CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 707

_id a58e
authors Evans, S. and Hudson-Smith, A.
year 2001
title Information Rich 3D Computer Modeling of Urban Environments
source Working Paper 35, Centre for Advanced Spatial Analysis Working Papers; London, August 2001
summary We are living in an increasingly information rich society. Geographical Information Systems now allow us to precisely tag information to specific features, objects and locations. The Internet is enabling much of this information to be accessed by a whole spectrum of users. At CASA we are attempting to push this technology towards a three-dimensional GIS, that works across the Internet and can represent significant chunks of a large city. We believe that the range of possible uses for such technology is diverse, although we feel that urban planning is an area that can benefit greatly. An opportunity to push this ìplanning technologyî arose when CASA won a tender from Hackney Council to develop a dynamic website for community participation in the process of regenerating the Woodberry Down Estate. This is a run down part of northeast London that is undergoing a major redevelopment. CASA has developed a system that not only informs the local residents about the redevelopment process but it also enables them to use dynamic visualisations of the ìbefore and after effectsî of different plans, and then to discuss and vote on the variety of options.
series other
last changed 2003/04/23 15:50

_id ecaade03_561_150_martens
id ecaade03_561_150_martens
authors Martens, Yuri and Koutamanis, Alexander
year 2003
title Realestate online information systems
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 561-567
doi https://doi.org/10.52842/conf.ecaade.2003.561
summary Several commercial real-estate sites provide listings of available commercial property on the Internet. These listings are generated on the basis of selection criteria as floor area, price and location. Despite the obvious utility of the listings and their promise for the transaction process and market transparency, one third of commercial realestate listing sites went bankrupt in 2001 and 2002. To provide an explanation for the failure, 63 commercial real-estate sites were analysed and classified into three basic business models: the Research / Information model, the Marketing model and the Transaction model. A common success factor for all models is the functionality of the site, especially interaction between the user and the available information. The paper proposes that the transfer of existing architectural representations, information-processing instruments and decision-taking tools is an essential component of future development towards integrated services that accompany a building throughout its lifecycle. This transfer amounts to (1) the addition of building and contextual information from standard documentation and online information services, (2) the derivation and coherent description of programmatic requirements database, and (3) advanced user interaction with building information.
keywords e-commerce, human-computer interaction, building information systems,web-based communication
series eCAADe
email
more http://www.re-h.nl
last changed 2022/06/07 07:59

_id 70cc
authors Witten, I.H. and Frank, E.
year 2000
title Data Mining - Practical Machine Learning Tools and Techniques with JAVA Implementations
source Morgan Kaufmann
summary Witten and Frank's textbook was one of two books that I used for a data mining class in the Fall of 2001. The book covers all major methods of data mining that produce a knowledge representation as output. Knowledge representation is hereby understood as a representation that can be studied, understood, and interpreted by human beings, at least in principle. Thus, neural networks and genetic algorithms are excluded from the topics of this textbook. We need to say "can be understood in principle" because a large decision tree or a large rule set may be as hard to interpret as a neural network. The book first develops the basic machine learning and data mining methods. These include decision trees, classification and association rules, support vector machines, instance-based learning, Naive Bayes classifiers, clustering, and numeric prediction based on linear regression, regression trees, and model trees. It then goes deeper into evaluation and implementation issues. Next it moves on to deeper coverage of issues such as attribute selection, discretization, data cleansing, and combinations of multiple models (bagging, boosting, and stacking). The final chapter deals with advanced topics such as visual machine learning, text mining, and Web mining.
series other
last changed 2003/04/23 15:50

_id 3386
authors Gavin, L., Keuppers, S., Mottram, C. and Penn, A.
year 2001
title Awareness Space in Distributed Social Networks
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 615-628
summary In the real work environment we are constantly aware of the presence and activity of others. We know when people are away from their desks, whether they are doing concentrated work, or whether they are available for interaction. We use this peripheral awareness of others to guide our interactions and social behaviour. However, when teams of workers are spatially separated we lose 'awareness' information and this severely inhibits interaction and information flow. The Theatre of Work (TOWER) aims to develop a virtual space to help create a sense of social awareness and presence to support distributed working. Presence, status and activity of other people are made visible in the theatre of work and allow one to build peripheral awareness of the current activity patterns of those who we do not share space with in reality. TOWER is developing a construction set to augment the workplace with synchronous as well as asynchronous awareness. Current, synchronous activity patterns and statuses are played out in a 3D virtual space through the use of symbolic acting. The environment itself however is automatically constructed on the basis of the organisation's information resources and is in effect an information space. Location of the symbolic actor in the environment can therefore represent the focus of that person's current activity. The environment itself evolves to reflect historic patterns of information use and exchange, and becomes an asynchronous representation of the past history of the organisation. A module that records specific episodes from the synchronous event cycle as a Docudrama forms an asynchronous information resource to give a history of team work and decision taking. The TOWER environment is displayed using a number of screen based and ambient display devices. Current status and activity events are supplied to the system using a range of sensors both in the real environment and in the information systems. The methodology has been established as a two-stage process. The 3D spatial environment will be automatically constructed or generated from some aspect of the pre-existing organisational structure or its information resources or usage patterns. The methodology must be extended to provide means for that structure to grow and evolve in the light of patterns of actual user behaviour in the TOWER space. We have developed a generative algorithm that uses a cell aggregation process to transcribe the information space into a 3d space. In stage 2 that space was analysed using space syntax methods (Hillier & Hanson, 1984; Hillier 1996) to allow the properties of permeability and intelligibility to be measured, and then these fed back into the generative algorithm. Finally, these same measures have been used to evaluate the spatialised behaviour that users of the TOWER space show, and will used to feed this back into the evolution of the space. The stage of transcription from information structure to 3d space through a generative algorithm is critical since it is this stage that allows neighbourhood relations to be created that are not present in the original information structure. It is these relations that could be expected to help increase social density.
keywords Algorithmic Form Generation, Distributed Workgroups, Space Syntax
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 48db
authors Proctor, George
year 2001
title CADD Curriculum - The Issue of Visual Acuity
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 192-200
doi https://doi.org/10.52842/conf.ecaade.2001.192
summary Design educators attempt to train the eyes and minds of students to see and comprehend the world around them with the intention of preparing those students to become good designers, critical thinkers and ultimately responsible architects. Over the last eight years we have been developing the digital media curriculum of our architecture program with these fundamental values. We have built digital media use and instruction on the foundation of our program which has historically been based in physical model making. Digital modeling has gradually replaced the capacity of physical models as an analytical and thinking tool, and as a communication and presentation device. The first year of our program provides a foundation and introduction to 2d and 3d design and composition, the second year explores larger buildings and history, the third year explores building systems and structure through design studies of public buildings, fourth year explores urbanism, theory and technology through topic studios and, during the fifth year students complete a capstone project. Digital media and CADD have and are being synchronized with the existing NAAB accredited regimen while also allowing for alternative career options for students. Given our location in the Los Angeles region, many students with a strong background in digital media have gone on to jobs in video game design and the movie industry. Clearly there is much a student of architecture must learn to attain a level of professional competency. A capacity to think visually is one of those skills and is arguably a skill that distinguishes members of the visual arts (including Architecture) from other disciplines. From a web search of information posted by the American Academy of Opthamology, Visual Acuity is defined as an ability to discriminate fine details when looking at something and is often measured with the Snellen Eye Chart (the 20/20 eye test). In the context of this paper visual acuity refers to a subject’s capacity to discriminate useful abstractions in a visual field for the purposes of Visual Thinking- problem solving through seeing (Arnheim, 1969, Laseau 1980, Hoffman 1998). The growing use of digital media and the expanding ability to assemble design ideas and images through point-and-click methods makes the cultivation and development of visual skills all the more important to today’s crop of young architects. The advent of digital media also brings into question the traditional, static 2d methods used to build visual skills in a design education instead of promoting active 3d methods for teaching, learning and developing visual skills. Interactive digital movies provide an excellent platform for promoting visual acuity, and correlating the innate mechanisms of visual perception with the abstractions and notational systems used in professional discourse. In the context of this paper, pedagogy for building visual acuity is being considered with regard to perception of the real world, for example the visual survey of an environment, a site or a street scene and how that visual survey works in conjunction with practice.
keywords Curriculum, Seeing, Abstracting, Notation
series eCAADe
email
last changed 2022/06/07 08:00

_id 0277
authors Brusilovsky, P.
year 2001
title Adaptive hypermedia
source User modelling and User-Adapted Interaction, volume 11, pp. 87-110, Kluwer
summary Hypertext/hypermedia systems and user-model-based adaptive systems in the areas of learning and information retrieval have for a long time been considered as two mutually exclusive approaches to information access. Adaptive systems tailor information to the user and may guide the user in the information space to present the most relevant material, taking into account a model of the user's goals, interests and preferences. Hypermedia systems, on the other hand, are `user neutral': they provide the user with the tools and the freedom to explore an information space by browsing through a complex network of information nodes. Adaptive hypertext and hypermedia systems attempt to bridge the gap between these two approaches. Adaptation of hypermedia systems to each individual user is increasingly needed. With the growing size, complexity and heterogeneity of current hypermedia systems, such as the World Wide Web, it becomes virtually impossible to impose guidelines on authors concerning the overall organization of hypermedia information. The networks therefore become so complex and unstructured that the existing navigational tools are no longer powerful enough to provide orientation on where to search for the needed information. It is also not possible to identify appropriate pre-defined paths or subnets for users with certain goals and knowledge backgrounds since the user community of hypermedia systems is usually quite inhomogeneous. This is particularly true for Web-based applications which are expected to be used by a much greater variety of users than any earlier standalone application. A possible remedy for the negative effects of the traditional `one-size-fits-all' approach in the development of hypermedia systems is to equip them with the ability to adapt to the needs of their individual users. A possible way of achieving adaptivity is by modeling the users and tailoring the system's interactions to their goals, tasks and interests. In this sense, the notion of adaptive hypertext/hypermedia comes naturally to denote a hypertext or hypermedia system which reflects some features of the user and/or characteristics of his system usage in a user model, and utilizes this model in order to adapt various behavioral aspects of the system to the user. This book is the first comprehensive publication on adaptive hypertext and hypermedia. It is oriented towards researchers and practitioners in the fields of hypertext and hypermedia, information systems, andpersonalized systems. It is also an important resource for the numerous developers of Web-based applications. The design decisions, adaptation methods, and experience presented in this book are a unique source of ideas and techniques for developing more usable and more intelligent Web-based systems suitable for a great variety of users. The practitioners will find it important that many of the adaptation techniques presented in this book have proved to be efficient and are ready to be used in various applications.
series other
email
last changed 2003/04/23 15:14

_id 7134
id 7134
authors Penttilä, Hannu (Ed.)
year 2001
title Architectural Information Management [Conference Proceedings]
source 19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1 / Helsinki (Finland) 29-31 August 2001, 578 p.
doi https://doi.org/10.52842/conf.ecaade.2001
summary Several common phrases, such as “information society” or “virtual reality” point out the fact that information technology, digital tools and numerous different services via various communication networks have become crucially important factors of our western lifestyle and living environment. The trends of the society reflects naturally the working environments of the construction field, architectural discipline being amongst them. It is almost inconceivable to even imagine an architect without computer-based tools anymore. This evolutional development process has, from historical perspective, only recently started. The process is constantly evolving and rapidly increasing our possibilities to use and enjoy these modern digital fruits. The sometimes unpredictable and rapid changes in our working environment should make architects nervous about the impacts of the changes. All those delicate methods and collective traditions of the several thousand year architectural discipline(!), just simply cannot be transferred into the digital realm in a few decades. Researchers and teachers should very carefully, but still open mindedly, critically explore, analyse and adjust the so-called “modern technology” into the world of architecture, construction, design, planning – and education. We are not just “endusers”, It is we, in fact, who should define what, where and how are we willing to use it(IT). The value of information is constantly growing in our society, and in the future it will evidently be even more so. The value of information is quite hard to define with measurable or agreed concepts, but information evidently contains value-factors. The information which the architects are creating, modifying and manipulating, contains essential and valuable core data concerning the whole built environment of our society. It affects the physical surroundings of our society, in which we will be living for decades – hence, the information has a historical basis. The architectural core information also very strongly affects the quality of life of our fellow citizens – consequently, it has deep social meaning. The essentials of architectural information relies on the tradition of centuries – hence, it clearly has acknowledged cultural values, which are also extremely difficult to quantify. So how could architectural information be described? The information covers a wide range of heterogeneous concepts, items, values, methods, tools, materials, true facts, rumours, intuition and knowledge, plus a multitude of yet undefined or unpredictable factors, which still have to be watched and prepared for. Since the information deals with common and general subjects, it should also be described with common and general concepts. On the other hand as the information is also concerned with the minutiae of specific projects, the architectural information should also be described with well identified and unique entities. With our digital tools we handle all information – including architectural – more and more digitally. We have to handle and manipulate information currently as digital data, which could be understood the ”raw material” of architectural information. Digital data becomes valuable information, when some kind of meaning or purpose to somebody can be attributed to it. In the early gloomy days of ”digital architecture” in the 1960’s and 1970’s, researchers tried to describe architectural artefacts and even design process mathematically. The details of architectural information were quite difficult to describe with binary alphanumeric information of main-frame machines. The architects’ tools development then led to a trend where architects could better represent and visualize the design objects digitally. The widespread and common use of 2D-drawing and 3D-modelling tools is still a very strong trend within our discipline. In fact it is “the way” the majority of architectural information is managed today. During the last 15–20 years, so-called conceptual modelling or product data modelling, done in various technical and construction field research units worldwide, has from one viewpoint clarified the basis and essence of architectural information. Hence, it’s not only CAD-software application development, but also elementary and theoretical research that gives us valuable help to survive among the ever growing seas of terabits of data in the future to come. Architectural information is something that simply cannot be described just with DWG-drawings or dummy scanned photographs any more. Although drawings and photos may contain very important bits of architectural documentation, we need ntimes more “complexity layers”, concepts and tools to manage and understand the essence of architectural information today. A proper way to manage the data we are working with, has to cover the whole architectural discipline. The methods and tools also have to be valid and flexible for several decades in the future.
keywords Information Management & Data Structuring, Education & Curricula, Modeling & City Planning
series eCAADe
email
more http://www.hut.fi/events/ecaade/
last changed 2022/06/07 07:49

_id 9df9
authors Tunçer, B., Stouffs, R. and Sariyildiz, S.
year 2001
title Rich Information Structures
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 30-35
doi https://doi.org/10.52842/conf.ecaade.2001.030
summary Technological advances enable and encourage practitioners and students to make the design process more information intensive. This information intensity raises questions of complexity: how to organize and intra-relate large amounts of information in order to facilitate efficient retrieval of this information. This involves issues of both modeling and visualizing this complexity in design presentations and project documentation facilities. We propose a methodology for constructing a rich information structure which offers new possibilities for accessing, viewing, and interpreting this information. Hereto, we present two techniques: a decomposition of documents by content, and the separation of syntax and semantics. We then discuss the effects of both techniques on issues of flexibility, extensibility, and ease of use in constructing a rich information structure. We finally describe an exemplary application we are developing that combines the proposed methodology and techniques for the purpose of presenting architectural analyses.
keywords Information Structure, Information Modeling, Extensibility, Flexibility, Ease Of Use
series eCAADe
email
last changed 2022/06/07 07:57

_id avocaad_2001_17
id avocaad_2001_17
authors Ying-Hsiu Huang, Yu-Tung Liu, Cheng-Yuan Lin, Yi-Ting Cheng, Yu-Chen Chiu
year 2001
title The comparison of animation, virtual reality, and scenario scripting in design process
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Design media is a fundamental tool, which can incubate concrete ideas from ambiguous concepts. Evolved from freehand sketches, physical models to computerized drafting, modeling (Dave, 2000), animations (Woo, et al., 1999), and virtual reality (Chiu, 1999; Klercker, 1999; Emdanat, 1999), different media are used to communicate to designers or users with different conceptual levels¡@during the design process. Extensively employed in design process, physical models help designers in managing forms and spaces more precisely and more freely (Millon, 1994; Liu, 1996).Computerized drafting, models, animations, and VR have gradually replaced conventional media, freehand sketches and physical models. Diversely used in the design process, computerized media allow designers to handle more divergent levels of space than conventional media do. The rapid emergence of computers in design process has ushered in efforts to the visual impact of this media, particularly (Rahman, 1992). He also emphasized the use of computerized media: modeling and animations. Moreover, based on Rahman's study, Bai and Liu (1998) applied a new design media¡Xvirtual reality, to the design process. In doing so, they proposed an evaluation process to examine the visual impact of this new media in the design process. That same investigation pointed towards the facilitative role of the computerized media in enhancing topical comprehension, concept realization, and development of ideas.Computer technology fosters the growth of emerging media. A new computerized media, scenario scripting (Sasada, 2000; Jozen, 2000), markedly enhances computer animations and, in doing so, positively impacts design processes. For the three latest media, i.e., computerized animation, virtual reality, and scenario scripting, the following question arises: What role does visual impact play in different design phases of these media. Moreover, what is the origin of such an impact? Furthermore, what are the similarities and variances of computing techniques, principles of interaction, and practical applications among these computerized media?This study investigates the similarities and variances among computing techniques, interacting principles, and their applications in the above three media. Different computerized media in the design process are also adopted to explore related phenomenon by using these three media in two projects. First, a renewal planning project of the old district of Hsinchu City is inspected, in which animations and scenario scripting are used. Second, the renewal project is compared with a progressive design project for the Hsinchu Digital Museum, as designed by Peter Eisenman. Finally, similarity and variance among these computerized media are discussed.This study also examines the visual impact of these three computerized media in the design process. In computerized animation, although other designers can realize the spatial concept in design, users cannot fully comprehend the concept. On the other hand, other media such as virtual reality and scenario scripting enable users to more directly comprehend what the designer's presentation.Future studies should more closely examine how these three media impact the design process. This study not only provides further insight into the fundamental characteristics of the three computerized media discussed herein, but also enables designers to adopt different media in the design stages. Both designers and users can more fully understand design-related concepts.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id avocaad_2001_07
id avocaad_2001_07
authors Stefan Wrona, Adam Gorczyca
year 2001
title Complexity in Architecture - How CAAD can be involved to Deal with it. - "Duality"
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary “Complexity “ is for us a very ambigous notion. It may be understood in two contexts.1.Thorough solution of a problem.Complexity means full recognition of design area, followed by appropriate work. That work must be thorough and interdisciplinary – if necessary, separated to different co-operatives. These trade designers reqiure a branch coordination and – the most important- all of them must have a „common denominator”. Such as a proper CAAD platform and office standards. That will reduce costs of changes, improve an interplay between designers and somtimes enable to face up a new challenge.Nowadays architects are no longer “solitary” individualists working alone – they must concern a team – they become a member, a part of a huge design machine. “Import/export”, compatibility, interplay – these words must appear and we have to put a stress on them. How to organize work for different trade-designers? How to join in common database architectural design ,engineering design, HVAC design, electricity design, technology design, computer network design and all other trades ?...A key to solve this range of problems is in good work organization. Universal prescription does not exist, but some evergreen rules can be observed. We are going to present a scheme of work in CAAD application ALLPLAN FT v.16 with a Group manager , which starts to conquest polish market and is widely spread in Germany. “Golden rules” of ALLPLAN FT There is one database – it is placed on server. It includes all projects. There is a well-developed office standard. It must be created at the beginning of collaboration, although it is possible to improve it later. It consist of hatches, fonts, symbols, macros, materials, pen-widths, and – the most important –layers . A layer set – predefined structure divided into functional groups – e.g. drafting, text, dimensioning, architecture, HVAC, engineering, urban design, etc.That stucture is a part of an office standard – all workers use a relevant part of it. No name duplicates, no misunderstandings... If however design extends, and a new group of layers is required, it can be easily added, e.g. computer networks, fireguard systems. Administrator of ALLPLAN network defines different users and gives them different permitions of access. For example – an electrician will be able to draft on layer “electricity”, but he won’t modify anything at layer “architecture – walls”, and he won’t even see a layer “engineering- slabs”, because he doesn’t need it..At the same time our electrician will be able to see , how architect moves some walls and how HVAC moved and started to cross with his wires. Every user is able to see relevant changes, after they are saved by author. Two different users can not access at the same time the same file. That excludes inconsistent or overlapping changes . All users operate on a 3D model. While putting some data into a model, they must remember about a “Z” coordinate at work-storey. But at the same time all create a fully-integrated, synchronous database, which can be used later for bills of quantities, specifications, and – of course – for visuaisation. That method can be described as “model-centric”. To simplify complex structure of architectural object -ALLPLAN offers files. Usually one file means one storey, but at special designs it might become a functional part of a storey, or whatever you wish. Files connected with layers easy enable to separate certain structural elements, e.g. if we want to glance only at concrete slabs and columns in the building – we will turn on all files with “layer filter” – “slabs” and “columns”. ALLPLAN is of course one of possible solutions. We described it , because we use it in our workshop. It seems to be stretchy enough to face up every demand and ever-increasing complexity of current projects. The essence of the matter, however, is not a name or version of application – it is a set of features, we mentioned above, which allows to deal with EVERY project. The number of solutions is infinite.2. Increasing difficulties during design process. It may be associated with more and more installations inside of new buildings, especially some “high-tech” examples. The number of these installations increases as well as their complexity. Now buildings are full of sensors, video-screens, computer networks, safety-guard systems... Difficulties are connected with some trends in contemporary architecture, for example an organic architecture, which conceives “morphed” shapes, “moving” surfaces, “soft” solids. This direction is specially supported by modelling or CAD applications. Sometimes it is good – they allow to realize all imaginations, but often they lead to produce “unbuildable” forms, which can exist only in virtual world.Obstacles appear, when we design huge cubatures with “dense” functional scheme. Multi-purposed objects, exhibition halls, olimpic stadium at Sydney – all of them have to be stretchy, even if it requires sliding thousands pound concrete blocks! Requirements were never so high.The last reason, why designs become so complex is obvious - intensifying changes due to specific requirements of clients/developers.We could say “ signum tempori” – everything gets more and more complicated , people have to become specialists, to face up new technology. But how CAAD can help us with it? How?! We have already answered that question. Sometimes CAAD is the only way to imagine and sketch something, to visualize something, to compute a construction , to prepare a simulation... So that human must “only” interprete ready solutions. Sometimes CAAD help us to notify a problem. It works exactly in the same way, as spy-glasses does. For example – without a real-time visualization we we would have never realised (until finished!) some strange interference of solids, which have occured in the upper roof part of our new appartment-house.ConclusionsTemporary CAAD is an integral part of design process – not only as a tool, but sometimes as an inspiration. It helps to organize our work, to define problems, to filter relevant elements and to render our visions. It becomes an integral part of our senses – and that will be a real complexity in architecture...
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ecaade2013_084
id ecaade2013_084
authors Stojanovic, Djordje and Cerovic, Milutin
year 2013
title Self-regulating Fields and Networks
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 633-642
doi https://doi.org/10.52842/conf.ecaade.2013.1.633
wos WOS:000340635300066
summary This paper will explore the connection between two theoretical models, initially identified as the Field and the Network Conditions (Allen, 1997; Wigley, 2001) and material based studies in architectural design, conducted as a sequence of experiments. A number of prototypical models have been produced to test the practical and theoretical dimensions of the design approach which employs elastic material performance to achieve highly versatile spatial organization. One of the concrete outcomes of the exploration is the specific software extension produced by the authors of this paper. Its purpose is to enable designers to maintain an indirect control of complex spatial models based on the use of two parallel sets of algorithmic protocols which define: a. geometric logic and b. intrinsic material behavior.
keywords Elasticity; material performance; self-regulating systems; prototypical models; physics based simulation.
series eCAADe
email
last changed 2022/06/07 07:56

_id 7e52
authors Achten, Henri
year 2001
title Normative Positions in Architectural Design - Deriving and Applying Design Methods
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 263-268
doi https://doi.org/10.52842/conf.ecaade.2001.263
summary This paper presents a recently finished course of eight weeks where CAAD skills, design methodology, and architectural theory are combined to discuss possible perspectives on the use of the computer in design, and its influence on architecture. In the course, three contemporary architects were studied; Peter Eisenman, Ben van Berkel, and Greg Lynn. Each was discussed on aspects of ontology (which are the elements of discourse), design method (design process and organization of the process), and the use of the computer (techniques and approaches). These were linked with design theory, architectural theory, and CAD-theory. The reflection on the work of the architects resulted in a number of design methods for each architect. The design methods were adapted to the available technologies in the university as well as to the scope of the exercise, since the period of eight weeks for an exercise cannot compete with design processes in practice that take many participants and much time. The students then applied the design methods to a design task: student housing and an exhibition pavilion on the campus area of the university. The task was so devised, that students could focus on either architectural or urban design level with one of the design methods. Also, the choice of architects and accompanying design methods was made in such a way that students with low, medium, and advanced computer skills could take part in the course and exercise. In a workshop held at the Czech Technical University (CVUT) in Prague, the same procedure was used in a one-week period for a different design task, but in an otherwise almost identical setting with respect to the CAAD software used. The methods and material were easily transferred to the other setting. The students were able to cope with the task and produced surprising results in the short time span available. The paper will provide an overview of the course, discuss the pedagogical implications of the work, and discuss how this particular work can be generalized to incorporate other architects and approaches.
keywords CAAD: Design Methods, Pedagogy
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2010_043
id caadria2010_043
authors Barker, Tom and M. Hank Haeusler
year 2010
title Urban digital media: facilitating the intersection between science, the arts and culture in the arena of technology and building
source Proceedings of the 15th International Conference on Computer Aided Architectural Design Research in Asia / Hong Kong 7-10 April 2010, pp. 457-466
doi https://doi.org/10.52842/conf.caadria.2010.457
summary The research presented in this paper investigates ways of providing better design applications for technologies in the field of Urban Digital Media (UDM). The work takes an emergent approach, evolving a design strategy through the early engagement of stakeholders. The paper discusses research in a design-led creative intersection between media technology, culture and the arts in the built environment. The case study discusses opportunities for the enhancement of a university campus experience, learning culture and community, through the provision of an integrated digital presence within campus architecture and urban spaces. It considers types of information architecture (Manovich, 2001) and designs for use in urban settings to create communication-rich, advanced and interactive designed spaces (Haeusler, 2009). The presented research investigates how to create a strategy for display technologies and networked communications to transform and augment the constructed reality of the built environment, allowing new formats of media activity.
keywords Urban design; outdoor digital media; information architecture; multidisciplinary design; augmented reality; media facades
series CAADRIA
email
last changed 2022/06/07 07:54

_id 22ec
authors Bechthold, Martin
year 2001
title Complex shapes in wood: Computer-aided design and manufacture of wood-sandwich roof shells
source Harvard University
summary Computer-Aided-Design, Engineering and Manufacturing (CAD/CAE/CAM) technology has changed the way consumer products, automobiles or airplanes are designed and made. The emerging applications for CAD/CAE/CAM technology in architecture, and the way this technology impacts how we design and construct the built environment, are yet unclear. This thesis investigates the relation between advanced digital design tools and the making of physical objects by focusing on an exemplary architectural element—wooden roof shells. The research objective is to expand the scope of architectural design through the application of CAD/CAE/CAM technology rather than to use this technology to streamline existing processes. The thesis develops a specific technical solution that allows the design and manufacture of new types of wooden roof shells. These are complexly shaped multifunctional construction elements that are manufactured off-site. Based on the close connection between digital design tools and the new Computer-Numerically-Controlled manufacturing process the author proposes a theoretical model of shared digital environments for collaborative design in architecture. The proposed manufacturing process treats wood as a modern composite material. Thin wood strips and foams combine into structural sandwich panels that can then be joined into a roof shell. The geometrically complex panels are generated by a combination of subtractive Computer-Numerically-Controlled machining processes and manual work. Infrastructure elements can be embedded into the sandwich build-up in order to enhance the functionality of the roof as a building envelope. Numerical tools are proposed that allow the determination of manufacturing-related parameters in the digital design environment. These inform the architectural and structural design in the early design phases. The digital collaborative design environment is based on a shared parametric solid model and an associated database. This collectively owned, feature-based design model is employed throughout the design and manufacturing process and constitutes the means of concurrent design coordination of all participants. The new manufacturing process for wood/foam sandwich shells is verified by designing and manufacturing prototypes. Design guidelines and a cost estimation are presented as the practical basis for architects and engineers to incorporate new types of roof shells into architectural projects.
keywords Architecture; Agriculture; Wood Technology; Design and Decorative Arts
series thesis:PhD
last changed 2003/02/12 22:37

_id a4a1
authors Bukowski, Richard W. 
year 2001
title Interactive Walkthrough Environments for Simulation
source University of California at Berkeley
summary This thesis describes a second-generation walkthrough framework that provides extensive facilities for integrating many types of third-party simulation codes into a large-scale virtual environment model, and puts it in perspective with first-generation systems built during the last two decades. The framework provides an advanced model database that supports multiple simultaneous users with full consistency semantics, system independent storage and retrieval, and efficient prefetching and object reconstruction techniques to support second and third-generation walkthrough systems. Furthermore, our framework integrates support for scalable, distributed, interactive models with plug-in physical simulation to provide a large and rich environment suitable for architectural evaluation and training applications. A number of third-party simulations have been integrated into the framework, including dynamic physical interactions, fire simulation, multiple distributed users, radiosity, and online tapestry generation. All of these simulators interact with each other and with the user via a data distribution network that provides efficient, optimized use of bandwidth to transport simulation results to clients as they need them for visualization. These diverse simulators provide proof of concept for the generality of the framework, and show how quickly third-party simulations can be integrated into our system. The result is a highly interactive distributed architectural model with applications in research, training, and real-time data visualization. Finally, an outlook is given to a possible third generation of virtual environment architectures that are capable of integrating different heterogeneous walkthrough models.
series thesis:PhD
email
more http://www.cs.berkeley.edu/~bukowski/resume.html
last changed 2003/02/12 22:37

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id 3e51
authors Cerulli, C., Peng, C. and Lawson, B.
year 2001
title Capturing Histories of Design Processes for Collaborative Building Design Development. Field Trial of the ADS Prototype
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 427-437
summary The ADS Project - Advanced Design Support for the Construction Design Process - builds on the technological results of the previous COMMIT Project to exploit and demonstrate the benefits of a CAD based Design Decision Support System. COMMIT provides a system for storing knowledge about knowledge within the design process. It records design decisions, the actors who take them and the roles they play when doing so. ADS links COMMIT to an existing object-oriented CAD system, MicroStation/J from Bentley Systems. The project focuses on tackling the problem of managing design information without intruding too much on the design process itself. It provides the possibility to effectively link design decisions back to requirements, to gather rationale information for later stages of the building lifecycle, and to gather knowledge of rationale for later projects. The system enables members of the project team, including clients and constructors, to browse and search the recorded project history of decision making both during and after design development. ADS aims to facilitate change towards a more collaborative process in construction design, to improve the effectiveness of decision-making throughout the construction project and to provide clients with the facility to relate design outcomes to design briefs across the whole building life cycle. In this paper we will describe the field trials of the ADS prototype carried out over a three-month period at the Building Design Partnership (BDP) Manchester office. The objective of these trials is to assess the extent, to which the approach underlying ADS enhances the design process, and to gather and document the views and experiences of practitioners. The ADS prototype was previously tested with historical data of real project (Peng, Cerulli et al. 2000). To gather more valuable knowledge about how a Decision Support System like ADS can be used in practice, the testing and evaluation will be extended to a real project, while it is still ongoing. The live case study will look at some phases of the design of a mixed residential and retail development in Leeds, UK, recording project information while it is created. The users’ feedback on the system usability will inform the continuous redevelopment process that will run in parallel to the live case study. The ADS and COMMIT Projects were both funded by EPSRC.
keywords Design Rationale, Design Support Systems, Usability Evaluation
series CAAD Futures
email
last changed 2006/11/07 07:22

_id ga0116
id ga0116
authors Chapuis, J. and Lutton, E.
year 2001
title ArtiE-Fract: Interactive Evolution of Fractals
source International Conference on Generative Art
summary Non-linear Iterated Functions Systems (IFSs) are very powerful mathematical objects related to fractal theory, that can be used in order to generate (or model) very irregular shapes. We investigate, in this paper, how an inetractive eveolutionary algorithm can be efficiently exploited in order to generate randomly or interactively artistic "fractal" "D shapes. this algorithm has been build up in an easy to use interface ArtiE-Fract with advanced interactive tools.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 04f2
authors Cimerman, Benjamin
year 2001
title Clients, architects, houses and computers: Experiment and reflection on new roles and relationships in design
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 100-109
doi https://doi.org/10.52842/conf.acadia.2001.100
summary This paper reports on recent work that focused on the potential impact of standard computer technology on the relationship between client and architect in the context of residential design. A study of software applications a client could use to develop and evaluate ideas exposed the dearth of software available for the design of spatial complexity by individuals without advanced computer skills, and led to the design of a specific piece of software we call “Space Modeler.” It was prototyped using off-the-shelf virtual reality technology, and tested by a group of freshmen students. The paper discusses the specificities of the software and provides analysis and reflection based on the results of the test, both in terms of design artifacts and users’ comments. The paper concludes that the evolution of the interface to electronic environments is a matter of interest for those concerned with rethinking the training, role and activity of the architect. In the near future prospective homeowners may be able to experience and experiment with the space of their home before it is built. How can the profession embrace new information technology developments and appropriate them for the benefits of society at large?
keywords Design Software, Design Participation, Visualization, Simulation
series ACADIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_206555 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002