CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 738

_id ga0010
id ga0010
authors Moroni, A., Zuben, F. Von and Manzolli, J.
year 2000
title ArTbitrariness in Music
source International Conference on Generative Art
summary Evolution is now considered not only powerful enough to bring about the biological entities as complex as humans and conciousness, but also useful in simulation to create algorithms and structures of higher levels of complexity than could easily be built by design. In the context of artistic domains, the process of human-machine interaction is analyzed as a good framework to explore creativity and to produce results that could not be obtained without this interaction. When evolutionary computation and other computational intelligence methodologies are involved, every attempt to improve aesthetic judgement we denote as ArTbitrariness, and is interpreted as an interactive iterative optimization process. ArTbitrariness is also suggested as an effective way to produce art through an efficient manipulation of information and a proper use of computational creativity to increase the complexity of the results without neglecting the aesthetic aspects [Moroni et al., 2000]. Our emphasis will be in an approach to interactive music composition. The problem of computer generation of musical material has received extensive attention and a subclass of the field of algorithmic composition includes those applications which use the computer as something in between an instrument, in which a user "plays" through the application's interface, and a compositional aid, which a user experiments with in order to generate stimulating and varying musical material. This approach was adopted in Vox Populi, a hybrid made up of an instrument and a compositional environment. Differently from other systems found in genetic algorithms or evolutionary computation, in which people have to listen to and judge the musical items, Vox Populi uses the computer and the mouse as real-time music controllers, acting as a new interactive computer-based musical instrument. The interface is designed to be flexible for the user to modify the music being generated. It explores evolutionary computation in the context of algorithmic composition and provides a graphical interface that allows to modify the tonal center and the voice range, changing the evolution of the music by using the mouse[Moroni et al., 1999]. A piece of music consists of several sets of musical material manipulated and exposed to the listener, for example pitches, harmonies, rhythms, timbres, etc. They are composed of a finite number of elements and basically, the aim of a composer is to organize those elements in an esthetic way. Modeling a piece as a dynamic system implies a view in which the composer draws trajectories or orbits using the elements of each set [Manzolli, 1991]. Nonlinear iterative mappings are associated with interface controls. In the next page two examples of nonlinear iterative mappings with their resulting musical pieces are shown.The mappings may give rise to attractors, defined as geometric figures that represent the set of stationary states of a non-linear dynamic system, or simply trajectories to which the system is attracted. The relevance of this approach goes beyond music applications per se. Computer music systems that are built on the basis of a solid theory can be coherently embedded into multimedia environments. The richness and specialty of the music domain are likely to initiate new thinking and ideas, which will have an impact on areas such as knowledge representation and planning, and on the design of visual formalisms and human-computer interfaces in general. Above and bellow, Vox Populi interface is depicted, showing two nonlinear iterative mappings with their resulting musical pieces. References [Manzolli, 1991] J. Manzolli. Harmonic Strange Attractors, CEM BULLETIN, Vol. 2, No. 2, 4 -- 7, 1991. [Moroni et al., 1999] Moroni, J. Manzolli, F. Von Zuben, R. Gudwin. Evolutionary Computation applied to Algorithmic Composition, Proceedings of CEC99 - IEEE International Conference on Evolutionary Computation, Washington D. C., p. 807 -- 811,1999. [Moroni et al., 2000] Moroni, A., Von Zuben, F. and Manzolli, J. ArTbitration, Las Vegas, USA: Proceedings of the 2000 Genetic and Evolutionary Computation Conference Workshop Program – GECCO, 143 -- 145, 2000.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id gerardgabriel_phd
id gerardgabriel_phd
authors Gabriel, Gerard Caesar
year 2000
title COMPUTER-MEDIATED COMMUNICATION IN DESIGN
source PhD Thesis, Faculty of Architecture, University of Sydney
summary Up till now, architects collaborating with other colleagues did so mostly face-to-face (FTF). They had to be in the same space (co-located) at the same time. Communication was ‘spontaneous’ and ideas were represented, whether verbal or nonverbal, by talking and using ‘traditional drawing tools’. If they were geographically displaced, the interaction was then space affected as well as the probability of being time affected. In this case communication was usually mediated through the telephone, and graphically represented ideas were sent by Fax or posted documents. Recently, some architectural firms started using modems and Internet connections to exchange information, by transferring CAD drawings as well as design information, through e-mail and file transfer protocol (FTP). Discussing ideas in architecture, as a more abstract notion, is different from discussing other more concrete arguments using video conferencing. It is more important to ‘see’ what is being discussed at hand than ‘watch’ the other person(s) involved in the discussion. In other words the data being conveyed might be of more importance than the mode of communication. Taking into consideration recent developments in computer and communication technologies this thesis investigates different communication channels utilised in architectural collaboration through Computer Mediated Collaborative Design (CMCD) sessions as opposed to FTF sessions. This thesis investigates the possible effects these different channels have on collaborative design in general and collaborative design communication in particular. We argue that successful CMCD does not necessarily mean emulating close proximity environments. Excluding certain communication channels in a CMCD environment might affect the flow and quantity of synchronous collaborative communication, but not necessarily the quality and content of mutually communicated and represented design ideas. Therefore different communication channels might affect the type of communication and not necessarily the content of the communication. We propose that audio and video are not essential communication channels in CMCD environments. We posit that architects will collaborate and communicate design representations effectively although with some differences, since those two channels might cause interruptions and successful collaborative sessions can take place without them. For this purpose we conducted twenty-four one-hour experiments involving final year architecture students all working to the same design brief. The experiments were divided into three categories, FTF, full computer mediated collaborative design sessions (CMCD-a; audio-video conferencing plus whiteboard as a shared drawing space) and limited computer mediated collaborative design sessions (CMCD-b; with Lambda MOO used as a chat medium plus whiteboard as a shared drawing space). The experiments were video and audio taped, transcribed and coded into a custom developed coding scheme. The results of the analysed coded data and observations of the videotapes provided evidence that there were noticeable differences between the three categories. There was more design communication and less communication control in the CMCD-b category compared to the FTF and CMCD-a categories. Verbal communication became shorter and straight to the point in CMCD-b as opposed to spontaneous non-stop chat in the other two categories. Moreover in CMCD-b the subjects were observed to be more reflective as well as choosing and re-examining their words to explain ideas to their partners. At times they were seen scrolling back through the text of the conversation in order to re-analyse or interpret the design ideas at hand. This was impossible in FTF and CMCD-a sessions, since the subjects were more spontaneous and audio representations were lost as soon as they were uttered. Also the video channel in the CMCD-a category was ignored and hardly used except for the first few minutes of the experiments, for a brief exchange of light humour on the appearance of each subject. The results obtained from analysing the experiments helped us conclude that different communication channels produce different collaborative environments. The three categories of communication for architectural collaboration explored in our experiments are indicative of the alternatives available to architects now. What is not clear to architects is why they would choose one category over another. We propose that each category has its own strengths and difficulties for architectural collaboration, and therefore should be selected on the basis of the type of communication considered to be most effective for the stage and tasks of the design project.
series thesis:PhD
type normal paper
email
last changed 2005/09/09 13:02

_id ebb4
authors Koutamanis, Alexander
year 2000
title Digital architectural visualization
source Automation in Construction 9 (4) (2000) pp. 347-360
summary The democratization of computer technologies is changing architectural visualization in two significant ways. The first is that the availability of digital media promotes wider and intensive application of computer visualization. The second concerns the extension of architectural design to visualization in information systems. The transition from analogue to digital visualization relates to fundamental questions ranging from the role of geometric representations in architecture and the relationships between analysis and visualization to the structure of abstraction. In addition, it requires technology and knowledge transfer also from areas other than computer science. The integration of such transfers suggests a flexible, modular approach that contradicts the holistic, integral principles of computer-aided architectural design.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 998a
authors Navon, R.,
year 2000
title Process and quality control with a video camera, for a floor-tilling robot
source Automation in Construction 10 (1) (2000) pp. 113-125
summary The paper describes the development of a floor-tiling robot. Both the development and the performance measurements of the robot were carried out with a graphic simulation system. Based on those measurements and on a time study of the corresponding manual work, the robot's work output is expected to be 2–5 times higher than that of the manual work. It was decided to concentrate, at this stage of the development, on the robot's autonomy at a workstation, which means that all operations at a workstation –– stabilizing and calibrating, loading tiles, etc. –– including real-time quality assurance (QA) are done without human intervention, while the transfer between workstations is assisted by an operator. The QA function has to identify the exact location and orientation of tiles to be taken, since they may be expected to differ from those specified in the robot's program. This is needed in order to allow accurate placing of the tiles in straight lines and with a uniform distance between them. Additionally, the QA function has to identify defective tiles. A computer vision system was developed to perform the QA functions. The prototype, its operational principles, and the experiments are described. The system's limitations are discussed together with needs for further research.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 01c0
authors Af Klercker, Jonas
year 2000
title Modelling for Virtual Reality in Architecture
doi https://doi.org/10.52842/conf.ecaade.2000.209
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 209-213
summary CAAD systems are using object modelling methods for building databases to make information available. Object data must then be made useful for many different purposes in the design process. Even if the capacity of the computer will allow an almost unlimited amount of information to be transformed, the eye does not make the transformations in the same “simple” mathematical way. Trained architects have to involve in an inventive process of finding ways to “harmonize” this new medium with the human eye and the architect’s professional experience. This paper will be an interimistic report from a surveying course. During the spring semester 2000 the CAAD division of TU-Lund is giving a course “Modelling for VR in Architecture”. The students are practising architects with experience from using object modelling CAAD. The aims are to survey different ways to use available hard- and software to create VR-models of pieces of architecture and evaluate them in desktop and CAVE environments. The architect is to do as much preparation work as possible with his CAAD program and only the final adjustments with the special VR tool.
keywords CAAD, VR, Modelling, Spatial Experience
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id b0e7
authors Ahmad Rafi, M.E. and Karboulonis, P.
year 2000
title The Re-Convergence of Art and Science: A Vehicle for Creativity
doi https://doi.org/10.52842/conf.caadria.2000.491
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 491-500
summary Ever-increasing complexity in product design and the need to deliver a cost-effective solution that benefits from a dynamic approach requires the employment and adoption of innovative design methods which ensure that products are of the highest quality and meet or exceed customers' expectations. According to Bronowski (1976) science and art were originally two faces of the same human creativity. However, as civilisation advances and works became specialised, the dichotomy of science and art gradually became apparent. Hence scientists and artists were born, and began to develop work that was polar opposite. The sense of beauty itself became separated from science and was confined within the field of art. This dichotomy existed through mankind's efforts in advancing civilisation to its present state. This paper briefly examines the relationship between art and science through the ages and discusses their relatively recent re-convergence. Based on this hypothesis, this paper studies the current state of the convergence between arts and sciences and examines the current relationship between the two by considering real world applications and products. The study of such products and their successes and impact they had in the marketplace due to their designs and aesthetics rather than their advanced technology that had partially failed them appears to support this argument. This text further argues that a re-convergence between art and science is currently occurring and highlights the need for accelerating this process. It is suggested that re-convergence is a result of new technologies which are adopted by practitioners that include effective visualisation and communication of ideas and concepts. Such elements are widely found today in multimedia and Virtual Environments (VEs) where such tools offer increased power and new abilities to both scientists and designers as both venture in each other's domains. This paper highlights the need for the employment of emerging computer based real-time interactive technologies that are expected to enhance the design process through real-time prototyping and visualisation, better decision-making, higher quality communication and collaboration, lessor error and reduced design cycles. Effective employment and adoption of innovative design methods that ensure products are delivered on time, and within budget, are of the highest quality and meet customer expectations are becoming of ever increasing importance. Such tools and concepts are outlined and their roles in the industries they currently serve are identified. Case studies from differing fields are also studied. It is also suggested that Virtual Reality interfaces should be used and given access to Computer Aided Design (CAD) model information and data so that users may interrogate virtual models for additional information and functionality. Adoption and appliance of such integrated technologies over the Internet and their relevance to electronic commerce is also discussed. Finally, emerging software and hardware technologies are outlined and case studies from the architecture, electronic games, and retail industries among others are discussed, the benefits are subsequently put forward to support the argument. The requirements for adopting such technologies in financial, skills required and process management terms are also considered and outlined.
series CAADRIA
email
last changed 2022/06/07 07:54

_id 9b44
authors Ahmad Rafi, M.E. and Karboulonis, P.
year 2000
title The Importance of Virtual Environments in the Design of Electronic Games and Their Relevance to Architecture
doi https://doi.org/10.52842/conf.ecaade.2000.181
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 181-185
summary Ever increasing complexity in architectural design and the need to deliver a cost effective solution requires the employment and adoption of innovative design methods. Although technological changes have entered the field of architecture at a slower pace, the recent adoption of 3D modelling, Virtual Environment and multimedia represent significant changes in architectural design, visualisation and presentation. These now include tools for conceptualisation, design synthesis, design presentation, desktop publishing, animation, Internet and hypermedia authoring. Uddin argues that the major activities involved in the creative and dynamic process of architectural design deal with conceptualisation, visualisation and expression of alternative ideas through two-dimensional and three-dimensional model. This paper highlights the need for the employment of emerging computer based real-time interactive technologies that are expected to enhance the design process through better decision-making, higher quality communication and collaboration, error reduction, spatial awareness, interactive design and real-time visualisation.
keywords CAD, Game Design, Virtual Reality, Virtual Environments, Virtual Prototyping, Internet Technologies, Architecture
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id 456a
authors Alvarado, R.G., Parra, J.C., Vergara, R.L. and Chateau, H.B.
year 2000
title Architectural References to Virtual Environments Design
doi https://doi.org/10.52842/conf.ecaade.2000.151
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 151-155
summary Based on a comparison between the perception of digital and real construction, the development of virtual systems and the review of additional sources, this paper states some differences between the design of virtual environments and architectural spaces. Virtual-reality technologies provide advanced capabilities to simulate real situations, and also to create digital worlds not referred to physical places, such as imaginary landscapes or environments devoted to electronic activities, like entertainment, learning or commerce. Some on-line services already use 3D-stages, resembling building halls and domestic objects, and several authors have mentioned virtual modeling as a job opportunity to architects. But it will argue in this paper that the design of those environments should consider their own digital characteristics. Besides, the use of virtual installations on networks impells a convergence with global media, like Internet or TV. Virtual environments can be a 3Devolution of communicational technologies, which have an increasing participation in culture, reaching a closer relationship to contemporary architecture.
keywords Virtual Environments, Spatial Perception, Design Methodology
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id ga0013
id ga0013
authors Annunziato, Mauro and Pierucci, Piero
year 2000
title Artificial Worlds, Virtual Generations
source International Conference on Generative Art
summary The progress in the scientific understanding/simulation of the evolution mechanisms and the first technological realizations (artificial life environments, robots, intelligent toys, self reproducing machines, agents on the web) are creating the base of a new age: the coming of the artificial beings and artificial societies. Although this aspect could seems a technological conquest, by our point of view it represent the foundation of a new step in the human evolution. The anticipation of this change is the development of a new cultural paradigm inherited from the theories of evolution and complexity: a new way to think to the culture, aesthetics and intelligence seen as emergent self-organizing qualities of a collectivity evolved along the time through genetic and language evolution. For these reasons artificial life is going to be an anticipatory and incredibly creative area for the artistic expression and imagination. In this paper we try to correlate some elements of the present research in the field of artificial life, art and technological grow up in order to trace a path of development for the creation of digital worlds where the artificial beings are able to evolve own culture, language and aesthetics and they are able to interact con the human people.Finally we report our experience in the realization of an interactive audio-visual art installation based on two connected virtual worlds realized with artificial life environments. In these worlds,the digital individuals can interact, reproduce and evolve through the mechanisms of genetic mutations. The real people can interact with the artificial individuals creating an hybrid ecosystem and generating emergent shapes, colors, sound architectures and metaphors for imaginary societies, virtual reflections of the real worlds.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 7da7
authors Benedetti, Cristina and Salvioni, Giulio
year 1999
title The Use of Renewable Resource in Architecture: New Teaching Methodologies
doi https://doi.org/10.52842/conf.ecaade.1999.751
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 751-756
summary The program is organized into four parts. Each is very much connected, both logically and methodologically, so that the unit as a whole consists of a content and method of access that are not divided up. This method is not in a chronological order that simply goes in one direction, rather it allows the user to "refer back", in real time and in different directions. For the simple purpose of explanation, the sections of the program are listed as follows: (-) "Basic information" concerns the basics of bioclimatic and timber architecture. Without this knowledge, the other two sections would be difficult to understand; (-) "Actual buildings throughout the world"; give examples of architectural quality; they concretize the basics of bioclimatic and timber architecture; (-) "Students' Masters Theses", that follow on from the basic information and the learning experience "in the field", and guided by the lecturer, have a critical approach to actual buildings throughout the world. (-) A multimedia data-sheet organized to ensure a clear and straightforward presentation of information about the construction products. It relies on a tab-based navigation interface that gives users access to eight different stacked windows.
keywords Architecture, Multimedia, Timber, Bioclimatic, Classification
series eCAADe
email
last changed 2022/06/07 07:54

_id cef3
authors Bridges, Alan H.
year 1992
title Computing and Problem Based Learning at Delft University of Technology Faculty of Architecture
doi https://doi.org/10.52842/conf.ecaade.1992.289
source CAAD Instruction: The New Teaching of an Architect? [eCAADe Conference Proceedings] Barcelona (Spain) 12-14 November 1992, pp. 289-294
summary Delft University of Technology, founded in 1842, is the oldest and largest technical university in the Netherlands. It provides education for more than 13,000 students in fifteen main subject areas. The Faculty of Architecture, Housing, Urban Design and Planning is one of the largest faculties of the DUT with some 2000 students and over 500 staff members. The course of study takes four academic years: a first year (Propaedeuse) and a further three years (Doctoraal) leading to the "ingenieur" qualification. The basic course material is delivered in the first two years and is taken by all students. The third and fourth years consist of a smaller number of compulsory subjects in each of the department's specialist areas together with a wide range of option choices. The five main subject areas the students may choose from for their specialisation are Architecture, Building and Project Management, Building Technology, Urban Design and Planning, and Housing.

The curriculum of the Faculty has been radically revised over the last two years and is now based on the concept of "Problem-Based Learning". The subject matter taught is divided thematically into specific issues that are taught in six week blocks. The vehicles for these blocks are specially selected and adapted case studies prepared by teams of staff members. These provide a focus for integrating specialist subjects around a studio based design theme. In the case of second year this studio is largely computer-based: many drawings are produced by computer and several specially written computer applications are used in association with the specialist inputs.

This paper describes the "block structure" used in second year, giving examples of the special computer programs used, but also raises a number of broader educational issues. Introduction of the block system arose as a method of curriculum integration in response to difficulties emerging from the independent functioning of strong discipline areas in the traditional work groups. The need for a greater level of selfdirected learning was recognised as opposed to the "passive information model" of student learning in which the students are seen as empty vessels to be filled with knowledge - which they are then usually unable to apply in design related contexts in the studio. Furthermore, the value of electives had been questioned: whilst enabling some diversity of choice, they may also be seen as diverting attention and resources from the real problems of teaching architecture.

series eCAADe
email
last changed 2022/06/07 07:54

_id 3e51
authors Cerulli, C., Peng, C. and Lawson, B.
year 2001
title Capturing Histories of Design Processes for Collaborative Building Design Development. Field Trial of the ADS Prototype
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 427-437
summary The ADS Project - Advanced Design Support for the Construction Design Process - builds on the technological results of the previous COMMIT Project to exploit and demonstrate the benefits of a CAD based Design Decision Support System. COMMIT provides a system for storing knowledge about knowledge within the design process. It records design decisions, the actors who take them and the roles they play when doing so. ADS links COMMIT to an existing object-oriented CAD system, MicroStation/J from Bentley Systems. The project focuses on tackling the problem of managing design information without intruding too much on the design process itself. It provides the possibility to effectively link design decisions back to requirements, to gather rationale information for later stages of the building lifecycle, and to gather knowledge of rationale for later projects. The system enables members of the project team, including clients and constructors, to browse and search the recorded project history of decision making both during and after design development. ADS aims to facilitate change towards a more collaborative process in construction design, to improve the effectiveness of decision-making throughout the construction project and to provide clients with the facility to relate design outcomes to design briefs across the whole building life cycle. In this paper we will describe the field trials of the ADS prototype carried out over a three-month period at the Building Design Partnership (BDP) Manchester office. The objective of these trials is to assess the extent, to which the approach underlying ADS enhances the design process, and to gather and document the views and experiences of practitioners. The ADS prototype was previously tested with historical data of real project (Peng, Cerulli et al. 2000). To gather more valuable knowledge about how a Decision Support System like ADS can be used in practice, the testing and evaluation will be extended to a real project, while it is still ongoing. The live case study will look at some phases of the design of a mixed residential and retail development in Leeds, UK, recording project information while it is created. The users’ feedback on the system usability will inform the continuous redevelopment process that will run in parallel to the live case study. The ADS and COMMIT Projects were both funded by EPSRC.
keywords Design Rationale, Design Support Systems, Usability Evaluation
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 08ea
authors Clayton, Mark J. and Vasquez de Velasco, Guillermo P. (Eds.)
year 2000
title ACADIA 2000: Eternity, Infinity and Virtuality in Architecture
doi https://doi.org/10.52842/conf.acadia.2000
source Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8 / Washington D.C. 19-22 October 2000, 284 p.
summary Eternity, time without end, infinity, space without limits and virtuality, perception without constraints; provide the conceptual framework in which ACADIA 2000 is conceived. It is in human nature to fill what is empty and to empty what is full. Today, thanks to the power of computer processing we can also make small what is too big, make big what is too small, make fast what is too slow, make slow what is too fast, make real what does not exist, and make our reality omni-present at global scale. These are capabilities for which we have no precedents. What we make of them is our privilege and responsibility. Information about a building flows past our keyboards and on to other people. Although we, as architects, add to the information, it originated before us and will go beyond our touch in time, space and understanding. A building description acquires a life of its own that may surpass our own lives as it is stored, transferred, transformed, and reused by unknown intellects, both human and artificial, and in unknown processes. Our actions right now have unforeseen effects. Digital media blurs the boundaries of space, time and our perception of reality. ACADIA 2000 explores the theme of time, space and perception in relation to the information and knowledge that describes architecture. Our invitation to those who are finding ways to apply computer processing power in architecture received overwhelming response, generating paper submissions from five continents. A selected group of reviewers recommended the publication of 24 original full papers out of 42 submitted and 13 short papers out of 30 submitted. Forty-two projects were submitted to the Digital Media Exhibit and 12 were accepted for publication. The papers cover subjects in design knowledge, design process, design representation, design communication, and design education. Fundamental and applied research has been carefully articulated, resulting in developments that may have an important impact on the way we practice and teach architecture in the future.
series ACADIA
email
more www.acadia.org
last changed 2022/06/07 07:49

_id ga0007
id ga0007
authors Coates, Paul and Miranda, Pablo
year 2000
title Swarm modelling. The use of Swarm Intelligence to generate architectural form
source International Conference on Generative Art
summary .neither the human purposes nor the architect's method are fully known in advance. Consequently, if this interpretation of the architectural problem situation is accepted, any problem-solving technique that relies on explicit problem definition, on distinct goal orientation, on data collection, or even on non-adaptive algorithms will distort the design process and the human purposes involved.' Stanford Anderson, "Problem-Solving and Problem-Worrying". The works concentrates in the use of the computer as a perceptive device, a sort of virtual hand or "sense", capable of prompting an environment. From a set of data that conforms the environment (in this case the geometrical representation of the form of the site) this perceptive device is capable of differentiating and generating distinct patterns in its behavior, patterns that an observer has to interpret as meaningful information. As Nicholas Negroponte explains referring to the project GROPE in his Architecture Machine: 'In contrast to describing criteria and asking the machine to generate physical form, this exercise focuses on generating criteria from physical form.' 'The onlooking human or architecture machine observes what is "interesting" by observing GROPE's behavior rather than by receiving the testimony that this or that is "interesting".' The swarm as a learning device. In this case the work implements a Swarm as a perceptive device. Swarms constitute a paradigm of parallel systems: a multitude of simple individuals aggregate in colonies or groups, giving rise to collaborative behaviors. The individual sensors can't learn, but the swarm as a system can evolve in to more stable states. These states generate distinct patterns, a result of the inner mechanics of the swarm and of the particularities of the environment. The dynamics of the system allows it to learn and adapt to the environment; information is stored in the speed of the sensors (the more collisions, the slower) that acts as a memory. The speed increases in the absence of collisions and so providing the system with the ability to forget, indispensable for differentiation of information and emergence of patterns. The swarm is both a perceptive and a spatial phenomenon. For being able to Interact with an environment an observer requires some sort of embodiment. In the case of the swarm, its algorithms for moving, collision detection, and swarm mechanics conform its perceptive body. The way this body interacts with its environment in the process of learning and differentiation of spatial patterns constitutes also a spatial phenomenon. The enactive space of the Swarm. Enaction, a concept developed by Maturana and Varela for the description of perception in biological terms, is the understanding of perception as the result of the structural coupling of an environment and an observer. Enaction does not address cognition in the currently conventional sense as an internal manipulation of extrinsic 'information' or 'signals', but as the relation between environment and observer and the blurring of their identities. Thus, the space generated by the swarm is an enactive space, a space without explicit description, and an invention of the swarm-environment structural coupling. If we consider a gestalt as 'Some property -such as roundness- common to a set of sense data and appreciated by organisms or artefacts' (Gordon Pask), the swarm is also able to differentiate space 'gestalts' or spaces of some characteristics, such as 'narrowness', or 'fluidness' etc. Implicit surfaces and the wrapping algorithm. One of the many ways of describing this space is through the use of implicit surfaces. An implicit surface may be imagined as an infinitesimally thin band of some measurable quantity such as color, density, temperature, pressure, etc. Thus, an implicit surface consists of those points in three-space that satisfy some particular requirement. This allows as to wrap the regions of space where a difference of quantity has been produced, enclosing the spaces in which some particular events in the history of the Swarm have occurred. The wrapping method allows complex topologies, such as manifoldness in one continuous surface. It is possible to transform the information generated by the swarm in to a landscape that is the result of the particular reading of the site by the swarm. Working in real time. Because of the complex nature of the machine, the only possible way to evaluate the resulting behavior is in real time. For this purpose specific applications had to be developed, using OpenGL for the Windows programming environment. The package consisted on translators from DXF format to a specific format used by these applications and viceversa, the Swarm "engine", a simulated parallel environment, and the Wrapping programs, to generate the implicit surfaces. Different versions of each had been produced, in different stages of development of the work.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 600e
authors Gavin, Lesley
year 1999
title Architecture of the Virtual Place
doi https://doi.org/10.52842/conf.ecaade.1999.418
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 418-423
summary The Bartlett School of Graduate Studies, University College London (UCL), set up the first MSc in Virtual Environments in the UK in 1995. The course aims to synthesise and build on research work undertaken in the arts, architecture, computing and biological sciences in exploring the realms of the creation of digital and virtual immersive spaces. The MSc is concerned primarily with equipping students from design backgrounds with the skills, techniques and theories necessary in the production of virtual environments. The course examines both virtual worlds as prototypes for real urban or built form and, over the last few years, has also developed an increasing interest in the the practice of architecture in purely virtual contexts. The MSc course is embedded in the UK government sponsored Virtual Reality Centre for the Built Environment which is hosted by the Bartlett School of Architecture. This centre involves the UCL departments of architecture, computer science and geography and includes industrial partners from a number of areas concerned with the built environment including architectural practice, surveying and estate management as well as some software companies and the telecoms industry. The first cohort of students graduated in 1997 and predominantly found work in companies working in the new market area of digital media. This paper aims to outline the nature of the course as it stands, examines the new and ever increasing market for designers within digital media and proposes possible future directions for the course.
keywords Virtual Reality, Immersive Spaces, Digital Media, Education
series eCAADe
email
more http://www.bartlett.ucl.ac.uk/ve/
last changed 2022/06/07 07:51

_id 3936
authors Geroimenko, Vladimir
year 1999
title Online Photorealistic VR with Interactive Architectural Objects
doi https://doi.org/10.52842/conf.ecaade.1999.414
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 414-417
summary This paper describes how Virtual Reality (VR) technologies can be used for modelling photorealistic environments with interactive and changeable architectural content. This application of VR allows us to create photograph-based panoramic models of real places that include a variety of interactive architectural objects and details. The user is able not only to navigate through a virtual environment (look around, up and down, zoom, jump to another viewpoint or location) but also to change buildings or their architectural details by clicking, moving or rotating. The following types of interactive objects are completely integrated with a virtual environment: 2D image-based objects, 3D image-based objects, 3D VRML-based objects and onscreen world controls. The application can be used effectively for teaching, including distance Internet-based education, project presentations and rapid prototyping. A sample VR environment is presented and some of the key creative and technological issues are discussed.
keywords Virtual Reality Modelling, Architectural Design, Interactive Contents, Photorealistic Environments
series eCAADe
email
last changed 2022/06/07 07:51

_id 3338
authors Heylighen, Ann and Neuckermans, Herman
year 2000
title DYNAMO - Dynamic Architectural Memory On-line
source Educational Technology and Society, Vol.3, No.2, April 2000 (ISSN 1436-4522), pp. 86-95
summary This paper describes the current status of DYNAMO, a web-based design assistant for students and professional designers in the field of architecture. The tool can be considered a Case-Based Design (CBD) system in so far that it was inspired by the view of cognition underlying CBD. The paper points out how DYNAMO incorporates this view, and at the same time extrapolates it beyond the individual. In this way, the tool attempts to embrace and profit from several kinds of interaction that are crucial for the development and renewal of design knowledge. This should result in a design tool that both feels cognitively comfortable to (student-) designers, and offers them a platform for exchanging knowledge and insights with colleagues in different contexts and at different levels of experience. In addition, the paper describes the implementation of these theoretical ideas as a working prototype, which has recently been tested by 4th year design students. Finally, DYNAMO is situated in the context of other comparable tools that have been or are being developed in the field of architectural design.
keywords Educational Multimedia, Interactive Learning Environments, Online Education
series journal paper
email
more http://ifets.gmd.de/periodical/vol_2_2000/heylighen.html
last changed 2002/11/14 08:40

_id c839
authors Hwang, Jie-Eun
year 2002
title SpaceScope: Developing a Spatial Information Retrieval System - Focused on Apartment Unit Floor Plans -
source Yonsei University, Dept. of Housing & Interior Design
summary This research investigates the spatial information retrieval (IR) in architecture focused on constructing efficient metadata that is crucial for data retrieval. Generally speaking, metadata is ‘structured data about data’ to describe resources especially in a digital format. In this research, metadata is a sort of data object to be useful in searching spatial information. Metadata is also used to describe raw spatial data object as not only attribute data but also content structurally and semantic ally. There are two issues that motivate this research; 1) what is the spatial information – that materializes the intangible space as a data object, and 2) how we can search the information efficiently – the content-based information retrieval. Although knowledge of a building’s spatial content is most important in architecture, there has been no logical method to manage it.

From the viewpoint of content-based retrieval, the researcher analyzes spatial information of a floor plan, with a focus on the apartment unit floor plan common in Korea. Then the metadata items are extracted in a structured manner. To manage the items efficiently, the researcher develops a data model for spatial information according to the concept of the “Structured Floor Plan”. The main object of content to retrieve is a spatial network that consists of nodes of spaces and their linkages. There are two ways to organize the metadata: the traditional index files and the RDF (Resource Description Framework). While the index files are still efficient with computability, the RDF applies greater options to retrieve, such as fuzzy predicates, semantic predicates, and so on. To exploit the metadata, this research shows several possibilities of query operations that present a set of sample queries about L-DK(Living room – Dining room – Kitchen). Implementation of the prototype system is divided into three parts: 1) a modeling module using Vitruvius; 2) an indexing module using MS SQL Server? 2000 in conjunction XML; and 3) a browsing module using the SpaceScope browser.

The future works may consider XML-based databases and a knowledge based query language, such as RQL/XQL, working on such databases. The more specific domain knowledge is involved, the more practical systems would be. Even in architecture, there may be a diverse range of domain knowledge, such as design, building performance, facility management, energy management, post occupied evaluation, historical research, and so on. Also the issue of interface should be investigated in depth, so that it will be adequate to the needs of the architectural field.

keywords Content-based Information Retrieval; Metadata; RDF; XML; Spatial Information; Apartment Floor Plan; Semantics
series thesis:MSc
email
last changed 2003/04/25 07:27

_id 37b2
authors Johansson, P.
year 2000
title Case-Based Structural Design - using weakly structured product and process information
source Chalmers University of Technology, Division of Steel and Timber Structures, Publ. S 00:7, Göteborg
summary Empirical knowledge plays a significant role in the human reasoning process. Previous experiences help in understanding new situations and in finding solutions to new problems. Experience is used when performing different tasks, both those of routine character and those that require specific skill. This is also the case for structural designers. Over 50% of the work done by the designer on a day-to-day basis is routine design that consists of modifying past designs (Moore 1993). That is, most of the design problems that the designer solves have been solved before, in many cases over and over again. In recent years, researchers have started to study if cases (information about specific problem-solving experiences) could be used as a representation of experiential knowledge. Making use of past experience in the form of cases is commonly known as Case-Based Reasoning (CBR). A requirement for Case-Based Design (Case-Based Reasoning applied in design) to be successful is that the design information is computerized. One information type used in structural design that is starting to become computerized is the one in design calculation documents. Such information is weakly structured (which holds for much of the information representing experience) and it contains both product and process information. In this thesis it is shown how the weak structure of this information can be used to subdivide it into components, which in turn makes it possible to apply the object-oriented abstraction principles also to this kind of information. It is also shown how the detailed design process can be represented and how this representation can facilitate automatic acquisition, retrieval of relevant old design information, and adaptation of this information. Two prototypes BridgeBase and ARCADE have been developed, where the principles described above are applied. Using ARCADE, the more general of these two prototypes, it is presented how information in computerized design calculation documents, gathered from real projects, can serve as containers and carriers for both project information and experience. The experience from the two prototypes shows that Case-Based Design can be usable as a tool for structural engineers.
series other
last changed 2003/04/23 15:14

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 36HOMELOGIN (you are user _anon_468905 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002