CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 707

_id d742
authors McGill, Miranda
year 2001
title A Visual Approach for Exploring Computational Design
source MIT, Department of Architecture
summary This thesis concerns the use of computers for learning about computational design and shape grammars. It discusses how software can be developed to create “microworlds” for designing, and how to take into account the needs of designers whilst retaining a transparency of process in computational design. The broader context pertains to the learning and practice of design. Through analysis of computation in a workshop setting, consideration is given to the role of the computer as a facilitator for designing with shape grammars. Prototype software for facilitating the learning of shape grammars, called Shaper2D, was created as a focus for this study. It is written in the Java programming language for cross-platform compatibility, and is available both as an applet and stand-alone application.
keywords Computational Design; CAD; Design Education; Shape Grammars; Exploratory Learning
series thesis:MSc
email
last changed 2003/05/13 06:09

_id avocaad_2001_05
id avocaad_2001_05
authors Alexander Koutamanis
year 2001
title Analysis and the descriptive approach
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The rise of consciousness concerning the quality of working and living conditions has been a permanent though frequently underplayed theme in architecture and building since the reconstruction period. It has led to an explosive growth of programmatic requirements on building behaviour and performance, thus also stimulating the development of design analysis. The first stage of development was characterized by the evolution of prescriptive systems. These reversed the structure of pre-existing proscriptive systems into sequences of known steps that should be taken in order to achieve adequate results. Prescriptive systems complemented rather than replaced proscriptive ones, thereby creating an uncertain mixture of orthodoxy and orthopraxy that failed to provide design guidance for improving design performance and quality.The second stage in the development of design analysis focuses on descriptive methods and techniques for analyzing and supporting evaluation. Technologies such as simulation and scientific visualization are employed so as to produce detailed, accurate and reliable projections of building behaviour and performance. These projections can be correlated into a comprehensive and coherent description of a building using representations of form as information carriers. In these representations feedback and interaction assume a visual character that fits both design attitudes and lay perception of the built environment, but on the basis of a quantitative background that justifies, verifies and refines design actions. Descriptive analysis is currently the most promising direction for confronting and resolving design complexity. It provides the designer with useful insights into the causes and effects of various design problems but frequently comes short of providing clear design guidance for two main reasons: (1) it adds substantial amounts of information to the already unmanageable loads the designer must handle, and (2) it may provide incoherent cues for the further development of a design. Consequently the descriptive approach to analysis is always in danger of been supplanted by abstract decision making.One way of providing the desired design guidance is to complement the connection of descriptive analyses to representations of form (and from there to synthesis) with two interface components. The first is a memory component, implemented as case-bases of precedent designs. These designs encapsulate integrated design information that can be matched to the design in hand in terms of form, function and performance. Comparison between precedents with a known performance and a new design facilitate identification of design aspects that need be improved, as well as of wider formal and functional consequences. The second component is an adaptive generative system capable of guiding exploration of these aspects, both in the precedents and the new design. The aim of this system is to provide feedback from analysis to synthesis. By exploring the scope of the analysis and the applicability of the conclusions to more designs, the designer generates a coherent and consistent collection of partial solutions that explore a relevant solution space. Development of the first component, the design case-bases, is no trivial task. Transformability in the representation of cases and flexible classification in a database are critical to the identification and treatment of a design aspect. Nevertheless, the state of the art in case-based reasoning and the extensive corpus of analysed designs provide the essential building blocks. The second component, the adaptive generative system, poses more questions. Existing generative techniques do not possess the necessary richness or multidimensionality. Moreover, it is imperative that the designer plays a more active role in the control of the process than merely tweaking local variables. At the same time, the system should prevent that redesigning degenerates into a blind trial-and-error enumeration of possibilities. Guided empirical design research arguably provides the means for the evolutionary development of the second component.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 6a37
authors Fowler, Thomas and Muller, Brook
year 2002
title Physical and Digital Media Strategies For Exploring ‘Imagined’ Realities of Space, Skin and Light
source Thresholds - Design, Research, Education and Practice, in the Space Between the Physical and the Virtual [Proceedings of the 2002 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-11-X] Pomona (California) 24-27 October 2002, pp. 13-23
doi https://doi.org/10.52842/conf.acadia.2002.013
summary This paper will discuss an unconventional methodology for using physical and digital media strategies ina tightly structured framework for the integration of Environmental Control Systems (ECS) principles intoa third year design studio. An interchangeable use of digital media and physical material enabledarchitectural explorations of rich tactile and luminous engagement.The principles that provide the foundation for integrative strategies between a design studio and buildingtechnology course spring from the Bauhaus tradition where a systematic approach to craftsmanship andvisual perception is emphasized. Focusing particularly on color, light, texture and materials, Josef Albersexplored the assemblage of found objects, transforming these materials into unexpected dynamiccompositions. Moholy-Nagy developed a technique called the photogram or camera-less photograph torecord the temporal movements of light. Wassily Kandinsky developed a method of analytical drawingthat breaks a still life composition into diagrammatic forces to express tension and geometry. Theseschematic diagrams provide a method for students to examine and analyze the implications of elementplacements in space (Bermudez, Neiman 1997). Gyorgy Kepes's Language of Vision provides a primerfor learning basic design principles. Kepes argued that the perception of a visual image needs aprocess of organization. According to Kepes, the experience of an image is "a creative act ofintegration". All of these principles provide the framework for the studio investigation.The quarter started with a series of intense short workshops that used an interchangeable use of digitaland physical media to focus on ECS topics such as day lighting, electric lighting, and skin vocabulary tolead students to consider these components as part of their form-making inspiration.In integrating ECS components with the design studio, an nine-step methodology was established toprovide students with a compelling and tangible framework for design:Examples of student work will be presented for the two times this course was offered (2001/02) to showhow exercises were linked to allow for a clear design progression.
series ACADIA
email
last changed 2022/06/07 07:51

_id avocaad_2001_13
id avocaad_2001_13
authors Alexander Koutamanis
year 2001
title Modeling irregular and complex forms
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Computational technologies provide arguably the first real opportunity architectural design has had for a comprehensive description of built form. With the advent of affordable computer-aided design systems (including drafting, modeling, visualization and simulation tools), architects believe they can be in full control of geometric aspects and, through these, of a wide spectrum of other aspects that are implicit or explicit in the geometric representation. This belief is based primarily on the efficiency and effectiveness of computer systems, ranging from the richness and adaptability of geometric primitives to the utility of geometric representations in simulations of climatic aspects. Such capabilities support attempts to design and construct more irregular or otherwise complex forms. These fall under two main categories: (1) parsing of irregularity into elementary components, and (2) correlation of the form of a building with complex geometric structures.The first category takes advantage of the compactness and flexibility of computational representations in order to analyse the form of a design into basic elements, usually elementary geometric primitives. These are either arranged into simple, unconstrained configurations or related to each other by relationships that define e.g. parametric relative positioning or Boolean combinations. In both cases the result is a reduction of local complexity and an increase of implicit or explicit relationships, including the possibility of hierarchical structures.The second category attempts to correlate built form with constraints that derive usually from construction but can also be morphological. The correlation determines the applicability of complex geometric structures (minimally ruled surfaces) to the description of a design. The product of this application is generally variable in quality, depending upon the designer's grounding in geometry and his ability to integrate constraints from different aspects in the definition of the design's geometry.Both categories represent a potential leap forward but are also equally hampered by the rigidity of the implementation mechanisms upon which they rely heavily. The paper proposes an approach to making these mechanisms subordinate to the cognitive and technical aspects of architectural thinking through fuzzy modeling. This way of modeling involves a combination of (a) canonical forms, (b) tolerances around canonical forms and positions, (c) minimal and maximal values, (d) fuzzy boundaries, and (e) plastic interaction between elements based on the dual principles of local intelligence and autonomy. Fuzzy models come therefore closer to the intuitive manners of sketching, while facilitating transition to precise and complex forms. The paper presents two applications of fuzzy modeling. The first concerns the generation of schematic building layouts, including adaptive control of programmatic requirements. The second is a system for designing stairs that can adapt themselves to changes in their immediate environment through a fuzzy definition of geometric and topological parametrization.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id da3a
authors Borges Sanches, Thais and Leão de Amorim, Arivaldo
year 2001
title AVALIAÇÃO DO USO DA SIMULAÇÃO COMPUTACIONAL EM PROJETOS DE ILUMINAÇÃO ARTIFICIAL (Evaluation of the Use of Computer Simulation for Artificial Illumination Projects)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 95-97
summary This paper tries to evaluate the quantitative e qualitative aspects of the uses of the computational simulation for the analysis of enclosed environments light designs, and its feasibility in teaching in Architectural and Urbanism courses. The importance of this paper is associated with the determining of the illumination levels and its effects. Simulations were made with the Lightscape software in a specific room and their results were compared with the experimental measurements taken in that place. From this comparison it was possible to make the analysis of the software characteristics and to evaluate the advantages or disadvantages of its uses. The results confirm its feasibility as a tool for illumination simulation and its adequate uses in the teaching of environmental comfort. The good correlation achieved in visual effects derived from the lighting design and also the information of values related to illuminance and luminance for the simulated space support this affirmative.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 92cf
authors Cheng, Nancy Yen-wen
year 2001
title Capturing Place: A Comparison of Site Recording Methods
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 243-255
summary When designers document locations for site-specific projects, how do tools affect recording of visual data? We observed design students visiting future project locations with sketchbooks, cameras and video and analysed the resulting Web-based field reports by tallying images according to scale and content. The study describes how tools shape place-recording phases and explains how field reports can contribute to understanding the tools. Examining reports from different classes exposed the importance of objectives and setting characteristics in shaping data collection. A refined approach for studying new place-recording tools is suggested.
keywords Fieldwork In Architectural Practice, Design Process, Computer Media
series CAAD Futures
email
last changed 2006/11/07 07:22

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 67fa
authors Datta, Sambit and Woodbury, Robert F.
year 2001
title An approach to search and exploration through mixed-initiative
source CAADRIA 2001 [Proceedings of the Sixth Conference on Computer Aided Architectural Design Research in Asia / ISBN 1-86487-096-6] Sydney 19-21 April 2001, pp. 275-282
doi https://doi.org/10.52842/conf.caadria.2001.275
summary Generative design environments need support for human intervention as well as sound computational formalisms. A systematic approach to integrating the two, formal generation and the exploratory, is lacking. In this paper, we posit the possibility of a design support system that combines formal search with user driven exploration. Our approach is to cast the interaction between the user and the generative formalism as agent collaboration in a mixed-initiative environment. We describe the role of interaction and agency in an experimental mixed-initiative design support system, FOLDS and demonstrate its application.
series CAADRIA
email
last changed 2022/06/07 07:55

_id avocaad_2001_06
id avocaad_2001_06
authors Giovanni De Paoli
year 2001
title Architectural design and procedural models - A radical change of language to design in architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The history of architecture and its teaching clearly reveal how representations of the image and drawing have changed over centuries. Today, computers are increasingly found at the desks of architecture professionals and students, but their usage remains restricted to technical functions and what is commonly known as CAD (computer-assisted design), in architecture is often simply the other CAD (computer-assisted drawing).This presentation deals with architectural design, particularly at its earliest stage. Our objective is to propose a model for describing the architectural concept that meets the needs of architects through software. Only then will they really be able to use computers as an aid to design by overcoming the obstacles that presently keep us from making full use of them.This has led me to propose an avenue of exploration that examines projection through an object’s properties, and a method of computer-assisted design that makes use of procedural models. These procedural models consist of geometric operators and operators that define the properties, characteristics and performance of a building — operators which I have termed “semantic”.This research fits into a paradigm that leads to representation of the building through functions that can be called with parameters and encapsuled in an algorithm, making it possible to create procedural models that assist with the design. This approach opens up a means of integrating the logos with the figurative representation where drawing is used instead of words to convey the architectural concept.The example of a procedural model shows how we can use a generic model to produce a volume model with all the characteristics belonging to the same family of objects. This type of model can serve not only to illustrate the result of a process, or to draw connections among buildings on the basis of their construction process, or to test the validity of a rule typical of a set of objects, but also to integrate, through a functional language, semantic operators which to date have been excluded from the initial design phase. This descriptive mechanism is extremely powerful in making it possible to establish relationships among the functions and properties of a building and the purpose of the architectural project.The scientific contribution of this research is to test the hypothesis that we can use computer tools to manipulate operators which enable the architect to reappropriate a complex design of the building, and open up new lines of investigation into integrating geometric and knowledge-based systems into a unified representation. The declarative approach for creating three-dimensional scenes fits into this perspective.It is now a matter of exploring the possibility of working on a “common morphology” shared by everyone involved in the design process by rewriting the functions or by converting the functions used for representation, or else through a functional dialect (language) that allows for dialectic relationships among all types of operators and the actions of the protagonists in the architectural design process.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 943c
authors Hendricx, A. and Neuckermans, H.
year 2001
title The object model at the core of the IDEA+ design environment
source Beheshti, R. (ed), Advances in Building Informatics, Proceedings of the 8th EuropIA International Conference on the application of Artificial Intelligence, Robotics and Image Processing to Architecture, Building Engineering & Civil Engineering, Delft, The Netherlands, April 25-27, 2001, pp. 113-125
summary This paper focuses on three different aspects in which the IDEA+ core model differs from many other product modelling research initiatives: the systematic approach in the construction of the model, the respect for the evolutionary nature of architectural design, and the use of actual and complete design cases to test the model. Key words: CAAD, product modelling, integrated design environment, MERODE 1 The IDEA+ project: towards an integrated design environment In spite of the extensive use of all kinds of hardware and software in the architectural offices, the use of computers still does not contribute essentially to better architecture. For the CAD packages on the one hand, they have proven to be an efficient alternative for the traditional drawing board. Yet they fail in the early conceptual stage of design where creativity and exploration play the leading role. For computational tests and analysis tools on the other hand, they can hardly handle the typical absence o
series other
email
last changed 2003/04/23 15:14

_id caadria2007_233
id caadria2007_233
authors Hoseini, Ali Ghaffarian; Rahinah Ibrahim
year 2007
title Using Social Network Analysis for Visualising Spatial Planning During Conceptual Design Phase
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.i8r
summary Spatial diagramming exercises with clients are difficult when most clients are not able to visualize the end results of their requirements. This paper would like to introduce a computational tool—Social Network Analysis (SNA)—commonly used in the communications field to study relationships between people we believe can resolve this visualization problem. Our research intent is to affirm whether or not we can use SNA as a spatial planning tool during conceptual building design. We posit that since the nodes and structural relationships between the nodes may have similar architectural characteristics, the tool would enable architects to make changes by moving any spaces on a floor plan while safely maintaining their spatial relationships to other spaces. In this paper, we would like to develop a proof-of-concept model using an available SNA tool to facilitate spatial diagramming visualization during conceptual design phase. We tested the use of a SNA tool at four levels. The first level determined whether we could develop spatial relationship between functional spaces (such as the living room must be adjacent to the front entry). The second level is on setting priorities values for the different nodes and the linkages. The third level determined whether we could develop grouping relationship between several functional spaces that have a common characteristic (such as public versus private spaces) on one horizontal plane. The final fourth level determined whether we could develop multiple layers that are connected by one common connector (such as a staircase in a double-story house). Our models are validated intellectually by visual comparison between our model and another diagramming by Nooshin (2001) that was developed manually. We are most interested in the fourth level because complexity in the spatial diagramming exercises is caused by multi-layered spatial arrangements at the horizontal and vertical planes. We expect our study to provide us guidelines in developing a prototype for a spatial diagramming tool using SNA, which architects can use to resolve visualization problems when conducting the exercise with their clients.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 7313
authors Mahdavi, A., Brahme, R. and Gupta, S.
year 2001
title Performance-based computational design via differential modeling and two-staged mapping
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 667-680
summary Computational performance-based building design support faces a conflict. It is important to provide building performance feed back to the designer as early as possible in the design process. But many aspects of building performance are significantly affected by the design of the building’s technical systems, which are typically configured in detail only in the later stages of design. The challenge is thus to find a method to use detailed simulation tools even during the early stages of design when values for many of the variables for the building’s technical sub-systems are not yet available. In this paper, we demonstrate how this problem can be partially solved by combining two levels of automation. The first level consists of differential building representation involving a number of domain (application-specific) object models that are derived from a shared object model automatically. The second level uses generative agents that create reference designs for the technical sub-systems of the building. To demonstrate the feasibility of the proposed approach, we use the building energy systems domain (heating, cooling, ventilation, and air-conditioning) as a case in point.
keywords Building Performance Simulation, Homology-Based Mapping, Intelligent Design Agents
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 728a
authors Mantere, Markku
year 2001
title Visualization of Flow Data in Photo-realistic Virtual Environment
source Helsinki University of Technology, Espoo, Finland
summary Virtual reality technology has been adopted in many different fields and new application areas are searched continuously. At the moment virtual reality has been applied separately for instance to scientific visualization and illustration of architectural spaces. In this work, a photo-realistic room model and a visualization of an air flow inside the room has been combined. The integrated illustrative three-dimensional model is presented within an immersive virtual environment. The first part of the work covers scientific visualization and virtual reality implementation techniques. The visualization review begins with a discussion about human percepion of visual information and proceeds with an introduction to three-dimensional visualization. The focus is on illustration of a flow data produced as a result of a computational simulation. The flow visualization techniques utilizing all three dimensions are discussed and many examples of different graphical elements are presented. Virtual reality is examined from technical solutions point of view. The features having effect on the quality of a virtual experience are discussed and three different commonly used display techniques are introduced. The hardware of Experimental Virtual Environment -facility at Helsinki University of Technology is given as a detailed example. The implementation of a visualization software is described in the applied part of this thesis. Discussion covers the evaluation of different software tools, the tool selection process, and a detailed description of the design principles and implementation of the software. The different visualization solutions are also justified in this part. In the implementation, the real-time system requirements and utilization of all three dimensions have been taken into account. Finally, the results and their meaning are discussed and the performance of the implementation is evaluated. The applied part successfully integrated the room model and the flow visualization in an interactive virtual environment.
keywords Virtual Environments, Virtual Reality, Flow Visualization, CFD, 3D, Computer Graphics
series thesis:MSc
last changed 2003/02/12 22:37

_id avocaad_2001_21
id avocaad_2001_21
authors Martijn Stellingwerff
year 2001
title Visual Cues in the CYBER-REAL Complex
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Current Computer Aided Architectural Design deals with issues of complexity in creation and interpretation of the built environment, complexity of the computer systems and complexity of the representations of the design object. The term ‘CYBER-REAL Complex’ in this paper is defined as the whole (un)conscious state of the architectural design project in the heads of the design-group and as how it is maintained in CAAD systems. The ‘CYBER-REAL Complex’ contains the design, its context and all related information such as planning, product specifications and design ideas. An Intranet is an interesting means for storage and approach of such complex project-data. However the knowledge and data of the project participants remains in their heads and new methods have to be developed in order to get each participant to share his or her personal information about the project. Meetings and intense data retrieval by an Intranet can establish a useful ‘CYBER-REAL Complex’. Then, as a designer wants to approach and change the information in the ‘CYBER-REAL Complex’, a very good set of tools, methods and media has to be at hand. The complexity of all the information can be overwhelming and it can take much effort to re-understand and re-interpret the information before new decisions and design-steps can be made. Currently, the understanding of CAAD representations by the designer and the deliberate execution of operations on increasingly complex datasets through increasingly complex user interfaces takes too much time and effort. An enhanced way of representation in the ‘CYBER-REAL Complex’ could help the approach and understanding of the information. Therefore the visual language of information systems needs further research and development. This paper explores several limits of human perception and ways to adhere to the human way of visual thinking in order to find and add new visual cues in CAAD, VR interfaces and in the ‘CYBER-REAL Complex’ as a whole. Successively the perceptive aspects of complex information, the role of visual cues in complex information and several examples of visual cues in research tests are presented. The paper draws from knowledge of the Gestalt Theory, Perception Research and findings of a PhD research project about Visual Language for Context Related Architectural Design. Findings of this research show that designers use distinct views to get overview and insight in the project data and that different kinds of data representation are needed for different phases in the design process. Finally it showed that abstract represented and filtered information can be very useful for remaining focus in the otherwise overwhelming dataset.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
doi https://doi.org/10.52842/conf.acadia.2016.140
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id 33e9
authors Paranandi, Murali
year 2001
title Computer-Aided Daylight Simulation - A Hybrid Approach to Recording and Exploring Ideas
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 534-539
doi https://doi.org/10.52842/conf.ecaade.2001.534
summary Accuracy and facility for iterative exploration are two of the most appealing promises of computer use in architectural design. In this paper, we discuss daylighting visualization, a very important aspect of the architectural design process, where computers do not yet fulfill these promises. We initiated a project to understand the reasons for this and to develop methods to deal with it in architectural design education. We report our work in progress, which combines creative thinking with scientific procedures to resolve the bottlenecks in computer graphics technologies making them suitable for design exploration. Our strategy seeks to fill the gaps in the science of photo realistic visualization with time tested physical modeling techniques. We present some of our student work based on this strategy.
keywords Photorealism, Rendering, Daylighting Design, Visualization, Simulation, Scale (Physical) Models, Design Education
series eCAADe
email
last changed 2022/06/07 08:00

_id cf2011_p115
id cf2011_p115
authors Pohl, Ingrid; Hirschberg Urs
year 2011
title Sensitive Voxel - A reactive tangible surface
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 525-538.
summary Haptic and tactile sensations, the active or passive exploration of our built surroundings through our sense of touch, give us a direct feeling and detailed information of space, a sense of architecture (Pallasmaa 2005). This paper presents the prototype of a reactive surface system, which focuses its output on the sense of touch. It explains how touch sensations influence the perception of architecture and discusses potential applications that might arise from such systems in the future. A growing number of projects demonstrate the strong impact of interaction design on the human senses and perception. They offer new ways of sensing and experiencing architectural space. But the majority of these interaction concepts focus on visual and auditory output-effects. The sense of touch is typically used as an input generator, but neglected as as a potential receiver of stimuli. With all the possibilities of sensors and micro-devices available nowadays, there is no longer a technical reason for this. It is possible to explore a much wider range of sense responding projects, to broaden the horizon of sensitive interaction concepts (Bullivant 2006). What if the surfaces of our surroundings can actively change the way it feels to touch them? What if things like walls and furniture get the ability to interactively respond to our touch? What new dimensions of communication and esthetic experience will open up when we conceive of tangibility in this bi-directional way? This paper presents a prototype system aimed at exploring these very questions. The prototype consists of a grid of tangible embedded cells, each one combining three kinds of actuators to produce divergent touch stimuli. All cells can be individually controlled from an interactive computer program. By providing a layering of different combinations and impulse intensities, the grid structure enables altering patterns of actuation. Thus it can be employed to explore a sort of individual touch aesthetic, for which - in order to differentiate it from established types of aesthetic experiences - we have created the term 'Euhaptics' (from the Greek ευ = good and άπτω = touch, finger). The possibility to mix a wide range of actuators leads to blending options of touch stimuli. The sense of touch has an expanded perception- spectrum, which can be exploited by this technically embedded superposition. The juxtaposed arrangement of identical multilayered cell-units offers blending and pattern effects of different touch-stimuli. It reveals an augmented form of interaction with surfaces and interactive material structures. The combination of impulses does not need to be fixed a priori; it can be adjusted during the process of use. Thus the sensation of touch can be made personally unique in its qualities. The application on architectural shapes and surfaces allows the user to feel the sensations in a holistic manner – potentially on the entire body. Hence the various dimensions of touch phenomena on the skin can be explored through empirical investigations by the prototype construction. The prototype system presented in the paper is limited in size and resolution, but its functionality suggests various directions of further development. In architectural applications, this new form of overlay may lead to create augmented environments that let inhabitants experience multimodal touch sensations. By interactively controlling the sensual patterns, such environments could get a unique “touch” for every person that inhabit them. But there may be further applications that go beyond the interactive configuration of comfort, possibly opening up new forms of communication for handicapped people or applications in medical and therapeutic fields (Grunwald 2001). The well-known influence of touch- sensations on human psychological processes and moreover their bodily implications suggest that there is a wide scope of beneficial utilisations yet to be investigated.
keywords Sensitive Voxel- A reactive tangible surface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 9209
authors Saleh Uddin, Mohammed
year 2001
title Extents and Limitations of 3D Computer Models for Graphic Analysis of Form and Space in Architecture
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 552-557
doi https://doi.org/10.52842/conf.ecaade.2001.552
summary This paper investigates the strength and limitations of basic 3D diagrammatic models and their related motion capabilities in the context of graphic analysis. The focus of such analysis is to create a computer based environment to represent visual analysis of architectural form and space. The paper highlights the restrictions that were found in a specific 3D-computer model environment to satisfy a basic diagrammatic need for analysis. Motion related features that take into account of parametric changes are also investigated to help enhance representation of analytic models. Acknowledging the restrictions, it can be stated that computational media are the only ones at present that can create an interactive multimedia format using components constructed through various computational techniques
keywords 3D Model, Analytic Diagram, Motion Model, Form Analysis, Design Principles
series eCAADe
last changed 2022/06/07 07:56

_id 1744
authors Scaletsky, C., Schatz, F., Bignon, J.-C. and Halin, G.
year 2001
title A CRIAÇÃO DE UMA FERRAMENTA DE AUXÍLIO À CONCEPÇÃO INICIAL EM ARQUITETUR A ATRAVÉS DE UM SISTEMA ABERTO DE REFERÊNCIAS (The Creation of an Aiding Tool for the Early Stages of Architectural Design through an Open System of References)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 80-82
summary Using references is a standard practice during processes of design creation. Many researches think that it is possible to organize references through a computerized system. Reference has a potential knowledge and it is possible to transfer it to a new design situation. Our approach suggest that universe of references will not be exclusively cases of architectural precedents but also other elements. A computerized system which organizes these references and allows permits a visual, interactive and progressive navigation will encourage new design ideas.
series SIGRADI
email
last changed 2016/03/10 09:59

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_366140 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002