CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 739

_id 8369
authors Newton, Clare and Burry, Mark
year 2000
title Building Architecture. Using sticks, stones and computer visualisation
doi https://doi.org/10.52842/conf.caadria.2000.511
source CAADRIA 2000 [Proceedings of the Fifth Conference on Computer Aided Architectural Design Research in Asia / ISBN 981-04-2491-4] Singapore 18-19 May 2000, pp. 511-519
summary This work explores the transformation process from drawings to buildings by inserting unusual representation techniques between traditional orthographic drawings and actual buildings. The aim has been to explore the links and gaps between architecture as drawn and as built to gain a better understanding of the translation from idea to building. Computer modelling techniques enable designs to be 'built' at full scale and resolved in great detail. This type of representation was compared with built models, also at full scale, but using a mix of model making and real materials. At one school students interpreted actual working drawings from architects and at the other school, students worked from theoretical designs. By exploring the translation from idea to building using a range of representational interventions, this research creates a nexus between current issues of representation and design/construction research.
series CAADRIA
email
last changed 2022/06/07 07:58

_id 37c2
authors Ahmad Rafi, M.E.
year 1999
title Visualisation of Design Using Animation for Virtual Prototyping
doi https://doi.org/10.52842/conf.ecaade.1999.519
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 519-525
summary Although recent technology in time-based representation has vastly improved, animation in virtual prototype design field remains the same. Some designers invest a huge amount of money in the latest visualisation and multimedia technology and yet may create even worse animation. They often cramp sequences resulting in many viewers failing to interpret the design positively as they miss a lot of vital information that explains the design. This paper basically reports the importance of film-making understanding for producing good virtual prototype animation. It will be based on a part of a research project on the use of time-based media in architectural practices. It also includes an empirical analysis of several architectural-based documentary films (including an interview with the film director) and past and present computer animation. This paper then concludes with recommendations of good techniques for making animated visualisation relative to the stage at which the animation is produced for better design decision.
keywords Virtual Prototype, Animation, Time-Based, Film-Making
series eCAADe
email
last changed 2022/06/07 07:54

_id a136
authors Blaise, J.Y., Dudek, I. and Drap, P.
year 1998
title Java collaborative interface for architectural simulations A case study on wooden ceilings of Krakow
source International Conference On Conservation - Krakow 2000, 23-24 November 1998, Krakow, Poland
summary Concern for the architectural and urban preservation problems has been considerably increasing in the past decades, and with it the necessity to investigate the consequences and opportunities opened for the conservation discipline by the development of computer-based systems. Architectural interventions on historical edifices or in preserved urban fabric face conservationists and architects with specific problems related to the handling and exchange of a variety of historical documents and representations. The recent development of information technologies offers opportunities to favour a better access to such data, as well as means to represent architectural hypothesis or design. Developing applications for the Internet also introduces a greater capacity to exchange experiences or ideas and to invest on low-cost collaborative working platforms. In the field of the architectural heritage, our research addresses two problems: historical data and documentation of the edifice, methods of representation (knowledge modelling and visualisation) of the edifice. This research is connected with the ARKIW POLONIUM co-operation program that links the MAP-GAMSAU CNRS laboratory (Marseilles, France) and the Institute HAiKZ of Kraków's Faculty of Architecture. The ARKIW programme deals with questions related to the use of information technologies in the recording, protection and studying of the architectural heritage. Case studies are chosen in order to experience and validate a technical platform dedicated to the formalisation and exchange of knowledge related to the architectural heritage (architectural data management, representation and simulation tools, survey methods, ...). A special focus is put on the evolution of the urban fabric and on the simulation of reconstructional hypothesis. Our contribution will introduce current ARKIW internet applications and experiences: The ARPENTEUR architectural survey experiment on Wieża Ratuszowa (a photogrammetrical survey based on an architectural model). A Gothic and Renaissance reconstruction of the Ratusz Krakowski using a commercial modelisation and animation software (MAYA). The SOL on line documentation interface for Kraków's Rynek G_ówny. Internet analytical approach in the presentation of morphological informations about Kraków's Kramy Bogate Rynku Krakowskiego. Object-Orientation approach in the modelling of the architectural corpus. The VALIDEUR and HUBLOT Virtual Reality modellers for the simulation and representation of reconstructional hypothesis and corpus analysis.
series other
last changed 2003/04/23 15:14

_id diss_cole
id diss_cole
authors Cole, R.J.
year 2000
title The Management and Visualisation of Document Collections Using Formal Concept Analysis
source Griffith University, Australia
summary This thesis proposes a methodology, notation/theory, and software framework for organising documents using formal concept analysis. The documents are organised for the purposes of retrieval and analysis using background information in the form of a taxonomy of terms. An emphasis is placed on the development of a methodology that employs scalable computer programs to assist humans in the process of organisation, retrieval and analysis of document collections.The text retrieval community has also been concerned with the organisation of documents. The work outlined in this thesis makes use of the results of the text retrieval community at its lowest layer. Above this layer formal concept analysis is used as a mechanism to allow users to organise document collections using views determined by small numbers of attributes. These views, also known as scales, can make a mixture of coarse and speci c distinctions between documents, and are either selected or created by the users to make precisely the distinctions between documents that are important to their current tasks.The primary tool for the presentation of the results of formal concept analysis is a line diagram. The e ectiveness of the presentation of information contained in a line diagram is heavily dependent on the quality of the diagram. To support users in arriving at a quality diagram for a newly created view, graph drawing algorithms are adapted to the special case of determining a good layout for a concept lattice. This task is di erent from traditional graph layout problems because lattices exhibit a high degree of structure which should be exploited and made evident in the nal diagram. A new layout algorithm is proposed that combines a layered diagram approach and an additive diagram methodology. This new hybrid algorithm is shown to produce better diagrams than other adapted graph drawing algorithms.
series thesis:PhD
more http://www.kvocentral.com/
last changed 2003/11/28 07:36

_id de43
authors Counsell, J.
year 2000
title The management and visualisation of 3-dimensional models using a spatial database
source CIDAC, Volume 2 Issue 4 November 2000, pp. 225-235
summary Each year, computer-aided architectural design (CAAD) systems in common use are enhanced and gain facilities that ease 3-dimensional (3D) modelling. Consequently, large complex datasets are increasinly common during the creation and management of 3D models of buildings and urban areas. Uses for such models range from the automatic generation of drawings and schedules to virtual reality (VR) and visualisation across the web. Geographic information systems (GISs) are optimised for the management and retrieval of spatial data and may be used to assist both management and visualisation of large 3D datasets using open standards, such as the ISO standard virtual reality modelling langauge (VRML). Experience gained in the use of such systems indicates a need for specific procedures for recording 3D data and creating linkages to other information. It is suggested that these procedures are applicable to a broad range of such models.
keywords VRML, Urban 3-Dimensional Models, GIS Management
series journal paper
last changed 2003/05/15 21:23

_id 9b63
authors De Mesa, A., Quilez, J. and Regot, J.
year 1999
title Sunlight Energy Graphic and Analytic Control in 3D Modelling
doi https://doi.org/10.52842/conf.ecaade.1999.733
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 733-738
summary Linking solar positions with architecture is a traditional idea, but the use of graphical tools to control sunlight in urban surroundings or buildings is relatively recent. A three-dimensional working environment like the computer offers a new dimension to verify the relationships between the sun and the architecture. This paper shows a new way to calculate the incidence of solar energy in architectural environments using computer 3D modelling. The addition of virtual space visualisation to the analytic computation brings a new tool that simplifies the technical study of sunlight. We have developed several programs based upon the three-dimensional construction of the solar vault and the obstructing objects for a defined position. The first one draws the solar vault for a defined range of dates according to latitude, that is the basis of the energetic calculation. The second program computes the obstruction, i.e. the solar regions that are obstructed by any object. Finally, the third one, allow us to define an orientation to compute the energy that arrives to the analysed positioning. The last program returns the result of calculation in several ways: it shows the amount of energy through colours and makes a list of solar hours according to its energy.
keywords Sunlight, Energy, 3D modelling
series eCAADe
last changed 2022/06/07 07:56

_id 4fa1
authors Lee, E., Ida, Y., Woo, S. and Sasada, T.
year 1999
title Environmental Design Using Fractals in Computer Graphics
doi https://doi.org/10.52842/conf.ecaade.1999.533
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 533-538
summary Computer graphics have developed efficient techniques for visualisation of the real world. Many of the algorithms have a physical basis, such as computational models for the light and the shadow, models of real objects (buildings, mountains, roads and so on) and the simulation of natural phenomenon. Now computer graphics techniques provide the virtual world with a perception of three dimensions. The concept of the virtual world and its technology have been expanding and intensifying in recent years. Almost everything in the real world has been simulated in virtual world. When it comes to a terrain model, what we need is labour and time. But now it is possible to simulate terrain like the real world using fractals in computer graphics with a very small program and small data set. This study aims to show how to build a real world impression in the virtual world. In this paper the authors suggest a landscape design method and show the results of its application.
keywords Fractals, Polygon-Reduction, Computer Graphics, Virtual World, Collaboration
series eCAADe
last changed 2022/06/07 07:51

_id bde4
authors Pietsch, Susan M.
year 2000
title Simple Computer Visualisation: Three Examples in Planning Practice
doi https://doi.org/10.52842/conf.ecaade.2000.139
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 139-142
summary This paper will present three case studies illustrating the use of simple computer visualisation models in planning practice within the City of Adelaide, Australia. These case studies demonstrate that computer visualisation is possible at the plannerŐs desktop using simple models to examine planning issues.
keywords 3D City modeling
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 08:00

_id ga0026
id ga0026
authors Ransen, Owen F.
year 2000
title Possible Futures in Computer Art Generation
source International Conference on Generative Art
summary Years of trying to create an "Image Idea Generator" program have convinced me that the perfect solution would be to have an artificial artistic person, a design slave. This paper describes how I came to that conclusion, realistic alternatives, and briefly, how it could possibly happen. 1. The history of Repligator and Gliftic 1.1 Repligator In 1996 I had the idea of creating an “image idea generator”. I wanted something which would create images out of nothing, but guided by the user. The biggest conceptual problem I had was “out of nothing”. What does that mean? So I put aside that problem and forced the user to give the program a starting image. This program eventually turned into Repligator, commercially described as an “easy to use graphical effects program”, but actually, to my mind, an Image Idea Generator. The first release came out in October 1997. In December 1998 I described Repligator V4 [1] and how I thought it could be developed away from simply being an effects program. In July 1999 Repligator V4 won the Shareware Industry Awards Foundation prize for "Best Graphics Program of 1999". Prize winners are never told why they won, but I am sure that it was because of two things: 1) Easy of use 2) Ease of experimentation "Ease of experimentation" means that Repligator does in fact come up with new graphics ideas. Once you have input your original image you can generate new versions of that image simply by pushing a single key. Repligator is currently at version 6, but, apart from adding many new effects and a few new features, is basically the same program as version 4. Following on from the ideas in [1] I started to develop Gliftic, which is closer to my original thoughts of an image idea generator which "starts from nothing". The Gliftic model of images was that they are composed of three components: 1. Layout or form, for example the outline of a mandala is a form. 2. Color scheme, for example colors selected from autumn leaves from an oak tree. 3. Interpretation, for example Van Gogh would paint a mandala with oak tree colors in a different way to Andy Warhol. There is a Van Gogh interpretation and an Andy Warhol interpretation. Further I wanted to be able to genetically breed images, for example crossing two layouts to produce a child layout. And the same with interpretations and color schemes. If I could achieve this then the program would be very powerful. 1.2 Getting to Gliftic Programming has an amazing way of crystalising ideas. If you want to put an idea into practice via a computer program you really have to understand the idea not only globally, but just as importantly, in detail. You have to make hard design decisions, there can be no vagueness, and so implementing what I had decribed above turned out to be a considerable challenge. I soon found out that the hardest thing to do would be the breeding of forms. What are the "genes" of a form? What are the genes of a circle, say, and how do they compare to the genes of the outline of the UK? I wanted the genotype representation (inside the computer program's data) to be directly linked to the phenotype representation (on the computer screen). This seemed to be the best way of making sure that bred-forms would bare some visual relationship to their parents. I also wanted symmetry to be preserved. For example if two symmetrical objects were bred then their children should be symmetrical. I decided to represent shapes as simply closed polygonal shapes, and the "genes" of these shapes were simply the list of points defining the polygon. Thus a circle would have to be represented by a regular polygon of, say, 100 sides. The outline of the UK could easily be represented as a list of points every 10 Kilometers along the coast line. Now for the important question: what do you get when you cross a circle with the outline of the UK? I tried various ways of combining the "genes" (i.e. coordinates) of the shapes, but none of them really ended up producing interesting shapes. And of the methods I used, many of them, applied over several "generations" simply resulted in amorphous blobs, with no distinct family characteristics. Or rather maybe I should say that no single method of breeding shapes gave decent results for all types of images. Figure 1 shows an example of breeding a mandala with 6 regular polygons: Figure 1 Mandala bred with array of regular polygons I did not try out all my ideas, and maybe in the future I will return to the problem, but it was clear to me that it is a non-trivial problem. And if the breeding of shapes is a non-trivial problem, then what about the breeding of interpretations? I abandoned the genetic (breeding) model of generating designs but retained the idea of the three components (form, color scheme, interpretation). 1.3 Gliftic today Gliftic Version 1.0 was released in May 2000. It allows the user to change a form, a color scheme and an interpretation. The user can experiment with combining different components together and can thus home in on an personally pleasing image. Just as in Repligator, pushing the F7 key make the program choose all the options. Unlike Repligator however the user can also easily experiment with the form (only) by pushing F4, the color scheme (only) by pushing F5 and the interpretation (only) by pushing F6. Figures 2, 3 and 4 show some example images created by Gliftic. Figure 2 Mandala interpreted with arabesques   Figure 3 Trellis interpreted with "graphic ivy"   Figure 4 Regular dots interpreted as "sparks" 1.4 Forms in Gliftic V1 Forms are simply collections of graphics primitives (points, lines, ellipses and polygons). The program generates these collections according to the user's instructions. Currently the forms are: Mandala, Regular Polygon, Random Dots, Random Sticks, Random Shapes, Grid Of Polygons, Trellis, Flying Leap, Sticks And Waves, Spoked Wheel, Biological Growth, Chequer Squares, Regular Dots, Single Line, Paisley, Random Circles, Chevrons. 1.5 Color Schemes in Gliftic V1 When combining a form with an interpretation (described later) the program needs to know what colors it can use. The range of colors is called a color scheme. Gliftic has three color scheme types: 1. Random colors: Colors for the various parts of the image are chosen purely at random. 2. Hue Saturation Value (HSV) colors: The user can choose the main hue (e.g. red or yellow), the saturation (purity) of the color scheme and the value (brightness/darkness) . The user also has to choose how much variation is allowed in the color scheme. A wide variation allows the various colors of the final image to depart a long way from the HSV settings. A smaller variation results in the final image using almost a single color. 3. Colors chosen from an image: The user can choose an image (for example a JPG file of a famous painting, or a digital photograph he took while on holiday in Greece) and Gliftic will select colors from that image. Only colors from the selected image will appear in the output image. 1.6 Interpretations in Gliftic V1 Interpretation in Gliftic is best decribed with a few examples. A pure geometric line could be interpreted as: 1) the branch of a tree 2) a long thin arabesque 3) a sequence of disks 4) a chain, 5) a row of diamonds. An pure geometric ellipse could be interpreted as 1) a lake, 2) a planet, 3) an eye. Gliftic V1 has the following interpretations: Standard, Circles, Flying Leap, Graphic Ivy, Diamond Bar, Sparkz, Ess Disk, Ribbons, George Haite, Arabesque, ZigZag. 1.7 Applications of Gliftic Currently Gliftic is mostly used for creating WEB graphics, often backgrounds as it has an option to enable "tiling" of the generated images. There is also a possibility that it will be used in the custom textile business sometime within the next year or two. The real application of Gliftic is that of generating new graphics ideas, and I suspect that, like Repligator, many users will only understand this later. 2. The future of Gliftic, 3 possibilties Completing Gliftic V1 gave me the experience to understand what problems and opportunities there will be in future development of the program. Here I divide my many ideas into three oversimplified possibilities, and the real result may be a mix of two or all three of them. 2.1 Continue the current development "linearly" Gliftic could grow simply by the addition of more forms and interpretations. In fact I am sure that initially it will grow like this. However this limits the possibilities to what is inside the program itself. These limits can be mitigated by allowing the user to add forms (as vector files). The user can already add color schemes (as images). The biggest problem with leaving the program in its current state is that there is no easy way to add interpretations. 2.2 Allow the artist to program Gliftic It would be interesting to add a language to Gliftic which allows the user to program his own form generators and interpreters. In this way Gliftic becomes a "platform" for the development of dynamic graphics styles by the artist. The advantage of not having to deal with the complexities of Windows programming could attract the more adventurous artists and designers. The choice of programming language of course needs to take into account the fact that the "programmer" is probably not be an expert computer scientist. I have seen how LISP (an not exactly easy artificial intelligence language) has become very popular among non programming users of AutoCAD. If, to complete a job which you do manually and repeatedly, you can write a LISP macro of only 5 lines, then you may be tempted to learn enough LISP to write those 5 lines. Imagine also the ability to publish (and/or sell) "style generators". An artist could develop a particular interpretation function, it creates images of a given character which others find appealing. The interpretation (which runs inside Gliftic as a routine) could be offered to interior designers (for example) to unify carpets, wallpaper, furniture coverings for single projects. As Adrian Ward [3] says on his WEB site: "Programming is no less an artform than painting is a technical process." Learning a computer language to create a single image is overkill and impractical. Learning a computer language to create your own artistic style which generates an infinite series of images in that style may well be attractive. 2.3 Add an artificial conciousness to Gliftic This is a wild science fiction idea which comes into my head regularly. Gliftic manages to surprise the users with the images it makes, but, currently, is limited by what gets programmed into it or by pure chance. How about adding a real artifical conciousness to the program? Creating an intelligent artificial designer? According to Igor Aleksander [1] conciousness is required for programs (computers) to really become usefully intelligent. Aleksander thinks that "the line has been drawn under the philosophical discussion of conciousness, and the way is open to sound scientific investigation". Without going into the details, and with great over-simplification, there are roughly two sorts of artificial intelligence: 1) Programmed intelligence, where, to all intents and purposes, the programmer is the "intelligence". The program may perform well (but often, in practice, doesn't) and any learning which is done is simply statistical and pre-programmed. There is no way that this type of program could become concious. 2) Neural network intelligence, where the programs are based roughly on a simple model of the brain, and the network learns how to do specific tasks. It is this sort of program which, according to Aleksander, could, in the future, become concious, and thus usefully intelligent. What could the advantages of an artificial artist be? 1) There would be no need for programming. Presumbably the human artist would dialog with the artificial artist, directing its development. 2) The artificial artist could be used as an apprentice, doing the "drudge" work of art, which needs intelligence, but is, anyway, monotonous for the human artist. 3) The human artist imagines "concepts", the artificial artist makes them concrete. 4) An concious artificial artist may come up with ideas of its own. Is this science fiction? Arthur C. Clarke's 1st Law: "If a famous scientist says that something can be done, then he is in all probability correct. If a famous scientist says that something cannot be done, then he is in all probability wrong". Arthur C Clarke's 2nd Law: "Only by trying to go beyond the current limits can you find out what the real limits are." One of Bertrand Russell's 10 commandments: "Do not fear to be eccentric in opinion, for every opinion now accepted was once eccentric" 3. References 1. "From Ramon Llull to Image Idea Generation". Ransen, Owen. Proceedings of the 1998 Milan First International Conference on Generative Art. 2. "How To Build A Mind" Aleksander, Igor. Wiedenfeld and Nicolson, 1999 3. "How I Drew One of My Pictures: or, The Authorship of Generative Art" by Adrian Ward and Geof Cox. Proceedings of the 1999 Milan 2nd International Conference on Generative Art.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 83cb
authors Telea, Alexandru C.
year 2000
title Visualisation and simulation with object-oriented networks
source Eindhoven University of Technology
summary Among the existing systems, visual programming environments address best these issues. However, producing interactive simulations and visualisations is still a difficult task. This defines the main research objective of this thesis: The development and implementation of concepts and techniques to combine visualisation, simulation, and application construction in an interactive, easy to use, generic environment. The aim is to produce an environment in which the above mentioned activities can be learnt and carried out easily by a researcher. Working with such an environment should decrease the amount of time usually spent in redesigning existing software elements such as graphics interfaces, existing computational modules, and general infrastructure code. Writing new computational components or importing existing ones should be simple and automatic enough to make using the envisaged system an attractive option for a non programmer expert. Besides this, all proven successful elements of an interactive simulation and visualisation environment should be provided, such as visual programming, graphics user interfaces, direct manipulation, and so on. Finally, a large palette of existing scientific computation, data processing, and visualisation components should be integrated in the proposed system. On one hand, this should prove our claims of openness and easy code integration. On the other hand, this should provide the concrete set of tools needed for building a range of scientific applications and visualisations. This thesis is structured as follows. Chapter 2 defines the context of our work. The scientific research environment is presented and partitioned into the three roles of end user, application designer, and component developer. The interactions between these roles and their specific requirements are described and lead to a more precise formulation of our problem statement. Chapter 3 presents the most used architectures for simulation and visualisation systems: the monolithic system, the application library, and the framework. The advantages and disadvantages of these architectural models are then discussed in relation with our problem statement requirements. The main conclusion drawn is that no single existing architectural model suffices, and that what is needed is a combination of the features present in all three models. Chapter 4 introduces the new architectural model we propose, based on the combination of object-orientation in form of the C++ language and dataflow modelling in the new MC++ language. Chapter 5 presents VISSION, an interactive simulation and visualisation environment constructed on the introduced new architectural model, and shows how the usual tasks of application construction, steering, and visualisation are addressed. In chapter 6, the implementation of VISSION’s architectural model is described in terms of its component parts. Chapter 7 presents the applications of VISSION to numerical simulation, while chapter 8 focuses on its visualisation and graphics applications. Finally, chapter 9 concludes the thesis and outlines possible direction for future research.
keywords Computer Visualisation
series thesis:PhD
email
last changed 2003/02/12 22:37

_id e336
authors Achten, H., Roelen, W., Boekholt, J.-Th., Turksma, A. and Jessurun, J.
year 1999
title Virtual Reality in the Design Studio: The Eindhoven Perspective
doi https://doi.org/10.52842/conf.ecaade.1999.169
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 169-177
summary Since 1991 Virtual Reality has been used in student projects in the Building Information Technology group. It started as an experimental tool to assess the impact of VR technology in design, using the environment of the associated Calibre Institute. The technology was further developed in Calibre to become an important presentation tool for assessing design variants and final design solutions. However, it was only sporadically used in student projects. A major shift occurred in 1997 with a number of student projects in which various computer technologies including VR were used in the whole of the design process. In 1998, the new Design Systems group started a design studio with the explicit aim to integrate VR in the whole design process. The teaching effort was combined with the research program that investigates VR as a design support environment. This has lead to increasing number of innovative student projects. The paper describes the context and history of VR in Eindhoven and presents the current set-UP of the studio. It discusses the impact of the technology on the design process and outlines pedagogical issues in the studio work.
keywords Virtual Reality, Design Studio, Student Projects
series eCAADe
email
last changed 2022/06/07 07:54

_id 9d26
authors Adriane Borda Da Silva, A., Félix, N.R., Magallón Lacarta, J.A., Serón Arbeloa, F.J.
year 2000
title Da Representaçăo ŕ Modelagem (From Representation Towards Modeling)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 280-282
summary This work intends to structure a conceptual and technical referential to guide the development of the “Post-Graduate Drawing Course - from traditional tracing to computer graphics” (DTGC-IFM,UFPel, RS, Brasil), related to the process of using the computer technology for problem-solving in graphics representation. The referential intends to evaluate the level of development, and also orientate the investments with qualification of the staff, hardware and software. This study refers only to the process of solving problems using computer graphics techniques for Geometric and Visual Modeling.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 01c0
authors Af Klercker, Jonas
year 2000
title Modelling for Virtual Reality in Architecture
doi https://doi.org/10.52842/conf.ecaade.2000.209
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 209-213
summary CAAD systems are using object modelling methods for building databases to make information available. Object data must then be made useful for many different purposes in the design process. Even if the capacity of the computer will allow an almost unlimited amount of information to be transformed, the eye does not make the transformations in the same “simple” mathematical way. Trained architects have to involve in an inventive process of finding ways to “harmonize” this new medium with the human eye and the architect’s professional experience. This paper will be an interimistic report from a surveying course. During the spring semester 2000 the CAAD division of TU-Lund is giving a course “Modelling for VR in Architecture”. The students are practising architects with experience from using object modelling CAAD. The aims are to survey different ways to use available hard- and software to create VR-models of pieces of architecture and evaluate them in desktop and CAVE environments. The architect is to do as much preparation work as possible with his CAAD program and only the final adjustments with the special VR tool.
keywords CAAD, VR, Modelling, Spatial Experience
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id bb5f
authors Ahmad Rafi, M.E. and Mohd Fazidin, J.
year 2001
title Creating a City Administration System (CAS) using Virtual Reality in an Immersive Collaborative Environment (ICE)
doi https://doi.org/10.52842/conf.ecaade.2001.449
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 449-453
summary Current problems in administration of a city are found to be decentralized and noninteractive for an effective city management. This usually will result in inconsistencies of decision-making, inefficient services and slow response to a particular action. City administration often spends more money, time and human resource because of these problems. This research demonstrates our research and development of creating a City Administration System (CAS) to solve the problems stated above. The task of the system is to use information, multimedia and graphical technologies to form a database in which the city administrators can monitor, understand and manage an entire city from a central location. The key technology behind the success of the overall system uses virtual reality and immersive collaborative environment (ICE). This system employs emerging computer based real-time interactive technologies that are expected to ensure effective decisionmaking process, improved communication, and collaboration, error reduction, (Rafi and Karboulonis, 2000) between multi disciplinary users and approaches. This multi perspective approach allows planners, engineers, urban designers, architects, local authorities, environmentalists and general public to search, understand, process and anticipate the impact of a particular situation in the new city. It is hoped that the CAS will benefit city administrators to give them a tool that gives them the ability to understand, plan, and manage the business of running the city.
keywords City Administration System (CAS), Virtual Reality, Immersive Collaborative Environment (ICE), Database
series eCAADe
email
last changed 2022/06/07 07:54

_id 1838
authors Akleman, E., Chen, J. and Meric, B.
year 2000
title Intuitive and Effective Design of Periodic Symmetric Tiles
doi https://doi.org/10.52842/conf.acadia.2000.123
source Eternity, Infinity and Virtuality in Architecture [Proceedings of the 22nd Annual Conference of the Association for Computer-Aided Design in Architecture / 1-880250-09-8] Washington D.C. 19-22 October 2000, pp. 123-127
summary This paper presents a new approach for intuitive and effective design of periodic symmetric tiles. We observe that planar graphs can effectively represent symmetric tiles and graph drawing provides an intuitive paradigm for designing symmetric tiles. Moreover, based on our theoretical work to represent hexagonal symmetry by rectangular symmetry, we are able to present all symmetric tiles as graphs embedded on a torus and based on simple modulo operations. This approach enables us to develop a simple and efficient algorithm, which has been implemented in Java. By using this software, designers, architects and artists can create interesting symmetric tiles directly on the web. We also have designed a few examples of symmetric tiles to show the effectiveness of the approach.
series ACADIA
last changed 2022/06/07 07:54

_id 1071
authors Asanowicz, Aleksander
year 1999
title Evolution of Computer Aided Design: Three Generations of CAD
doi https://doi.org/10.52842/conf.ecaade.1999.094
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 94-100
summary This paper describes the three generations of CAD systems. The first generation of (primarily analytical) computer programmes really aided designing. These programmes were the tools for finding a functional solution in different areas of designing, from flat plans to the space organisation of a hospital. One of the shortcomings of these programmes was the lack of graphic interface. With time, however, this kind of interface was developed. As a result of this second generation of CAD systems the computer was transformed into a drafting machine and CAD meant Computer Aided Drafting. The main thesis of this consideration is that only now we have the chance to return to the idea of Computer Aided Design. One of the examples of these trends is the AVOCAAD programme in which Added Value of CAAD is analysed. The development of the third generation of CAD systems will be possible in the near future. Aiding the process of designing will demand the elaboration of new methods of using the computer at the early stages of this process. The computer should be used not for generating variants of functional solutions only but for also for the creation of 3D forms by 3D sketching. For this, the computer should be transformed from a tool into a medium; only then will designing become true Designing in Cyber Space.
keywords Generations of CAAD, Design Process, Creation, Medium
series eCAADe
email
last changed 2022/06/07 07:54

_id 328d
authors Bassanino, May Nahab and Brown, Andre
year 1999
title Computer Generated Architectural Images: A Comparative Study
doi https://doi.org/10.52842/conf.ecaade.1999.552
source Architectural Computing from Turing to 2000 [eCAADe Conference Proceedings / ISBN 0-9523687-5-7] Liverpool (UK) 15-17 September 1999, pp. 552-556
summary This work is part of a long term research programme (Brown and Horton, 1992; Brown and Nahab, 1996; Bassanino, 1999) in which tests and studies have been carried out on various groups of people to investigate their reaction to, and interpretation of different forms of architectural representation. In the work described here a range of architectural schemes were presented using particular representational techniques and media. An experiment was then undertaken on two different groups; architects and lay people. They were presented with a number of schemes displayed using the various techniques and media. The responses are summarised and some comments are made on the effect of computers on perceiving architecture and on communicating architectural ideas arising from an analysis of the responses.
keywords Subject, Image Type, Presentation Technique, Medium, SD Scales, Factors
series eCAADe
email
last changed 2022/06/07 07:54

_id 1f5c
authors Beesley, Philip and Seebohm, Thomas
year 2000
title Digital Tectonic Design
doi https://doi.org/10.52842/conf.ecaade.2000.287
source Promise and Reality: State of the Art versus State of Practice in Computing for the Design and Planning Process [18th eCAADe Conference Proceedings / ISBN 0-9523687-6-5] Weimar (Germany) 22-24 June 2000, pp. 287-290
summary Digital tectonic design is a fresh approach to architectural design methodology. Tectonics means a focus on assemblies of construction elements. Digital tectonics is an evolving methodology that integrates use of design software with traditional construction methods. We see digital tectonic design as a systematic use of geometric and spatial ordinances, used in combination with details and components directly related to contemporary construction. The current approach will, we hope, lead to an architectural curriculum based on generative form making where the computer can be used to produce systems of forms algorithmically. Digital design has tended to remain abstract, emphasizing visual and spatial arrangements often at the expense of materials and construction. Our pursuit is translation of these methods into more fully realized physical qualities. This method offers a rigorous approach based on close study of geometry and building construction elements. Giving a context for this approach, historical examples employing systematic tectonic design are explored in this paper. The underlying geometric ordinance systems and the highly tuned relationships between the details in these examples offer design vocabularies for use within the studio curriculum. The paper concludes with a detailed example from a recent studio project demonstrating particular qualities developed within the method. The method involves a wide range of scales, relating large-scale gestural and schematic studies to detailed assembly systems. Designing in this way means developing geometric strategies and, in parallel, producing detailed symbols or objects to be inserted. These details are assembled into a variety of arrays and groups. The approach is analogous to computer-aided designŐs tradition of shape grammars in which systems of spatial relationships are used to control the insertion of shapes within a space. Using this approach, a three-dimensional representation of a building is iteratively refined until the final result is an integrated, systematically organized complex of symbols representing physical building components. The resulting complex offers substantial material qualities. Strategies of symbol insertions and hierarchical grouping of elements are familiar in digital design practice. However these strategies are usually used for automated production of preconceived designs. In contrast to thsse normal approaches this presentation focuses on emergent qualities produced directly by means of the complex arrays of symbol insertions. The rhyth
keywords 3D CAD Systems, Design Practice, 3D Design Strategies
series eCAADe
email
more http://www.uni-weimar.de/ecaade/
last changed 2022/06/07 07:54

_id c42a
authors Bermudez, J., Agutter, J., Brent, L., Syroid, N., Gondeck-Becker, D., Westenskow, D., Foresti, S. and Sharir, Y.
year 2000
title Cyberprint: Toward an Architecture of Being
doi https://doi.org/10.52842/conf.acadia.2000.008
source ACADIA Quarterly, vol. 19, no. 3, pp. 8-12
summary This project involves the design, construction and performance of an “architecture of being” that expresses selfhood in virtual space and real time using: (1) physiological data as its building material, (2) architectural design as its expressive intent, (3) digital space as its medium, (4) screen projection as its enveloping and viewing technique, (5) user interactivity and performance as its partner, and (6) interdisciplinary collaborations among Architecture, Choreography, Modern Dance, Music, Bioengineering, Medicine and Computer Science as its creative and technical contexts. The paper presents the implementation of the cyberPRINT during a series of techno-media performances at the Rose Wagner Performing Art Center in Salt Lake City, USA, in May 2000. This work is believed to be the first of its kind in the world. The cyberPRINT is building a new area of creative inquiry in Architecture by means of collaborations with the Arts and Sciences.
keywords Performance; Data Visualization; Interdisciplinary; Virtual; Architecture
series ACADIA
email
last changed 2022/06/07 07:52

_id 95b0
authors Bermudez, J., Agutter, J., Lilly,. B., Syroid, N., Westenskow, D., Gondeck-Becker, D. Foresti, S. and Sharir, Y.
year 2000
title CyberPRINT: Hacia una Arquitectura del Ser (CyberPRINT: Towards an Architecture of the Being)
source SIGraDi’2000 - Construindo (n)o espacio digital (constructing the digital Space) [4th SIGRADI Conference Proceedings / ISBN 85-88027-02-X] Rio de Janeiro (Brazil) 25-28 september 2000, pp. 220-223
summary This project involves the design, construction and performance of an “architecture of being” that expresses selfhood in virtual space and real time using: (1) physiological data as its building material, (2) architectural design as its expressive intent, (3) digital space as its medium, (4) screen projection as its enveloping and viewing technique, (5) user interactivity and performance as its partner, and (6) interdisciplinary collaborations among Architecture, Choreography, Modern Dance, Music, Bioengineering, Medicine and Computer Science as its creative and technical contexts. // The paper presents the implementation of the cyberPRINT during a series of techno-media performances at the Rose Wagner Performing Art Center in Salt Lake City, USA, in May 2000. This work is believed to be the first of its kind in the world. The cyberPRINT is building a new area of creative inquiry in Architecture by means of collaborations with the Arts and Sciences.
series SIGRADI
email
last changed 2016/03/10 09:47

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 36HOMELOGIN (you are user _anon_100151 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002