floor Layouts
doi https://doi.org/10.52842/conf.caadria.2000.441
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 441-450
summary This paper presents the current study of using a constraint based approach to solve floor layout problems. Nonlinear programming technique is used for the solution searching. This paper presents the authors' attempt to improve the nonlinear programming techniques for floor layout problems. Unlike most nonlinear programming systems, multiple optimized solutions can be provided with this system. The process of solving a layout problem, from constraint specification to solution searching, is described in detail. A case study is given in the last section before the conclusions to illustrate how the proposed model works.
series CAADRIA
email
last changed 2022/06/07 07:59

_id 03ad
authors Lottaz, C., Smith, I.F.C., Robert-Nicoud, Y. and Faltings, B.V.
year 2000
title Constraint-based support for negotiation in collaborative design
source Artificial Intelligence in Engineering, Vol: 14, Issue: 3, pp. 261-280.
summary Solution spaces are proposed, instead of single solutions only, to support collaborative tasks during design and construction. Currently, partners involved in construction projects typically assign single values for sub-sets of variables and then proceed, often after tedious negotiations with other partners, to integrate these partial solutions into more complete project descriptions. We suggest the use of constraint solving to express possibly large families of acceptable solutions in order to improve the negotiation process in two ways. On one hand, con ict detection can be performed in an automated manner. Through the constraints collaborators impose, they de ne large unfeasible areas where no solution to the problem at hand can be expected. An emty intersectidon of the solution spaces can thus point at a con ict of design goals of the di erent collaborators at an early stage of the design process. On the other hand, important decision support during negotiation is provided. When a solution space is found, collaborators know during negotiation that they are negotiating about feasible solutions. Negotiation is no longer a means to nd a solution to the problem but it takes place in order to nd a good or the best solution. Since the consistency of the design remains ensured, collaborators are expected to be less restrictive towards innovative ideas during negotiation. Moreover, constraint techniques using explicit representations of solution spaces can provide tools to visualize trade-o s and illustrate the impact of certain decisions on other parameters. Thus decision-making is improved during the negotiation. New algorithms have been developed at EPFL for solving multi-dimensional nonlinear inequality constraints on continuous variables. Together with intuitive user interfaces such constraint-based support leads to better change management and easier implementation of least commitment decision strategies. It is expected that the results of this research can improve both the e ciency of negotiation processes and the quality of the achieved results.
series journal paper
last changed 2003/04/23 15:50

_id e6fb
authors McFadzean, Jeanette
year 1999
title Computational Sketch Analyser (CSA): Extending the Boundaries of Knowledge in CAAD
doi https://doi.org/10.52842/conf.ecaade.1999.503
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 503-510
summary This paper focuses on the cognitive problem-solving strategies of professional architectural designers and their use of external representations for the production of creative ideas. Using a new form of protocol analysis (Computational Sketch Analysis), the research has analysed five architects' verbal descriptions of their cognitive reasoning strategies during conceptual designing. It compares these descriptions to a computational analysis of the architects' sketches and sketching behaviour. The paper describes how the current research is establishing a comprehensive understanding of the mapping between conceptualisation, cognition, drawing, and complex problem solving. The paper proposes a new direction for Computer Aided Architectural Design tools (CAAD). It suggests that in order to extend the boundaries of knowledge in CAAD an understanding of the complex nature of architectural conceptual problem-solving needs to be incorporated into and supported by future conceptual design tools.
keywords Computational Sketch Analysis, Conceptual Design
series eCAADe
email
last changed 2022/06/07 07:58

_id ga0010
id ga0010
authors Moroni, A., Zuben, F. Von and Manzolli, J.
year 2000
title ArTbitrariness in Music
source International Conference on Generative Art
summary Evolution is now considered not only powerful enough to bring about the biological entities as complex as humans and conciousness, but also useful in simulation to create algorithms and structures of higher levels of complexity than could easily be built by design. In the context of artistic domains, the process of human-machine interaction is analyzed as a good framework to explore creativity and to produce results that could not be obtained without this interaction. When evolutionary computation and other computational intelligence methodologies are involved, every attempt to improve aesthetic judgement we denote as ArTbitrariness, and is interpreted as an interactive iterative optimization process. ArTbitrariness is also suggested as an effective way to produce art through an efficient manipulation of information and a proper use of computational creativity to increase the complexity of the results without neglecting the aesthetic aspects [Moroni et al., 2000]. Our emphasis will be in an approach to interactive music composition. The problem of computer generation of musical material has received extensive attention and a subclass of the field of algorithmic composition includes those applications which use the computer as something in between an instrument, in which a user "plays" through the application's interface, and a compositional aid, which a user experiments with in order to generate stimulating and varying musical material. This approach was adopted in Vox Populi, a hybrid made up of an instrument and a compositional environment. Differently from other systems found in genetic algorithms or evolutionary computation, in which people have to listen to and judge the musical items, Vox Populi uses the computer and the mouse as real-time music controllers, acting as a new interactive computer-based musical instrument. The interface is designed to be flexible for the user to modify the music being generated. It explores evolutionary computation in the context of algorithmic composition and provides a graphical interface that allows to modify the tonal center and the voice range, changing the evolution of the music by using the mouse[Moroni et al., 1999]. A piece of music consists of several sets of musical material manipulated and exposed to the listener, for example pitches, harmonies, rhythms, timbres, etc. They are composed of a finite number of elements and basically, the aim of a composer is to organize those elements in an esthetic way. Modeling a piece as a dynamic system implies a view in which the composer draws trajectories or orbits using the elements of each set [Manzolli, 1991]. Nonlinear iterative mappings are associated with interface controls. In the next page two examples of nonlinear iterative mappings with their resulting musical pieces are shown.The mappings may give rise to attractors, defined as geometric figures that represent the set of stationary states of a non-linear dynamic system, or simply trajectories to which the system is attracted. The relevance of this approach goes beyond music applications per se. Computer music systems that are built on the basis of a solid theory can be coherently embedded into multimedia environments. The richness and specialty of the music domain are likely to initiate new thinking and ideas, which will have an impact on areas such as knowledge representation and planning, and on the design of visual formalisms and human-computer interfaces in general. Above and bellow, Vox Populi interface is depicted, showing two nonlinear iterative mappings with their resulting musical pieces. References [Manzolli, 1991] J. Manzolli. Harmonic Strange Attractors, CEM BULLETIN, Vol. 2, No. 2, 4 -- 7, 1991. [Moroni et al., 1999] Moroni, J. Manzolli, F. Von Zuben, R. Gudwin. Evolutionary Computation applied to Algorithmic Composition, Proceedings of CEC99 - IEEE International Conference on Evolutionary Computation, Washington D. C., p. 807 -- 811,1999. [Moroni et al., 2000] Moroni, A., Von Zuben, F. and Manzolli, J. ArTbitration, Las Vegas, USA: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program – GECCO, 143 -- 145, 2000.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 15e4
authors Sariyildiz, S., Stouffs, R. and Tunçer, B.
year 2000
title Vision on ICT Developments for the Building Sector
doi https://doi.org/10.52842/conf.acadia.2000.011
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 11-18
summary The building sector is entering a new era. Developments in information and communication technology have an impact throughout the entire life cycle of a building, not only from a process and technical point of view but also from a creative design point of view. As a result of developments of advanced modeling software for architectural design, the gap between what the architect can envision and what the building technician or product architect can materialize is enlarging. Internet technology has already started to provide a closer link between the participants in the building process, their activities, knowledge, and information. Concurrent and collaborative engineering will be the future of building practice in respect to efficiency and quality improvement of this sector. The nature of the building process is complex, not only from a communication point of view, but also from the information of the number of participants, the spatial organization and the infrastructure etc. In the near future, soft computing techniques such as artificial neural networks, fuzzy logic, and genetic algorithms will make contributions to the problem solving aspects of the complex design process. This paper provides an overview of these and other future developments of information and communication technology (ICT) within the building sector.
series ACADIA
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 37HOMELOGIN (you are user _anon_162301 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002