CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 710

_id 2178
authors Chevrier, C. and Perrin, J.P.
year 2001
title Interactive 3D reconstruction for urban areas. An image based tool
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 753-765
summary Urban applications (for example arrangement, new buildings, virtual sightseeing and walkthrough) require a three dimensional (3D) geometrical model of town areas. However, most of them do not need an accurate model of reality. Such model would occupy a considerable memory space and would be too slow to handle. Architects, urban designers and civil engineers can find in our tool a medium to conceive their projects. Some types of software exist but they do not correspond exactly to our needs. Consequently we have conceived and developed an interactive tool for virtual 3D rough reconstruction of buildings. The software development has been performed in the Maya environment (ALIAS Wavefront) with C++ language and MEL (Maya Embedded Language). A constraint we set for ourselves was the use of only light devices (for easy transportation) at low price (everybody can buy such devices). The principle is to overlay on the scanned photograph of the area we want to deal with, the two dimensional (2D) cadastral plan displayed from the same viewpoint as the picture. Then each building body can be extruded from its ground polygon and the roof can be created from what the user sees on the picture. A constraint is the flatness of the polygonal surfaces. Our application context was the town of Nancy in France for which some areas have been reconstructed. Some pictures have been used as textures for polygonal surfaces, giving more reality effect to the simulation.
keywords Geometrical Modelling, Architecture, Urban Area, Virtual Visit
series CAAD Futures
email
last changed 2006/11/07 07:22

_id ec4d
authors Croser, J.
year 2001
title GDL Object
source The Architect’s Journal, 14 June 2001, pp. 49-50
summary It is all too common for technology companies to seek a new route to solving the same problem but for the most part the solutions address the effect and not the cause. The good old-fashioned pencil is the perfect example where inventors have sought to design-out the effect of the inherent brittleness of lead. Traditionally different methods of sharpening were suggested and more recently the propelling pencil has reigned king, the lead being supported by the dispensing sleeve thus reducing the likelihood of breakage. Developers convinced by the Single Building Model approach to design development have each embarked on a difficult journey to create an easy to use feature packed application. Unfortunately it seems that the two are not mutually compatible if we are to believe what we see emanating from Technology giants Autodesk in the guise of Architectural Desktop 3. The effect of their development is a feature rich environment but the cost and in this case the cause is a tool which is far from easy to use. However, this is only a small part of a much bigger problem, Interoperability. You see when one designer develops a model with one tool the information is typically locked in that environment. Of course the geometry can be distributed and shared amongst the team for use with their tools but the properties, or as often misquoted, the intelligence is lost along the way. The effect is the technological version of rubble; the cause is the low quality of data-translation available to us. Fortunately there is one company, which is making rapid advancements on the whole issue of collaboration, and data sharing. An old timer (Graphisoft - famous for ArchiCAD) has just donned a smart new suit, set up a new company called GDL Technology and stepped into the ring to do battle, with a difference. The difference is that GDL Technology does not rely on conquering the competition, quite the opposite in fact their success relies upon the continued success of all the major CAD platforms including AutoCAD, MicroStation and ArchiCAD (of course). GDL Technology have created a standard data format for manufacturers called GDL Objects. Product manufacturers such as Velux are now able to develop product libraries using GDL Objects, which can then be placed in a CAD model, or drawing using almost any CAD tool. The product libraries can be stored on the web or on CD giving easy download access to any building industry professional. These objects are created using scripts which makes them tiny for downloading from the web. Each object contains 3 important types of information: · Parametric scale dependant 2d plan symbols · Full 3d geometric data · Manufacturers information such as material, colour and price Whilst manufacturers are racing to GDL Technologies door to sign up, developers and clients are quick to see the benefit too. Porsche are using GDL Objects to manage their brand identity as they build over 300 new showrooms worldwide. Having defined the building style and interior Porsche, in conjunction with the product suppliers, have produced a CD-ROM with all of the selected building components such as cladding, doors, furniture, and finishes. Designing and detailing the various schemes will therefore be as straightforward as using Lego. To ease the process of accessing, sizing and placing the product libraries GDL Technology have developed a product called GDL Object Explorer, a free-standing application which can be placed on the CD with the product libraries. Furthermore, whilst the Object Explorer gives access to the GDL Objects it also enables the user to save the object in one of many file formats including DWG, DGN, DXF, 3DS and even the IAI's IFC. However, if you are an AutoCAD user there is another tool, which has been designed especially for you, it is called the Object Adapter and it works inside of AutoCAD 14 and 2000. The Object Adapter will dynamically convert all GDL Objects to AutoCAD Blocks during placement, which means that they can be controlled with standard AutoCAD commands. Furthermore, each object can be linked to an online document from the manufacturer web site, which is ideal for more extensive product information. Other tools, which have been developed to make the most of the objects, are the Web Plug-in and SalesCAD. The Plug-in enables objects to be dynamically modified and displayed on web pages and Sales CAD is an easy to learn and use design tool for sales teams to explore, develop and cost designs on a Notebook PC whilst sitting in the architects office. All sales quotations are directly extracted from the model and presented in HTML format as a mixture of product images, product descriptions and tables identifying quantities and costs. With full lifecycle information stored in each GDL Object it is no surprise that GDL Technology see their objects as the future for building design. Indeed they are not alone, the IAI have already said that they are going to explore the possibility of associating GDL Objects with their own data sharing format the IFC. So down to the dirty stuff, money and how much it costs? Well, at the risk of sounding like a market trader in Petticoat Lane, "To you guv? Nuffin". That's right as a user of this technology it will cost you nothing! Not a penny, it is gratis, free. The product manufacturer pays for the license to host their libraries on the web or on CD and even then their costs are small costing from as little as 50p for each CD filled with objects. GDL Technology has come up trumps with their GDL Objects. They have developed a new way to solve old problems. If CAD were a pencil then GDL Objects would be ballistic lead, which would never break or loose its point. A much better alternative to the strategy used by many of their competitors who seek to avoid breaking the pencil by persuading the artist not to press down so hard. If you are still reading and you have not already dropped the magazine and run off to find out if your favorite product supplier has already signed up then I suggest you check out the following web sites www.gdlcentral.com and www.gdltechnology.com. If you do not see them there, pick up the phone and ask them why.
series journal paper
email
last changed 2003/04/23 15:14

_id 48db
authors Proctor, George
year 2001
title CADD Curriculum - The Issue of Visual Acuity
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 192-200
doi https://doi.org/10.52842/conf.ecaade.2001.192
summary Design educators attempt to train the eyes and minds of students to see and comprehend the world around them with the intention of preparing those students to become good designers, critical thinkers and ultimately responsible architects. Over the last eight years we have been developing the digital media curriculum of our architecture program with these fundamental values. We have built digital media use and instruction on the foundation of our program which has historically been based in physical model making. Digital modeling has gradually replaced the capacity of physical models as an analytical and thinking tool, and as a communication and presentation device. The first year of our program provides a foundation and introduction to 2d and 3d design and composition, the second year explores larger buildings and history, the third year explores building systems and structure through design studies of public buildings, fourth year explores urbanism, theory and technology through topic studios and, during the fifth year students complete a capstone project. Digital media and CADD have and are being synchronized with the existing NAAB accredited regimen while also allowing for alternative career options for students. Given our location in the Los Angeles region, many students with a strong background in digital media have gone on to jobs in video game design and the movie industry. Clearly there is much a student of architecture must learn to attain a level of professional competency. A capacity to think visually is one of those skills and is arguably a skill that distinguishes members of the visual arts (including Architecture) from other disciplines. From a web search of information posted by the American Academy of Opthamology, Visual Acuity is defined as an ability to discriminate fine details when looking at something and is often measured with the Snellen Eye Chart (the 20/20 eye test). In the context of this paper visual acuity refers to a subject’s capacity to discriminate useful abstractions in a visual field for the purposes of Visual Thinking- problem solving through seeing (Arnheim, 1969, Laseau 1980, Hoffman 1998). The growing use of digital media and the expanding ability to assemble design ideas and images through point-and-click methods makes the cultivation and development of visual skills all the more important to today’s crop of young architects. The advent of digital media also brings into question the traditional, static 2d methods used to build visual skills in a design education instead of promoting active 3d methods for teaching, learning and developing visual skills. Interactive digital movies provide an excellent platform for promoting visual acuity, and correlating the innate mechanisms of visual perception with the abstractions and notational systems used in professional discourse. In the context of this paper, pedagogy for building visual acuity is being considered with regard to perception of the real world, for example the visual survey of an environment, a site or a street scene and how that visual survey works in conjunction with practice.
keywords Curriculum, Seeing, Abstracting, Notation
series eCAADe
email
last changed 2022/06/07 08:00

_id 7501
authors Apley, Julie
year 2001
title A Virtual Reconstruction: Isthmia Roman Bath
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 410-411
doi https://doi.org/10.52842/conf.acadia.2001.410
summary The Isthmia Roman Bath is located in Greece overlooking a great ravine on the Isthmus of Corinth. It was in use during the 2nd through the 4th centuries. I have created a 3D VRML walkthrough of the ancient bath. This interdisciplinary project utilizes the research of an archaeologist, architect, and art historian. Because the researchers live in different locations, it made sense to use the Internet as a research tool. When clicking on the numbers on the home page, you can see the process that I went through to model the Roman Bath. After seeing the images, the researchers were able to visualize their research, reply to questions, and re-evaluate their findings. VRML promises an accessible, highly visual, and interactive representation of difficult to see data, opening up new ways of presenting research. It is possible to walk within the bath by clicking on the Virtual Reconstruction link. When in the "Entrance view", click on the vase to see a map of the ruin. There are three places within the project that link to the existing excavated site. Links are also available to walk outside. The project runs best on Windows NT using Netscape. You must have the plug-ins for Cosmoplayer (VRML) and Quicktime (movie). Because the VRML plug-in doesn't work as well on a Mac, it is possible that you may only be able to view the images and movie from the project.
series ACADIA
last changed 2022/06/07 07:55

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 5eb9
authors Gröhn, M., Mantere, M., Savioja, L. and Takala, T.
year 2001
title Background screens on three walls and floor. The stereoscopic 3D Visualization of Building Services in Virtual Environment
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 523-528
doi https://doi.org/10.52842/conf.ecaade.2001.523
summary In currently on-going project we develop methods and techniques for visualizing building services in our virtual room. At first we have established a conversion and transmission path from contractors’ lighting modeling software to virtual environment software. Secondly we have visualized air flow data in a photo-realistic room in such a way that a nonspecialist can easily understand the behavior of air flow. Thirdly we have developed navigation techniques which allow an arbitrary visitor to explore the model without guidance.
keywords Virtual Environment, Building Services, Flow Visualization, Interaction Techniques
series eCAADe
email
last changed 2022/06/07 07:51

_id avocaad_2001_22
id avocaad_2001_22
authors Jos van Leeuwen, Joran Jessurun
year 2001
title XML for Flexibility an Extensibility of Design Information Models
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The VR-DIS research programme aims at the development of a Virtual Reality – Design Information System. This is a design and decision support system for collaborative design that provides a VR interface for the interaction with both the geometric representation of a design and the non-geometric information concerning the design throughout the design process. The major part of the research programme focuses on early stages of design. The programme is carried out by a large number of researchers from a variety of disciplines in the domain of construction and architecture, including architectural design, building physics, structural design, construction management, etc.Management of design information is at the core of this design and decision support system. Much effort in the development of the system has been and still is dedicated to the underlying theory for information management and its implementation in an Application Programming Interface (API) that the various modules of the system use. The theory is based on a so-called Feature-based modelling approach and is described in the PhD thesis by [first author, 1999] and in [first author et al., 2000a]. This information modelling approach provides three major capabilities: (1) it allows for extensibility of conceptual schemas, which is used to enable a designer to define new typologies to model with; (2) it supports sharing of conceptual schemas, called type-libraries; and (3) it provides a high level of flexibility that offers the designer the opportunity to easily reuse design information and to model information constructs that are not foreseen in any existing typologies. The latter aspect involves the capability to expand information entities in a model with relationships and properties that are not typologically defined but applicable to a particular design situation only; this helps the designer to represent the actual design concepts more accurately.The functional design of the information modelling system is based on a three-layered framework. In the bottom layer, the actual design data is stored in so-called Feature Instances. The middle layer defines the typologies of these instances in so-called Feature Types. The top layer is called the meta-layer because it provides the class definitions for both the Types layer and the Instances layer; both Feature Types and Feature Instances are objects of the classes defined in the top layer. This top layer ensures that types can be defined on the fly and that instances can be created from these types, as well as expanded with non-typological properties and relationships while still conforming to the information structures laid out in the meta-layer.The VR-DIS system consists of a growing number of modules for different kinds of functionality in relation with the design task. These modules access the design information through the API that implements the meta-layer of the framework. This API has previously been implemented using an Object-Oriented Database (OODB), but this implementation had a number of disadvantages. The dependency of the OODB, a commercial software library, was considered the most problematic. Not only are licenses of the OODB library rather expensive, also the fact that this library is not common technology that can easily be shared among a wide range of applications, including existing applications, reduces its suitability for a system with the aforementioned specifications. In addition, the OODB approach required a relatively large effort to implement the desired functionality. It lacked adequate support to generate unique identifications for worldwide information sources that were understandable for human interpretation. This strongly limited the capabilities of the system to share conceptual schemas.The approach that is currently being implemented for the core of the VR-DIS system is based on eXtensible Markup Language (XML). Rather than implementing the meta-layer of the framework into classes of Feature Types and Feature Instances, this level of meta-definitions is provided in a document type definition (DTD). The DTD is complemented with a set of rules that are implemented into a parser API, based on the Document Object Model (DOM). The advantages of the XML approach for the modelling framework are immediate. Type-libraries distributed through Internet are now supported through the mechanisms of namespaces and XLink. The implementation of the API is no longer dependent of a particular database system. This provides much more flexibility in the implementation of the various modules of the VR-DIS system. Being based on the (supposed to become) standard of XML the implementation is much more versatile in its future usage, specifically in a distributed, Internet-based environment.These immediate advantages of the XML approach opened the door to a wide range of applications that are and will be developed on top of the VR-DIS core. Examples of these are the VR-based 3D sketching module [VR-DIS ref., 2000]; the VR-based information-modelling tool that allows the management and manipulation of information models for design in a VR environment [VR-DIS ref., 2000]; and a design-knowledge capturing module that is now under development [first author et al., 2000a and 2000b]. The latter module aims to assist the designer in the recognition and utilisation of existing and new typologies in a design situation. The replacement of the OODB implementation of the API by the XML implementation enables these modules to use distributed Feature databases through Internet, without many changes to their own code, and without the loss of the flexibility and extensibility of conceptual schemas that are implemented as part of the API. Research in the near future will result in Internet-based applications that support designers in the utilisation of distributed libraries of product-information, design-knowledge, case-bases, etc.The paper roughly follows the outline of the abstract, starting with an introduction to the VR-DIS project, its objectives, and the developed theory of the Feature-modelling framework that forms the core of it. It briefly discusses the necessity of schema evolution, flexibility and extensibility of conceptual schemas, and how these capabilities have been addressed in the framework. The major part of the paper describes how the previously mentioned aspects of the framework are implemented in the XML-based approach, providing details on the so-called meta-layer, its definition in the DTD, and the parser rules that complement it. The impact of the XML approach on the functionality of the VR-DIS modules and the system as a whole is demonstrated by a discussion of these modules and scenarios of their usage for design tasks. The paper is concluded with an overview of future work on the sharing of Internet-based design information and design knowledge.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 728a
authors Mantere, Markku
year 2001
title Visualization of Flow Data in Photo-realistic Virtual Environment
source Helsinki University of Technology, Espoo, Finland
summary Virtual reality technology has been adopted in many different fields and new application areas are searched continuously. At the moment virtual reality has been applied separately for instance to scientific visualization and illustration of architectural spaces. In this work, a photo-realistic room model and a visualization of an air flow inside the room has been combined. The integrated illustrative three-dimensional model is presented within an immersive virtual environment. The first part of the work covers scientific visualization and virtual reality implementation techniques. The visualization review begins with a discussion about human percepion of visual information and proceeds with an introduction to three-dimensional visualization. The focus is on illustration of a flow data produced as a result of a computational simulation. The flow visualization techniques utilizing all three dimensions are discussed and many examples of different graphical elements are presented. Virtual reality is examined from technical solutions point of view. The features having effect on the quality of a virtual experience are discussed and three different commonly used display techniques are introduced. The hardware of Experimental Virtual Environment -facility at Helsinki University of Technology is given as a detailed example. The implementation of a visualization software is described in the applied part of this thesis. Discussion covers the evaluation of different software tools, the tool selection process, and a detailed description of the design principles and implementation of the software. The different visualization solutions are also justified in this part. In the implementation, the real-time system requirements and utilization of all three dimensions have been taken into account. Finally, the results and their meaning are discussed and the performance of the implementation is evaluated. The applied part successfully integrated the room model and the flow visualization in an interactive virtual environment.
keywords Virtual Environments, Virtual Reality, Flow Visualization, CFD, 3D, Computer Graphics
series thesis:MSc
last changed 2003/02/12 22:37

_id 63a6
authors Medjdoub, B. Richens, P. and Barnard, N.
year 2001
title Building Services Standard Solutions. Variational Generation of Plant Room Layouts
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 479-493
summary Object-based CAD programming is used to take advantage of standardisation to handle the schematic design, sizing, layout and (potentially) pipe-routing for LPHW (Low Pressure Hot Water) plant rooms in buildings. From a simple specification of the plant room geometry, and the heating load in kw, our software proceeds through a number of steps. First the standard number and size of modular boilers, pumps etc. is determined from the heat load. Then a compatible optimising 3D variational solution is generated, using Constraint Logic Programming. Our approach is highly interactive. Modifying the topology of the solution is done directly through the graphic interface, e.g. modifying a boiler position is done by dragging; the system automatically updates the 3D model including the pipe-routing while maintaining all the constraints, and hence the validity of the design.
keywords Constraints, Layout Configuration, Topological Solutions, Optimisation, Interactivity, Plant Room, Pipe Routing, 3D Solution
series CAAD Futures
email
last changed 2006/11/07 07:22

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
doi https://doi.org/10.52842/conf.acadia.2016.140
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id 7655
authors Okeil, Ahmad and El Araby, Mostafa
year 2003
title Realism vs. Reality in Digital Reconstruction of Cities
source CORP 2003, Vienna University of Technology, 25.2.-28.2.2003 [Proceedings on CD-Rom]
summary The digital reconstruction of existing cities using virtual reality techniques is being increasingly used. For consultants, municipalities and planning departments these models provide decision support through visual simulations (El Araby, 2001). For academia they provide a new tool for teaching students urban design and planning (Okeil, 2001). For authorities they provide a tool for promoting the city on the world wide web trying to attract more businesses and tourists to it. The built environment is very rich in detail. It does not only consist of open spaces surrounded by abstract buildings but it also includes many smaller objects such as street furniture, traffic signs, street lights, different types of vegetation and shop signs for example. All surfaces in the built environment have unique properties describing color, texture and opacity. The built environmentis dynamic and our perception is affected by factors such as pedestrian movement, traffic, environmental factors such as wind, noise and shadows. The built environment is also shaped by the accumulation of changes caused by many influences through time. All these factors make the reconstruction of the built environment a very complex task. This paper tries to answer the question: how realistic the reconstructed models of urban areas can be. It sees “Realism“ as a variable floating between three types of realties. The reality of the physical environment which we are trying to represent. The reality of the digital environment which will host the digitally reconstructed city. And the reality of the working environment which deals with the problem of limitation of resources needed to digitally reconstruct the city. A case study of building a 3D computer model of an urban area in the United Arab Emirates demonstrates that new time-saving techniques for data acquisition can enhance realism by meetingbudget limitations and time limitations.
keywords Virtual Reality; Photo Realism; Texture Maps; 3D Modeling; Urban Design
series other
email
last changed 2003/03/11 20:39

_id 34d2
authors Rottensteiner, Franz
year 2001
title Semi-automatic extraction of buildings based on hybrid adjustment using 3D surface models and management of building data in a TIS
source Vienna University of Technology
summary A new method for semi-automatic building extraction together with a concept for storing building models alongside with terrain data in a topographical information system (TIS) is presented. A user interface based on Constructive Solid Geometry is combined with an internal data structure completely based on boundary representation. Each building can be de-composed into a set of simple primitives which are reconstructed individually. After selecting a primitive from a data base of common building shapes, the primitive parameters can be modified by interactive measurement in digital images in order to provide approximate values for automatic fine measurement. In all phases, the properties of the boundary models are directly connected to parameter estimation: the parameters of the building primitives are determined in a hybrid adjustment of camera co-ordinates and fictitious observations of points being situated on building faces. Automatic fine measurement is an application of a general framework for object surface reconstruction using hierarchical feature based object space matching. The integration of object space into the matching process is achieved by the new modeling technique. The management of both building and terrain data in a TIS is based on a unique principle. Meta data are managed in a relational data base, whereas the actual data are treated as binary large objects. The new method is evaluated in a test project (image scale: 1:4500, 70 % overlap, 50 % side lap). The automatic tool gives results with an accuracy of +-2-5 cm in planimetric position and +-5-10 cm in height.
keywords Building Extraction; Semi-automatic building extraction; Object modelling; 3D City models; Data acquisition; Spatial Information Systems; Image matching; Photogrammetry
series thesis:PhD
email
more http://www.ipf.tuwien.ac.at/fr/buildings/diss/node5.html
last changed 2003/02/12 22:37

_id 5166
authors Sass, Larry
year 2001
title Reconstructing Palladio’s Villas: A computational analysis of Palladio’s villa design and construction process
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 212-226
doi https://doi.org/10.52842/conf.acadia.2001.212
summary This project is ongoing research focused on finding a method of reconstruction, using computational devices to build, represent and evaluate Palladio’s un-built villas in three-dimensions. The first of The Four Books of Architecture contains text and images explaining Palladio’s design and construction systems in the form of rules. These rules were written for masons and craftsmen of the 16th century, offering one and two-dimensional data on each of Palladio’s villas, palaces and churches. The Four Books offers a general treatment of the villas; however, it is missing most of the physical construction data needed to execute a full reconstruction of an un-built building. Many architects and historians have attempted to reconstruct Palladio’s work in drawings, wooden models and computer imagery. This project presents a new method of reconstruction through the definition of construction rules, in addition to shape and proportional rules defined by previous scholars. In also uses 3D printing and texture mapped renderings as design tools. This study uses the Villa Trissino in Meledo as a test case for the process. The end product is a presentation of a method for reconstruction in the form of a three-dimensional analysis of Palladio’s design and construction rules. The goal is to recreate all 24 of the villas found in the Four Books with the same method and rules as a demonstration of qualitative and quantitative input and output from a computational device.
keywords Palladio, Computer Modeling, 3D Printing, Computer Rendering
series ACADIA
email
last changed 2022/06/07 07:57

_id ecaade03_373_117_wittkopf
id ecaade03_373_117_wittkopf
authors Wittkopf, Stephen K. and Foo, E-Jin
year 2003
title Discussing Image-Based Modeling Technology for 3D Digital Archival of Physical Architecture Models
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 373-380
doi https://doi.org/10.52842/conf.ecaade.2003.373
summary Besides drawings, physical models are important forms of representation commonly used for architectural design. They can serve as a useful resource for teaching and research, provided there is a proper archiving system that allows easy retrieval. Architectural models in 3D digital format seem to be able to overcome the limitation of physical constraints – they can be easily accessed anytime and anywhere over the Internet. The most common way of 3D model documentation is through geometric-based 3D CAD software. Image-based modeling (IM) allows the 3D digital model to be created from photographic images. Debevec (1998) investigated the hybrid geometry- and image-based approach whilst Tsou (2002) and Hawkins (2001) focused on the application of IM for GIS and digitizing cultural artifacts respectively. This paper aims to compare physical models and their IM counterparts in terms of communication of vital architectural information. Experiments were conducted to evaluate the extent the IM model resembled the physical predecessor in terms of its geometry and visual appearance qualities/faithfulness. A survey was subsequently carried out to compare their performance in terms of the communication of vital architectural information about building designs to the observers. The tabulated results were then examined to help understand the opportunities and weakness of IM for 3D archival of physical architecture models
keywords Image-based modeling, architecture model, digital archiving, design resource
series eCAADe
email
more http://www.arch.nus.edu.sg/akiskw
last changed 2022/06/07 07:57

_id cf2011_p127
id cf2011_p127
authors Benros, Deborah; Granadeiro Vasco, Duarte Jose, Knight Terry
year 2011
title Integrated Design and Building System for the Provision of Customized Housing: the Case of Post-Earthquake Haiti
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 247-264.
summary The paper proposes integrated design and building systems for the provision of sustainable customized housing. It advances previous work by applying a methodology to generate these systems from vernacular precedents. The methodology is based on the use of shape grammars to derive and encode a contemporary system from the precedents. The combined set of rules can be applied to generate housing solutions tailored to specific user and site contexts. The provision of housing to shelter the population affected by the 2010 Haiti earthquake illustrates the application of the methodology. A computer implementation is currently under development in C# using the BIM platform provided by Revit. The world experiences a sharp increase in population and a strong urbanization process. These phenomena call for the development of effective means to solve the resulting housing deficit. The response of the informal sector to the problem, which relies mainly on handcrafted processes, has resulted in an increase of urban slums in many of the big cities, which lack sanitary and spatial conditions. The formal sector has produced monotonous environments based on the idea of mass production that one size fits all, which fails to meet individual and cultural needs. We propose an alternative approach in which mass customization is used to produce planed environments that possess qualities found in historical settlements. Mass customization, a new paradigm emerging due to the technological developments of the last decades, combines the economy of scale of mass production and the aesthetics and functional qualities of customization. Mass customization of housing is defined as the provision of houses that respond to the context in which they are built. The conceptual model for the mass customization of housing used departs from the idea of a housing type, which is the combined result of three systems (Habraken, 1988) -- spatial, building system, and stylistic -- and it includes a design system, a production system, and a computer system (Duarte, 2001). In previous work, this conceptual model was tested by developing a computer system for existing design and building systems (Benr__s and Duarte, 2009). The current work advances it by developing new and original design, building, and computer systems for a particular context. The urgent need to build fast in the aftermath of catastrophes quite often overrides any cultural concerns. As a result, the shelters provided in such circumstances are indistinct and impersonal. However, taking individual and cultural aspects into account might lead to a better identification of the population with their new environment, thereby minimizing the rupture caused in their lives. As the methodology to develop new housing systems is based on the idea of architectural precedents, choosing existing vernacular housing as a precedent permits the incorporation of cultural aspects and facilitates an identification of people with the new housing. In the Haiti case study, we chose as a precedent a housetype called “gingerbread houses”, which includes a wide range of houses from wealthy to very humble ones. Although the proposed design system was inspired by these houses, it was decided to adopt a contemporary take. The methodology to devise the new type was based on two ideas: precedents and transformations in design. In architecture, the use of precedents provides designers with typical solutions for particular problems and it constitutes a departing point for a new design. In our case, the precedent is an existing housetype. It has been shown (Duarte, 2001) that a particular housetype can be encoded by a shape grammar (Stiny, 1980) forming a design system. Studies in shape grammars have shown that the evolution of one style into another can be described as the transformation of one shape grammar into another (Knight, 1994). The used methodology departs takes off from these ideas and it comprises the following steps (Duarte, 2008): (1) Selection of precedents, (2) Derivation of an archetype; (3) Listing of rules; (4) Derivation of designs; (5) Cataloguing of solutions; (6) Derivation of tailored solution.
keywords Mass customization, Housing, Building system, Sustainable construction, Life cycle energy consumption, Shape grammar
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ddss9829
id ddss9829
authors De Hoog, J., Hendriks, N.A. and Rutten, P.G.S.
year 1998
title Evaluating Office Buildings with MOLCA(Model for Office Life Cycle Assessment)
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary MOLCA (Model for Office Life Cycle Assessment) is a project that aims to develop a tool that enables designers and builders to evaluate the environmental impact of their designs (of office buildings) from a environmental point of view. The model used is based on guidelinesgiven by ISO 14000, using the so-called Life Cycle Assessment (LCA) method. The MOLCA project started in 1997 and will be finished in 2001 resulting in the aforementioned tool. MOLCA is a module within broader research conducted at the Eindhoven University of Technology aiming to reduce design risks to a minimum in the early design stages.Since the MOLCA project started two major case-studies have been carried out. One into the difference in environmental load caused by using concrete and steel roof systems respectively and the role of recycling. The second study focused on biases in LCA data and how to handle them. For the simulations a computer-model named SimaPro was used, using the world-wide accepted method developed by CML (Centre for the Environment, Leiden, the Netherlands). With this model different life-cycle scenarios were studied and evaluated. Based on those two case studies and a third one into an office area, a first model has been developed.Bottle-neck in this field of study is estimating average recycling and re-use percentages of the total flow of material waste in the building sector and collecting reliable process data. Another problem within LCA studies is estimating the reliability of the input data and modelling uncertainties. All these topics will be subject of further analysis.
keywords Life-Cycle Assessment, Office Buildings, Uncertainties in LCA
series DDSS
last changed 2003/08/07 16:36

_id d90f
authors Hanser, D., Halin, G. and Bignon, J.-C.
year 2001
title Relation-Based Groupware For Heterogeneous Design Teams
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 86-91
doi https://doi.org/10.52842/conf.ecaade.2001.086
summary This paper describes a work about coordination of concurrent engineering in the building construction and design. More particularly it describes the coordination of project teams which are heterogeneous and short-lived. The French context of the building trade is at present characterized by an increase of the quality requirements and by a reduction of the conception and realization delays. This induces the building sector to look for new modes of cooperation as they already exist in industry and services. With a few exceptions, the concurrent engineering tools taken from these sectors are not used in building projects. We make the assumption that the lack of use of these tools is due to the non-fitting of the common existing tools to the specificities of our sector. The solution we propose give a relational vision of the cooperation and the interactions existing during the processes of conception-construction in architectural works. Our first interest point concerns the representation of the actors, the documents and the assignments as a relational network and not as a hierarchical tree, mostly used in the groupware tools. In a second point, we use this relational network to produce a graphic and dynamic representation of the projects. The goal of this method is to reinforce the co-operation and the group awareness by supplying to the actors a good vision of the project evolution in order to increase the conception quality.
keywords Concurrent Engineering, Groupware, Project Management, Relational Model, Awareness
series eCAADe
last changed 2022/06/07 07:50

_id e6c5
authors Heintz, John L.
year 2001
title Coordinating virtual building design teams
source Stellingwerff, Martijn and Verbeke, Johan (Eds.), ACCOLADE - Architecture, Collaboration, Design. Delft University Press (DUP Science) / ISBN 90-407-2216-1 / The Netherlands, pp. 65-76 [Book ordering info: m.c.stellingwerff@bk.tudelft.nl]
summary Most research in design project management support systems treats the subject as an isolated objective problem. The goals to be met are defined in terms of a supposed universal view of the project, and now outside concerns are taken into account. While such approaches, including project simulation, may yield excellent results, they ignore what, for many projects, are the real difficulties. Design projects are not isolated. All participants have other obligations that compete with the given project for attention and resources. The various participants in the design process have different goals. For these reasons it is proposed that design project management can be best facilitated by tools which assist the participating actors to share suitable management information in order to make better co-ordination possible, while allowing the resource balancing between projects to occur in private. Such a tool represents the design project management task as a negotiation task that spans both projects and firms; the management of one project is the management of all. The model of design collaboration upon which the Design Coordination System (DeCo) is built was developed from 1) a heuristic case study used to gain insight into the ways in which designers co-ordinate their efforts, and 2) the application of the theory of the social contract as developed by John Rawls to the problem of design project management. The key innovation in the DeCo system is the shaping of the project management system around existing practices of collaborative project design management and planning. DeCo takes advantage of how designers already co-ordinate their work with each other and resolve disputes over deadlines and time lines. The advantage of DeCo is that it formalises these existing practices in order to accommodate both the increasing co-ordination burden and the difficulties brought about by the internationalisation of design practice. DeCo, the design project management system proposed here, provides a representation, a communications protocol, and a game theoretical decision structure. The combination of these three units provides users with the ability to exchange structured pictures of the project as seen from the points of view of individual actors. Further, it suggests a mechanism based on a specific principle of fairness for arriving at mutually acceptable project plans. The DeCo system permits the users freedom to manage their design processes as they will, while providing a basic compatibility between practices of design team members which supports their collaborative efforts to co-ordinate their design work.
series other
last changed 2001/09/14 21:30

_id 7313
authors Mahdavi, A., Brahme, R. and Gupta, S.
year 2001
title Performance-based computational design via differential modeling and two-staged mapping
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 667-680
summary Computational performance-based building design support faces a conflict. It is important to provide building performance feed back to the designer as early as possible in the design process. But many aspects of building performance are significantly affected by the design of the building’s technical systems, which are typically configured in detail only in the later stages of design. The challenge is thus to find a method to use detailed simulation tools even during the early stages of design when values for many of the variables for the building’s technical sub-systems are not yet available. In this paper, we demonstrate how this problem can be partially solved by combining two levels of automation. The first level consists of differential building representation involving a number of domain (application-specific) object models that are derived from a shared object model automatically. The second level uses generative agents that create reference designs for the technical sub-systems of the building. To demonstrate the feasibility of the proposed approach, we use the building energy systems domain (heating, cooling, ventilation, and air-conditioning) as a case in point.
keywords Building Performance Simulation, Homology-Based Mapping, Intelligent Design Agents
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 159e
authors Snyder, Alison B. and Paley, Samuel M.
year 2001
title Experiencing an Ancient Assyrian Palace: Methods for a Reconstruction
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 062-075
doi https://doi.org/10.52842/conf.acadia.2001.062
summary The various forms of two and three-dimensional applications of Computer- Aided Design provide methods for analyzing, seeing, and presenting newly realized design work. It can be used to re-create building spaces unseen since their collapse centuries ago. In our project we blur the lines between the design of new architectural spaces and the re-conception of ancient spaces, thus merging the fields of architecture and archaeology using digital technology. Archaeologists and Architects are interested in similar goals concerning the depiction of space and form but archaeologists must deduce from historical, cultural and social comparisons as well as actual excavated remains. Our project is reconstructing the 9th-century BCE Palace of Ashurnasirpal II situated in Iraq. Though much of the palace has been excavated its architecture and full artistic program will never again be fully realized. Attempting to visualize partially preserved archaeological sites depends upon deductive reasoning, empirical wisdom and sound research. By modeling digitally and using “real-time” Java-based programming, the researchers have learned more quickly about the building than through traditional flat plans, cross-sections, drawn perspectives and constructed models. We are able to “inhabit” specific interior and exterior spaces in ways not possible before. Using the tools of digital archaeology allows a myriad of educational possibilities for the scholar, student or layperson.
keywords Architecture, Archaeology; Reconstruction; Web, VR
series ACADIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_883762 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002