CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 717

_id avocaad_2001_09
id avocaad_2001_09
authors Yu-Tung Liu, Yung-Ching Yeh, Sheng-Cheng Shih
year 2001
title Digital Architecture in CAD studio and Internet-based competition
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Architectural design has been changing because of the vast and creative use of computer in different ways. From the viewpoint of designing itself, computer has been used as drawing tools in the latter phase of design (Mitchell 1977; Coyne et al. 1990), presentation and simulation tools in the middle phase (Liu and Bai 2000), and even critical media which triggers creative thinking in the very early phase (Maher et al. 2000; Liu 1999; Won 1999). All the various roles that computer can play have been adopted in a number of professional design corporations and so-called computer-aided design (CAD) studio in schools worldwide (Kvan 1997, 2000; Cheng 1998). The processes and outcomes of design have been continuously developing to capture the movement of the computer age. However, from the viewpoint of social-cultural theories of architecture, the evolvement of design cannot be achieved solely by designers or design processes. Any new idea of design can be accepted socially, culturally and historically only under one condition: The design outcomes could be reviewed and appreciated by critics in the field at the time of its production (Csikszentmihalyi 1986, 1988; Schon and Wiggins 1992; Liu 2000). In other words, aspects of design production (by designers in different design processes) are as critical as those of design appreciation (by critics in different review processes) in the observation of the future trends of architecture.Nevertheless, in the field of architectural design with computer and Internet, that is, so-called computer-aided design computer-mediated design, or internet-based design, most existing studies pay more attentions to producing design in design processes as mentioned above. Relatively few studies focus on how critics act and how they interact with designers in the review processes. Therefore, this study intends to investigate some evolving phenomena of the interaction between design production and appreciation in the environment of computer and Internet.This paper takes a CAD studio and an Internet-based competition as examples. The CAD studio includes 7 master's students and 2 critics, all from the same countries. The Internet-based competition, held in year 2000, includes 206 designers from 43 counties and 26 critics from 11 countries. 3 students and the 2 critics in the CAD studio are the competition participating designers and critics respectively. The methodological steps are as follows: 1. A qualitative analysis: observation and interview of the 3 participants and 2 reviewers who join both the CAD studio and the competition. The 4 analytical criteria are the kinds of presenting media, the kinds of supportive media (such as verbal and gesture/facial data), stages of the review processes, and interaction between the designer and critics. The behavioral data are acquired by recording the design presentation and dialogue within 3 months. 2. A quantitative analysis: statistical analysis of the detailed reviewing data in the CAD studio and the competition. The four 4 analytical factors are the reviewing time, the number of reviewing of the same project, the comparison between different projects, and grades/comments. 3. Both the qualitative and quantitative data are cross analyzed and discussed, based on the theories of design thinking, design production/appreciation, and the appreciative system (Goodman 1978, 1984).The result of this study indicates that the interaction between design production and appreciation during the review processes could differ significantly. The review processes could be either linear or cyclic due to the influences from the kinds of media, the environmental discrepancies between studio and Internet, as well as cognitive thinking/memory capacity. The design production and appreciation seem to be more linear in CAD studio whereas more cyclic in the Internet environment. This distinction coincides with the complementary observations of designing as a linear process (Jones 1970; Simon 1981) or a cyclic movement (Schon and Wiggins 1992). Some phenomena during the two processes are also illustrated in detail in this paper.This study is merely a starting point of the research in design production and appreciation in the computer and network age. The future direction of investigation is to establish a theoretical model for the interaction between design production and appreciation based on current findings. The model is expected to conduct using revised protocol analysis and interviews. The other future research is to explore how design computing creativity emerge from the process of producing and appreciating.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id cf2011_p051
id cf2011_p051
authors Cote, Pierre; Mohamed-Ahmed Ashraf, Tremblay Sebastien
year 2011
title A Quantitative Method to Compare the Impact of Design Mediums on the Architectural Ideation Process.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 539-556.
summary If we compare the architectural design process to a black box system, we can assume that we now know quite well both inputs and outputs of the system. Indeed, everything about the early project either feasibility studies, programming, context integration, site analysis (urban, rural or natural), as well as the integration of participants in a collaborative process can all be considered to initiate and sustain the architectural design and ideation process. Similarly, outputs from that process are also, and to some extent, well known and identifiable. We are referring here, among others, to the project representations or even to the concrete building construction and its post-evaluation. But what about the black box itself that produces the ideation. This is the question that attempts to answer the research. Currently, very few research works linger to identify how the human brain accomplishes those tasks; how to identify the cognitive functions that are playing this role; to what extent they operate and complement each other, and among other things, whether there possibly a chain of causality between these functions. Therefore, this study proposes to define a model that reflects the activity of the black box based on the cognitive activity of the human brain. From an extensive literature review, two cognitive functions have been identified and are investigated to account for some of the complex cognitive activity that occurs during a design process, namely the mental workload and mental imagery. These two variables are measured quantitatively in the context of real design task. Essentially, the mental load is measured using a Bakan's test and the mental imagery with eyes tracking. The statistical software G-Power was used to identify the necessary subject number to obtain for significant variance and correlation result analysis. Thus, in the context of an exploratory research, to ensure effective sample of 0.25 and a statistical power of 0.80, 32 participants are needed. All these participants are students from 3rd, 4th or 5th grade in architecture. They are also very familiar with the architectural design process and the design mediums used, i.e., analog model, freehand drawing and CAD software, SketchUp. In three experimental sessions, participants were asked to design three different projects, namely, a bus shelter, a recycling station and a public toilet. These projects were selected and defined for their complexity similarity, taking into account the available time of 22 minutes, using all three mediums of design, and this in a randomly manner to avoid the order effect. To analyze the two cognitive functions (mental load and mental imagery), two instruments are used. Mental imagery is measured using eye movement tracking with monitoring and quantitative analysis of scan paths and the resulting number and duration of participant eye fixations (Johansson et al, 2005). The mental workload is measured using the performance of a modality hearing secondary task inspired by Bakan'sworks (Bakan et al.; 1963). Each of these three experimental sessions, lasting 90 minutes, was composed of two phases: 1. After calibrating the glasses for eye movement, the subject had to exercise freely for 3 minutes while wearing the glasses and headphones (Bakan task) to get use to the wearing hardware. Then, after reading the guidelines and criteria for the design project (± 5 minutes), he had 22 minutes to execute the design task on a drawing table allowing an upright posture. Once the task is completed, the subject had to take the NASA TLX Test, on the assessment of mental load (± 5 minutes) and a written post-experimental questionnaire on his impressions of the experiment (± 10 minutes). 2. After a break of 5-10 minutes, the participant answered a psychometric test, which is different for each session. These tests (± 20 minutes) are administered in the same order to each participant. Thus, in the first experimental session, the subject had to take the psychometric test from Ekstrom et al. (1978), on spatial performance (Factor-Referenced Cognitive Tests Kit). During the second session, the cognitive style is evaluated using Oltman's test (1971). Finally, in the third and final session, participant creativity is evaluated using Delis-Kaplan test (D-KEFS), Delis et al. (2001). Thus, this study will present the first results of quantitative measures to establish and validate the proposed model. Furthermore, the paper will also discuss the relevance of the proposed approach, considering that currently teaching of ideation in ours schools of architecture in North America is essentially done in a holistic manner through the architectural project.
keywords design, ideation process, mental workload, mental imagery, quantitative mesure
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 57b1
authors Glanville, Ranulph
year 2001
title Not Aping the Past: Mirror Men
source Stellingwerff, Martijn and Verbeke, Johan (Eds.), ACCOLADE - Architecture, Collaboration, Design. Delft University Press (DUP Science) / ISBN 90-407-2216-1 / The Netherlands, pp. 29-42 [Book ordering info: m.c.stellingwerff@bk.tudelft.nl]
summary To collaborate is to work together. To work, in my thinking, together presumes participation. When I talk of collaboration, I talk with the notion of participation in mind. I shall often write of participation as an alternative term to collaboration, in this paper. I am interested in anything that may enhance our creativity (as designers). There are those whose interest in collaboration is different, and equally justifiable. The main part of the title is from a quote by the composer Harrison Birtwistle, who said: ìTradition is not aping the past but making the future.î The intention in what I write is to suggest ways in which Information and Communication Technology can be used, not to ape the past, but to make the future, especially by enhancing our potential to act creatively. I do this by introducing facets of ideas in fragments, so they can interact with each other, rather than forming the great, separate arches of traditional arguments, one after the other. For me, collaboration is more than co-operation or co-ordination. It must involve novelty, the creation of something beyond the expected and more than an improvement a quantum step.
series other
last changed 2001/09/14 21:30

_id 943c
authors Hendricx, A. and Neuckermans, H.
year 2001
title The object model at the core of the IDEA+ design environment
source Beheshti, R. (ed), Advances in Building Informatics, Proceedings of the 8th EuropIA International Conference on the application of Artificial Intelligence, Robotics and Image Processing to Architecture, Building Engineering & Civil Engineering, Delft, The Netherlands, April 25-27, 2001, pp. 113-125
summary This paper focuses on three different aspects in which the IDEA+ core model differs from many other product modelling research initiatives: the systematic approach in the construction of the model, the respect for the evolutionary nature of architectural design, and the use of actual and complete design cases to test the model. Key words: CAAD, product modelling, integrated design environment, MERODE 1 The IDEA+ project: towards an integrated design environment In spite of the extensive use of all kinds of hardware and software in the architectural offices, the use of computers still does not contribute essentially to better architecture. For the CAD packages on the one hand, they have proven to be an efficient alternative for the traditional drawing board. Yet they fail in the early conceptual stage of design where creativity and exploration play the leading role. For computational tests and analysis tools on the other hand, they can hardly handle the typical absence o
series other
email
last changed 2003/04/23 15:14

_id 8af6
authors Hoffmann, O., Stumptner, M. and Chalabi, T.
year 2001
title Tolerating Inconsistencies. The Distributed Perspectives Model
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 375-386
summary A new design model is presented. Information on the design is distributed over multiple self-contained design perspectives and translation functions between design perspectives. Inconsistencies between specifications in different design perspectives introduced by human designers are temporarily tolerated in order to support creative design processes. The implementation of a design support system currently under evaluation is outlined.
keywords CAD, Microstation, Artificial Intelligence, Creativity, Urban Design, Typology, Java, JATLite, JATLiteBean, Agent, JESS
series CAAD Futures
email
last changed 2006/11/07 07:22

_id c259
authors Kokotovich, Vasilije and Purcell, Terry
year 2001
title Ideas - The Embodiment of Ideas, and Drawing: An Experimental Investigation of Inventing
source J. S. Gero, B. Tversky and T. Purcell (eds), 2001, Visual and Spatial Reasoning in Design, II - Key Centre of Design Computing and Cognition, University of Sydney, Australia
summary The term visual reasoning, in cognitive psychology, oftenrefers to the use of visual spatial relations in making inferences aboutcorresponding conceptual relations. The conclusion is that external visualrepresentations have special properties, which can aid reasoning abouthigher order abstract concepts. The design literature is more specific andoften sees visual reasoning as synonymous with drawing, and considersthis a core activity in resolving design problems. The research to bereported examined visual reasoning and design, by investigating the rolethat drawing plays in the practicality and creativity of inventions. Themost striking finding was that using only mental imagery produced morecreative and practical inventions than the use of drawing and that this wasdependant on the area of expertise of the participants. This appears to runcounter to the views found in both the visual reasoning and designliterature regarding the effectiveness of visual representations anddrawing. This has implications for our understanding of both the visualreasoning and design thinking processes.
series other
email
more http://www.arch.usyd.edu.au/kcdc/conferences/vr01/
last changed 2003/05/02 11:11

_id 470c
authors Kuenstle, Michael W.
year 2001
title COMPUTATIONAL FLUID DYNAMIC APPLICATIONS IN WIND ENGINEERING FOR THE DESIGN OF BUILDING STRUCTURES IN WIND HAZARD PRONE AREAS (Computational Flow Dynamic Applications in Wind Engineering for the Design of Building Structures in Wind Hazard Prone Urban Areas)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 67-70
summary This paper documents an initial study investigating the integration of Computational Fluid Dynamics (CFD) simulation modeling into wind mitigation design for building structures located in wind hazard prone areas. Some of the basic principles and theoretical concepts of fluid flow and wind pressure as well as their translation into design criteria for structural analysis and design are reviewed, followed by a discussion of a CFD application case study for a simulated hurricane force wind flow over a low rectangular building using the k-epsilon turbulence model. The techniques and parameters for development of the simulation are discussed and some preliminary interpretations of the results are evaluated by comparing its predictions against existing experimental and analytical data, with special attention paid to the American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures, ACSE 7-98 and the Uniform Building Code .
series SIGRADI
email
last changed 2016/03/10 09:54

_id 06fd
authors Oxman, Rivka and Heylighen, Ann
year 2001
title A Case with a View - Towards an Integration of Visual and Case-Based Reasoning in Design
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 346-341
doi https://doi.org/10.52842/conf.ecaade.2001.346
summary Despite the long-term effort to establish the theoretical foundations for Case-Based Reasoning (CBR) in design, it appears that additional theoretical efforts are needed in order to achieve the promise of this affinity. In this paper we argue that visual reasoning, is a fundamental attribute of architectural design, and therefore combining it with CBR may provide significant results both for the field of design thinking as well as for the field of CAAD. This paper focuses on reformulating theoretical foundations for CBR in design by incorporating insights from studies in fields like visual imagery and creativity, where visual reasoning is recognized to play a key role. Within classical CBR research, however, visual reasoning has not received much attention until now. Instead, researchers have concentrated on traditional issues and topics in CBR such as indexing, retrieval and adaptation. The second part of the paper therefore switches attention to how these traditional issues may benefit from integrating Case-Based with visual reasoning.
keywords Case-Based Reasoning, Visual Reasoning, Visual Imagery, Visual Cognition
series eCAADe
email
last changed 2022/06/07 08:00

_id 48db
authors Proctor, George
year 2001
title CADD Curriculum - The Issue of Visual Acuity
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 192-200
doi https://doi.org/10.52842/conf.ecaade.2001.192
summary Design educators attempt to train the eyes and minds of students to see and comprehend the world around them with the intention of preparing those students to become good designers, critical thinkers and ultimately responsible architects. Over the last eight years we have been developing the digital media curriculum of our architecture program with these fundamental values. We have built digital media use and instruction on the foundation of our program which has historically been based in physical model making. Digital modeling has gradually replaced the capacity of physical models as an analytical and thinking tool, and as a communication and presentation device. The first year of our program provides a foundation and introduction to 2d and 3d design and composition, the second year explores larger buildings and history, the third year explores building systems and structure through design studies of public buildings, fourth year explores urbanism, theory and technology through topic studios and, during the fifth year students complete a capstone project. Digital media and CADD have and are being synchronized with the existing NAAB accredited regimen while also allowing for alternative career options for students. Given our location in the Los Angeles region, many students with a strong background in digital media have gone on to jobs in video game design and the movie industry. Clearly there is much a student of architecture must learn to attain a level of professional competency. A capacity to think visually is one of those skills and is arguably a skill that distinguishes members of the visual arts (including Architecture) from other disciplines. From a web search of information posted by the American Academy of Opthamology, Visual Acuity is defined as an ability to discriminate fine details when looking at something and is often measured with the Snellen Eye Chart (the 20/20 eye test). In the context of this paper visual acuity refers to a subject’s capacity to discriminate useful abstractions in a visual field for the purposes of Visual Thinking- problem solving through seeing (Arnheim, 1969, Laseau 1980, Hoffman 1998). The growing use of digital media and the expanding ability to assemble design ideas and images through point-and-click methods makes the cultivation and development of visual skills all the more important to today’s crop of young architects. The advent of digital media also brings into question the traditional, static 2d methods used to build visual skills in a design education instead of promoting active 3d methods for teaching, learning and developing visual skills. Interactive digital movies provide an excellent platform for promoting visual acuity, and correlating the innate mechanisms of visual perception with the abstractions and notational systems used in professional discourse. In the context of this paper, pedagogy for building visual acuity is being considered with regard to perception of the real world, for example the visual survey of an environment, a site or a street scene and how that visual survey works in conjunction with practice.
keywords Curriculum, Seeing, Abstracting, Notation
series eCAADe
email
last changed 2022/06/07 08:00

_id 2abf
id 2abf
authors Rafi, A
year 2001
title Design creativity in emerging technologies
source In Von, H., Stocker, G. and Schopf, C. (Eds.), Takeover: Who’s doing art of tomorrow (pp. 41-54), New York: SpringerWein.
summary Human creativity works best when there are constraints – pressures to react to, to shape, to suggest. People are generally not very good at making it all up from scratch (Laurel, 1991). Emerging technology particularly virtual reality (VR) Multimedia and Internet is yet to be fully discovered as it allows unprecedented creative talent, ability, skill set, creative thinking, representation, exploration, observation and reference. In an effort to deliver interactive content, designers tend to freely borrow from different fields such as advertising, medicine, game, fine art, commerce, entertainment, edutainment, film-making and architecture (Rafi, Kamarulzaman, Fauzan and Karboulonis, 2000). As a result, content becomes a base that developers transfer the technique of conventional medium design media to the computer. What developers (e.g. artist and technologist) often miss is that to develop the emerging technology content based on the nature of the medium. In this context, the user is the one that will be the best judge to value the effectiveness of the content.

The paper will introduce Global Information Infrastructure (GII) that is currently being developed in the Asian region and discuss its impact on the Information Age society. It will further highlight the ‘natural’ value and characteristics of the emerging technologies in particular Virtual Reality (VR), Multimedia and Internet as a guidance to design an effective, rich and innovative content development. This paper also argues that content designers of the future must not only be both artist and technologist, but artist and technologist that are aware of the re-convergence of art and science and context in which content is being developed. Some of our exploration at the Faculty of Creative Multimedia, Multimedia University will also be demonstrated. It is hoped that this will be the evidence to guide future ‘techno-creative designers’.

keywords design, creativity, content, emerging technologies
series book
type normal paper
email
last changed 2007/09/13 03:46

_id 5bcd
authors Rügemer, Jörg
year 2001
title Computer Generated Architectural Design: 160 custom-made Architectural data flow from schematic design into Computer Aided Manufacturing
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 288-292
doi https://doi.org/10.52842/conf.ecaade.2001.288
summary The paper constitutes the introduction of a new approach into architectural design methods at the Institute for Architectural Design and CAD. It describes the experience with regard to the learning process and explains the design studio experiment ‘160 custom-made’. The design method has been developed from different actual building procedures. ‘160 custom-made’ provokes the contradiction between a modernistic architectural approach (industrialized parts and series manufacturing) and computer based design and manufacturing processes which promise the realization of almost every imaginable architectural shape at no extra cost. The students visited several Companies in Germany, Switzerland and Austria, who demonstrated state-of-the-art-technology-manufacturing methods on various materials. This Computer Aided Manufacturing (CAM) process then became the basis for discovering a new way to speculate about solutions to a design problem. The project was described into computer aided modeling starting early in the design. In the beginning participants were asked to design an object using terms, images and ideas, entirely detached from architectural thinking and without the knowledge of the actual architectural goal. ‘Maya’, a three-dimensional modeling software, was introduced at the same time, which allowed participants to translate the analog data of their models into a digital model description. In the last project phase this knowledge was used to visualize the models with the computer; a programmatic task was added to the design as the students proceeded with the further development stages of the project. The group searched for ways to translate the produced data structures and to drive the Computer Aided Manufacturing (CAM) process. The easy building of quick models with this technology proved to be more difficult than expected. ‘160 custom-made’ participants were confronted with an entirely new method of designing due to the unusual procedures needed to handle digital data information in order to receive the desired output.
keywords Computer Aided Manufacturing, Rapid Prototyping, Design Education, Digital Design Development, Data Structures
series eCAADe
email
last changed 2022/06/07 07:56

_id ga0128
id ga0128
authors Singh, S.K., Vatsa, M.and Singh, R.
year 2001
title Face Recognizing Robot
source International Conference on Generative Art
summary In the biological evolution process, logical thinking has been the last to evolve, and lies at the surface of our consciousness, its means and methodologies available for introspection. On the other hand, the intelligence required to interpret sensory signals and activate motor commands is so well known biologically that it is buried in the subconscious and is entirely inaccessible at the conscious level. The variation in human intelligence is usually measured by the ability to process logical information, whereas the other forms of intelligence needed in daily life are not normallyassociated with the word intelligence. In the recent years man wants to develop a machine having its own intelligence. He wants to make machine, to which he can treat as a real servant. In this paper a simulated robotic system is described, which can be used as a criminal-detecting robot. In this project, an attempt will be made to design a Robot and it’s software, which will have an optimal solution of conditions (for which the Robot is to be designed i.e. security). It will not only reduce the cost (the cost spend insecurity of VIP’s is very high) but also will increase the security strength and stop the criminal activities. It will take snaps of the people and match from its database to check for criminals. Thus, such operations with minimum errors will cause the better security. Computer vision concerned with the sensing of vision data and its interpretation by a computer. Detecting faces in images with complex backgrounds is a difficult task. The approach presented in this paper, which obtains state of the art results, is based on a new neural network model. To detect a face in an image means to find its position in the image plane (x, y) and its size or scale (z). An image of a face can be considered as a set of features such as eyes, mouth, and nose with constrained positions and size within an oval: an explicit model can be used. The think and adjust himself in any condition, can take the optimal and possible decision. The Robot can perform only those tasks and take decisions, which are specified in its programming code.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id caadria2003_a7-3
id caadria2003_a7-3
authors Zhou, Q.
year 2003
title From CAD to iAD - A Prototype Simulation of the Internet-based Steel Construction Consulting for Architects
source CAADRIA 2003 [Proceedings of the 8th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 974-9584-13-9] Bangkok Thailand 18-20 October 2003, pp. 919-936
doi https://doi.org/10.52842/conf.caadria.2003.919
summary Information technology has become so powerful and interactive that what is conventionally called CAD might evolve into iAD (Internet Aided Design). For Internet applications in the AEC (Architecture, Engineering and Construction) industry, most of the efforts and applications have been concentrated on project management and collaboration, while in the area of design and engineering consulting, limited progress has been made. Even with some of this success, contemporary development has not changed the nature of the fragmentation of the AEC industry. Based on previous research surveys (Zhou & Krawczyk 2001) of the development of Internet applications in the AEC industry and the proposal of a conceptual model of Internet-based engineering consulting in architecture, this research will apply these theories and concepts into a specified area of steel construction consulting for architects. The first phase of this research will define the content and scope of steel construction consulting and the potential Internet application. Second, a proposed solid working model is developed covering organizational structure, user network, services provided and technology. In the third phase (as this paper presented), a prototype simulation is used to apply the concepts and methodology in a preliminary design application to demonstrate how this Internet-based consulting model would work.
series CAADRIA
last changed 2022/06/07 07:57

_id avocaad_2001_13
id avocaad_2001_13
authors Alexander Koutamanis
year 2001
title Modeling irregular and complex forms
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Computational technologies provide arguably the first real opportunity architectural design has had for a comprehensive description of built form. With the advent of affordable computer-aided design systems (including drafting, modeling, visualization and simulation tools), architects believe they can be in full control of geometric aspects and, through these, of a wide spectrum of other aspects that are implicit or explicit in the geometric representation. This belief is based primarily on the efficiency and effectiveness of computer systems, ranging from the richness and adaptability of geometric primitives to the utility of geometric representations in simulations of climatic aspects. Such capabilities support attempts to design and construct more irregular or otherwise complex forms. These fall under two main categories: (1) parsing of irregularity into elementary components, and (2) correlation of the form of a building with complex geometric structures.The first category takes advantage of the compactness and flexibility of computational representations in order to analyse the form of a design into basic elements, usually elementary geometric primitives. These are either arranged into simple, unconstrained configurations or related to each other by relationships that define e.g. parametric relative positioning or Boolean combinations. In both cases the result is a reduction of local complexity and an increase of implicit or explicit relationships, including the possibility of hierarchical structures.The second category attempts to correlate built form with constraints that derive usually from construction but can also be morphological. The correlation determines the applicability of complex geometric structures (minimally ruled surfaces) to the description of a design. The product of this application is generally variable in quality, depending upon the designer's grounding in geometry and his ability to integrate constraints from different aspects in the definition of the design's geometry.Both categories represent a potential leap forward but are also equally hampered by the rigidity of the implementation mechanisms upon which they rely heavily. The paper proposes an approach to making these mechanisms subordinate to the cognitive and technical aspects of architectural thinking through fuzzy modeling. This way of modeling involves a combination of (a) canonical forms, (b) tolerances around canonical forms and positions, (c) minimal and maximal values, (d) fuzzy boundaries, and (e) plastic interaction between elements based on the dual principles of local intelligence and autonomy. Fuzzy models come therefore closer to the intuitive manners of sketching, while facilitating transition to precise and complex forms. The paper presents two applications of fuzzy modeling. The first concerns the generation of schematic building layouts, including adaptive control of programmatic requirements. The second is a system for designing stairs that can adapt themselves to changes in their immediate environment through a fuzzy definition of geometric and topological parametrization.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 9d10
authors Anders, Peter and Livingstone, Daniel
year 2001
title STARS: Shared Transatlantic Augmented Reality System
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 350-355
doi https://doi.org/10.52842/conf.acadia.2001.350
summary Since October 2000 the authors have operated a laboratory, the Shared Transatlantic Augmented Reality System (STARS), for exploring telepresence in the domestic environment. The authors, an artist and an architect, are conducting a series of experiments to test their hypotheses concerning mixed reality and supportive environments. This paper describes these hypotheses, the purpose and construction of the lab, and preliminary results from the ongoing collaboration.
keywords Mixed Reality, Cybrid, Art, Cyberspace, CAiiA-STAR
series ACADIA
email
last changed 2022/06/07 07:54

_id 7501
authors Apley, Julie
year 2001
title A Virtual Reconstruction: Isthmia Roman Bath
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 410-411
doi https://doi.org/10.52842/conf.acadia.2001.410
summary The Isthmia Roman Bath is located in Greece overlooking a great ravine on the Isthmus of Corinth. It was in use during the 2nd through the 4th centuries. I have created a 3D VRML walkthrough of the ancient bath. This interdisciplinary project utilizes the research of an archaeologist, architect, and art historian. Because the researchers live in different locations, it made sense to use the Internet as a research tool. When clicking on the numbers on the home page, you can see the process that I went through to model the Roman Bath. After seeing the images, the researchers were able to visualize their research, reply to questions, and re-evaluate their findings. VRML promises an accessible, highly visual, and interactive representation of difficult to see data, opening up new ways of presenting research. It is possible to walk within the bath by clicking on the Virtual Reconstruction link. When in the "Entrance view", click on the vase to see a map of the ruin. There are three places within the project that link to the existing excavated site. Links are also available to walk outside. The project runs best on Windows NT using Netscape. You must have the plug-ins for Cosmoplayer (VRML) and Quicktime (movie). Because the VRML plug-in doesn't work as well on a Mac, it is possible that you may only be able to view the images and movie from the project.
series ACADIA
last changed 2022/06/07 07:55

_id f227
authors Argumedo, C., Guerri, C., Rainero, C., Carmena, S., Del Rio, A. and Lomónaco, H.
year 2001
title GESTIÓN DIGITAL URBANA ROSARIO (Digital Management of Urban Rosario)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 307-310
summary This project is aimed at developing an instrument to reach the city-net multidimensionality (flux /real-space) of Rosario city in Argentina. Both, an integral view and the view of the different information layers of the urban net are required. We decided the used of computers to determine a digital dynamic model. The tool proposed has to be useful not only in search and urban survey but also as a design instrument, to pre-view the urban interventions. Simultaneously this tool is needed to evaluate the urban project’s impact in the city through the passing time as well as to communicate future projects to government and to community all.
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia23_v3_129
id acadia23_v3_129
authors Ayres, Phil
year 2023
title Sensitive Scaffolds – Cultivating Spatio-temporal Dialogues with Living Complexes
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary Thank you to the ACADIA team for extending the invitation to come here. For me, it's a really fantastic moment to reconnect with the ACADIA community. I've been dipping in and out of it since -- I think my first ACADIA was in Savannah, Georgia. Does anyone remember what year that was? 2001? 2002? I've been dipping in and out. And I really see this community as a model. You know, we could talk about the Mississippi and how it meanders, and passages of energy and matter and information begin to change. And the ACADIA community meanders across these different territories, but somehow it maintains its particular identity. And that identity, I think, is shrouded within ideals of sharing -- knowledge sharing -- and within a kind of creative design research, you know, rigor, which I find really fascinating.
series ACADIA
type keynote
email
last changed 2024/04/17 13:59

_id ef4b
authors Babalola, Olubi and Eastman, Charles
year 2001
title Semantic Interpretation of Architectural Drawings
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 166-179
doi https://doi.org/10.52842/conf.acadia.2001.166
summary The paper reviews the needs and issues of automatically interpreting architectural drawings into building model representations. It distinguishes between recognition and semantic interpretation and reviews the steps involved in developing such a conversion capability, referring to the relevant literature and concepts. It identifies two potentially useful components, neither of which has received attention. One is the development of a syntactically defined drafting language. The other is a strategy for interpreting the semantic content of architectural drawings, based on the analogy of natural language interpretation
keywords Semantic Interpretation, Drawing Understanding
series ACADIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_289458 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002