CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 708

_id 3386
authors Gavin, L., Keuppers, S., Mottram, C. and Penn, A.
year 2001
title Awareness Space in Distributed Social Networks
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 615-628
summary In the real work environment we are constantly aware of the presence and activity of others. We know when people are away from their desks, whether they are doing concentrated work, or whether they are available for interaction. We use this peripheral awareness of others to guide our interactions and social behaviour. However, when teams of workers are spatially separated we lose 'awareness' information and this severely inhibits interaction and information flow. The Theatre of Work (TOWER) aims to develop a virtual space to help create a sense of social awareness and presence to support distributed working. Presence, status and activity of other people are made visible in the theatre of work and allow one to build peripheral awareness of the current activity patterns of those who we do not share space with in reality. TOWER is developing a construction set to augment the workplace with synchronous as well as asynchronous awareness. Current, synchronous activity patterns and statuses are played out in a 3D virtual space through the use of symbolic acting. The environment itself however is automatically constructed on the basis of the organisation's information resources and is in effect an information space. Location of the symbolic actor in the environment can therefore represent the focus of that person's current activity. The environment itself evolves to reflect historic patterns of information use and exchange, and becomes an asynchronous representation of the past history of the organisation. A module that records specific episodes from the synchronous event cycle as a Docudrama forms an asynchronous information resource to give a history of team work and decision taking. The TOWER environment is displayed using a number of screen based and ambient display devices. Current status and activity events are supplied to the system using a range of sensors both in the real environment and in the information systems. The methodology has been established as a two-stage process. The 3D spatial environment will be automatically constructed or generated from some aspect of the pre-existing organisational structure or its information resources or usage patterns. The methodology must be extended to provide means for that structure to grow and evolve in the light of patterns of actual user behaviour in the TOWER space. We have developed a generative algorithm that uses a cell aggregation process to transcribe the information space into a 3d space. In stage 2 that space was analysed using space syntax methods (Hillier & Hanson, 1984; Hillier 1996) to allow the properties of permeability and intelligibility to be measured, and then these fed back into the generative algorithm. Finally, these same measures have been used to evaluate the spatialised behaviour that users of the TOWER space show, and will used to feed this back into the evolution of the space. The stage of transcription from information structure to 3d space through a generative algorithm is critical since it is this stage that allows neighbourhood relations to be created that are not present in the original information structure. It is these relations that could be expected to help increase social density.
keywords Algorithmic Form Generation, Distributed Workgroups, Space Syntax
series CAAD Futures
email
last changed 2006/11/07 07:22

_id ga0132
id ga0132
authors Abe, Yoshiyuki
year 2001
title Beyond the math visualization - Geometrica and Stochastica
source International Conference on Generative Art
summary Mathematically controlled imaging process provides attractive results because of its infinite scaling capabilities with some other elements that contribute to the visualization. Its global/local and precise manipulation of parameters holds potential for realizing an unpredictable horizon of imagery. When it meets the artist's taste, this method could be a strong enough system of creation, and I have been producing images using the surfaces of hyperbolic paraboloid. On the other hand, a method absolutely free from the geometric parameter manipulation is possible with a stochastic process [1]. Like the technique of pendulum in photography, while its production rate of acceptable result is very low, its potential of generating a strong visual message is also very attractive. It is possible to set stochastic elements at any stage of the process, and conditional probability on those elements, or the hierarchy of probability management characterizes the probability distribution. Math space has no light. No gravity. No color on the math surfaces. And the math equation providesonly the boundary in 3D or higher mathematical dimensions. The fact means that artists can keep artistic reality with their unique tastes in colors on the surface and light sources, and this is the most important element of the math based imaging. Being able to give artists' own choice of colors and that the artist may take only right ones from the results of a stochastic process guarantee the motif and aesthetics of artist could be reflected onto the work.
series other
email
more http://www.generativeart.com/
last changed 2003/11/21 15:15

_id avocaad_2001_05
id avocaad_2001_05
authors Alexander Koutamanis
year 2001
title Analysis and the descriptive approach
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The rise of consciousness concerning the quality of working and living conditions has been a permanent though frequently underplayed theme in architecture and building since the reconstruction period. It has led to an explosive growth of programmatic requirements on building behaviour and performance, thus also stimulating the development of design analysis. The first stage of development was characterized by the evolution of prescriptive systems. These reversed the structure of pre-existing proscriptive systems into sequences of known steps that should be taken in order to achieve adequate results. Prescriptive systems complemented rather than replaced proscriptive ones, thereby creating an uncertain mixture of orthodoxy and orthopraxy that failed to provide design guidance for improving design performance and quality.The second stage in the development of design analysis focuses on descriptive methods and techniques for analyzing and supporting evaluation. Technologies such as simulation and scientific visualization are employed so as to produce detailed, accurate and reliable projections of building behaviour and performance. These projections can be correlated into a comprehensive and coherent description of a building using representations of form as information carriers. In these representations feedback and interaction assume a visual character that fits both design attitudes and lay perception of the built environment, but on the basis of a quantitative background that justifies, verifies and refines design actions. Descriptive analysis is currently the most promising direction for confronting and resolving design complexity. It provides the designer with useful insights into the causes and effects of various design problems but frequently comes short of providing clear design guidance for two main reasons: (1) it adds substantial amounts of information to the already unmanageable loads the designer must handle, and (2) it may provide incoherent cues for the further development of a design. Consequently the descriptive approach to analysis is always in danger of been supplanted by abstract decision making.One way of providing the desired design guidance is to complement the connection of descriptive analyses to representations of form (and from there to synthesis) with two interface components. The first is a memory component, implemented as case-bases of precedent designs. These designs encapsulate integrated design information that can be matched to the design in hand in terms of form, function and performance. Comparison between precedents with a known performance and a new design facilitate identification of design aspects that need be improved, as well as of wider formal and functional consequences. The second component is an adaptive generative system capable of guiding exploration of these aspects, both in the precedents and the new design. The aim of this system is to provide feedback from analysis to synthesis. By exploring the scope of the analysis and the applicability of the conclusions to more designs, the designer generates a coherent and consistent collection of partial solutions that explore a relevant solution space. Development of the first component, the design case-bases, is no trivial task. Transformability in the representation of cases and flexible classification in a database are critical to the identification and treatment of a design aspect. Nevertheless, the state of the art in case-based reasoning and the extensive corpus of analysed designs provide the essential building blocks. The second component, the adaptive generative system, poses more questions. Existing generative techniques do not possess the necessary richness or multidimensionality. Moreover, it is imperative that the designer plays a more active role in the control of the process than merely tweaking local variables. At the same time, the system should prevent that redesigning degenerates into a blind trial-and-error enumeration of possibilities. Guided empirical design research arguably provides the means for the evolutionary development of the second component.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 81ba
authors Bilda, Zafer
year 2001
title Designers‚ Cognition in Traditional versus Digital Media during Conceptual Design
source Bilkent University Ankara Turkey
summary Designers depend on representations to externalize their design thoughts. External representations are usually in the form of sketches (referred to as traditional media) in architectural design during the conceptual design. There are also attempts to integrate the use of digital representations into the conceptual design in order to construct a digital design medium. This thesis aims at gaining an insight on designers’ cognitive processes while sketching in digital versus traditional media. The analysis of cognitive processes of designers based on their protocols is necessary to reveal their design behavior in both media. An experiment was designed employing six interior architects (at Bilkent University) solving an interior space planning problem by changing the design media they work with. In order to encode the design behavior, a coding scheme was utilized so that inspecting both the design activity and the responses to media transition was possible in terms of primitive cognitive actions of designers. The analyses of the coding scheme constituents, which are namely segmentation and cognitive action categories enabled a comparative study demonstrating the effect of the use of different media in conceptual design phase. The results depicted that traditional media had advantages over the digital media such as supporting perception of visual-spatial features, and organizational relations of the design, production of alternative solutions and better conception of the design problem. These results also emerged implications for the computer aid in architectural design to support the conceptual phase of the design process. 
keywords Design Cognition; Protocol Analysis; Sketching; Digital Media
series thesis:MSc
email
last changed 2003/05/01 20:14

_id da3a
authors Borges Sanches, Thais and Leão de Amorim, Arivaldo
year 2001
title AVALIAÇÃO DO USO DA SIMULAÇÃO COMPUTACIONAL EM PROJETOS DE ILUMINAÇÃO ARTIFICIAL (Evaluation of the Use of Computer Simulation for Artificial Illumination Projects)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 95-97
summary This paper tries to evaluate the quantitative e qualitative aspects of the uses of the computational simulation for the analysis of enclosed environments light designs, and its feasibility in teaching in Architectural and Urbanism courses. The importance of this paper is associated with the determining of the illumination levels and its effects. Simulations were made with the Lightscape software in a specific room and their results were compared with the experimental measurements taken in that place. From this comparison it was possible to make the analysis of the software characteristics and to evaluate the advantages or disadvantages of its uses. The results confirm its feasibility as a tool for illumination simulation and its adequate uses in the teaching of environmental comfort. The good correlation achieved in visual effects derived from the lighting design and also the information of values related to illuminance and luminance for the simulated space support this affirmative.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 2006_000
id 2006_000
authors Bourdakis, Vassilis and Charitos, Dimitris (eds.)
year 2006
title Communicating Space(s)
doi https://doi.org/10.52842/conf.ecaade.2006
source 24th eCAADe Conference Proceedings [ISBN 0-9541183-5-9], Volos (Greece) 6-9 September 2006, 914 p.
summary The theme of this conference builds on and investigates the pre-existing and endlessly unfolding relationship between two domains of scientific inquiry: Architecture, urban design and planning, environmental design, geography and Social theory, media and communication studies, political science, cultural studies and social anthropology. Architectural design involves communication and could thus be partly considered a communicational activity. Designers (or not) see architectural designs, implicitly, as carriers of information and symbolic content; similarly buildings and urban environments have been “read” and interpreted by many (usu- ally not architects) as cultural texts. At the same time, social and cultural studies have studied buildings and cities, as contexts for social and cultural activities and life in general, from their mundane expression of “everyday life” (Highmore, 2001) to elite expressions of artistic creativity and performance. Information and communication technologies (ICTs) support both of these levels of scientific inquiry in many ways. Most importantly however, ICTs need design studies, architectural and visual design, social and cultural studies in their quest to create aesthetically pleasing, ergonomically efficient and functional ICT sys- tems; this need for interdisciplinarity is best articulated by the low quality of most on-line content and applica- tions published on the web.
series eCAADe
type normal paper
email
more http://www.ecaade.org
last changed 2022/06/07 07:49

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ga0120
id ga0120
authors Devetakovic, M.
year 2001
title Communicating Generic Process – Some Issues of Representation Related to Architectural Design
source International Conference on Generative Art
summary It is commonly the intent of an architect to represent the development of an idea from the early sketches to the final artefact, as well as to explain particular functions of its parts or complex construction processes. But the opening of the secret of generic process to the public - presenting a range of possibilities instead of one final solution and even involving external participants in the creation process - is brand new. The contemporary communication of architectural ideas presumes both – visual/formal representation and interaction. As a result of research in the field of communication in architecture, this paper is focused ongeneric process phenomena, in particular on issues of its representation. It is based on analysis of a wide range of examples that have appeared in recent years, either in electronic, printed or physical form. It offers a systematization of approaches to representation and discusses thepotential and limitations of each type – series of physical objects, sequences of graphics (single, linear, planar and spatial) and animation, as well as their combinations (sequences of animations). A particular emphasis is placed on increasing the functionality of sequence-basedrepresentation (interacting, navigating…) and its interdependence with animation as a special case. Finally, the author proposes a rethinking of the role of both the architect, who defines a system of possibilities rather than a single solution, and the information recipient, who becomes not merely a passive spectator, but a creative participant in the design process.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 4a53
authors Faltings, Boi
year 2001
title Qualitative Spatial Reasoning Based on Algebraic Topology
source J. S. Gero, B. Tversky and T. Purcell (eds), 2001, Visual and Spatial Reasoning in Design, II - Key Centre of Design Computing and Cognition, University of Sydney, Australia
summary Several formalisms have been proposed for qualitativereasoning about regions and their topological relations in space. Theseformalisms, based on pairwise relations, do not allow sufficientlypowerful inferences to be used for spatial reasoning tasks such asplanning a collision-free path. In this paper, I show how consideringrelations between region triples, much more powerful reasoningtechniques become possible. I show in particular that in twodimensions, purely topological reasoning is sufficient to compute aminimal place graph which represents all minimal and maximal regioncombinations, as well as all minimal paths between them. I illustratehow this could be applied to motion planning, showing that in spite ofits qualitative nature, the formalism is powerful enough to solveproblems of practical interest.
series other
email
more http://www.arch.usyd.edu.au/kcdc/conferences/vr01/
last changed 2003/05/02 11:14

_id 6a37
authors Fowler, Thomas and Muller, Brook
year 2002
title Physical and Digital Media Strategies For Exploring ‘Imagined’ Realities of Space, Skin and Light
doi https://doi.org/10.52842/conf.acadia.2002.013
source Thresholds - Design, Research, Education and Practice, in the Space Between the Physical and the Virtual [Proceedings of the 2002 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-11-X] Pomona (California) 24-27 October 2002, pp. 13-23
summary This paper will discuss an unconventional methodology for using physical and digital media strategies ina tightly structured framework for the integration of Environmental Control Systems (ECS) principles intoa third year design studio. An interchangeable use of digital media and physical material enabledarchitectural explorations of rich tactile and luminous engagement.The principles that provide the foundation for integrative strategies between a design studio and buildingtechnology course spring from the Bauhaus tradition where a systematic approach to craftsmanship andvisual perception is emphasized. Focusing particularly on color, light, texture and materials, Josef Albersexplored the assemblage of found objects, transforming these materials into unexpected dynamiccompositions. Moholy-Nagy developed a technique called the photogram or camera-less photograph torecord the temporal movements of light. Wassily Kandinsky developed a method of analytical drawingthat breaks a still life composition into diagrammatic forces to express tension and geometry. Theseschematic diagrams provide a method for students to examine and analyze the implications of elementplacements in space (Bermudez, Neiman 1997). Gyorgy Kepes's Language of Vision provides a primerfor learning basic design principles. Kepes argued that the perception of a visual image needs aprocess of organization. According to Kepes, the experience of an image is "a creative act ofintegration". All of these principles provide the framework for the studio investigation.The quarter started with a series of intense short workshops that used an interchangeable use of digitaland physical media to focus on ECS topics such as day lighting, electric lighting, and skin vocabulary tolead students to consider these components as part of their form-making inspiration.In integrating ECS components with the design studio, an nine-step methodology was established toprovide students with a compelling and tangible framework for design:Examples of student work will be presented for the two times this course was offered (2001/02) to showhow exercises were linked to allow for a clear design progression.
series ACADIA
email
last changed 2022/06/07 07:51

_id 3847
authors Gattis, Merideth
year 2001
title Space as a Basis for Reasoning
source J. S. Gero, B. Tversky and T. Purcell (eds), 2001, Visual and Spatial Reasoning in Design, II - Key Centre of Design Computing and Cognition, University of Sydney, Australia
summary We use space as a basis for reasoning whenever we use aspatial representation of a nonspatial concept to make decisions orinferences. From a psychological perspective, our tendency to create andreason fluidly from spatial models is somewhat surprising, becauseusing a spatial model to reason involves creating correspondencesbetween two semantically unrelated concepts: space, and something thatisn’t space, whether that be time, performance, or the desirability of anew job. Our proficiency in using space as a basis for reasoning reliesour abilities to detect similarities in the structures of very differentconcepts. In this paper I discuss two types of similarities between spaceand nonspatial concepts and describe how those similarities influencereasoning from spatial representations.
series other
email
more http://www.arch.usyd.edu.au/kcdc/conferences/vr01/
last changed 2003/05/02 11:16

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id caadria2007_233
id caadria2007_233
authors Hoseini, Ali Ghaffarian; Rahinah Ibrahim
year 2007
title Using Social Network Analysis for Visualising Spatial Planning During Conceptual Design Phase
doi https://doi.org/10.52842/conf.caadria.2007.x.i8r
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
summary Spatial diagramming exercises with clients are difficult when most clients are not able to visualize the end results of their requirements. This paper would like to introduce a computational tool—Social Network Analysis (SNA)—commonly used in the communications field to study relationships between people we believe can resolve this visualization problem. Our research intent is to affirm whether or not we can use SNA as a spatial planning tool during conceptual building design. We posit that since the nodes and structural relationships between the nodes may have similar architectural characteristics, the tool would enable architects to make changes by moving any spaces on a floor plan while safely maintaining their spatial relationships to other spaces. In this paper, we would like to develop a proof-of-concept model using an available SNA tool to facilitate spatial diagramming visualization during conceptual design phase. We tested the use of a SNA tool at four levels. The first level determined whether we could develop spatial relationship between functional spaces (such as the living room must be adjacent to the front entry). The second level is on setting priorities values for the different nodes and the linkages. The third level determined whether we could develop grouping relationship between several functional spaces that have a common characteristic (such as public versus private spaces) on one horizontal plane. The final fourth level determined whether we could develop multiple layers that are connected by one common connector (such as a staircase in a double-story house). Our models are validated intellectually by visual comparison between our model and another diagramming by Nooshin (2001) that was developed manually. We are most interested in the fourth level because complexity in the spatial diagramming exercises is caused by multi-layered spatial arrangements at the horizontal and vertical planes. We expect our study to provide us guidelines in developing a prototype for a spatial diagramming tool using SNA, which architects can use to resolve visualization problems when conducting the exercise with their clients.
series CAADRIA
email
last changed 2022/06/07 07:50

_id avocaad_2001_08
id avocaad_2001_08
authors Ivanka Iordanova, Temy Tidafi
year 2001
title Design assistance by complexity-supporting precedents' modelling
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Architectural design processes imply complexity at every stage of the development of a project. On one hand, this complexity is rarely taken into consideration by the currently used CAD programs. On the other hand, recent theoretical researches indicate that a large proportion of architectural design processes are based on precedents as a source of inspiration or as a basis for reflection. A precedent is usually seen as a sketch, as a picture, as a drawing or as a visual memory of an architectural object or space. Recent research enlarges this concept into at least two directions: (1) precedents are looked for not only in the architectural space, and (2) it’s not only the visual aspect of a precedent that is important, but also its internal logic and structure, the know-how associated to it, and the actions needed for its creation. Usually, architectural design knowledge is implicitly presented by precedents. This design knowledge is applied to design-objects having various levels of generality, at different states of detailing and expected to be dynamically transformed during the following stages of design. Having in mind these characteristics of precedents called for during the architectural design process, we propose to join their visual representation with a description of their most important characteristics: structural organisation, way of production, functional organisation, spatial composition, etc. These can be either described or modelled by the original author, or interpreted by the precedent’s ‘user’. These design-knowledge models can be of use in several ways: (1) providing a library for search of precedents by semantic analogy, (2) offering ready-to-use capsules of design knowledge for new design situations, (3) enriching the ‘design world’ of the user-architect. We have implemented the proposed method of complexity-supporting precedents’ modelling by the means of the functional programming SGDL-Scheme language. The models (a programming function or a structure of programming functions) describe the actions necessary for the creation of an object (or its digital representation) and the structural organisation between the models in order to generate new, more complex ones. The concept of describing actions instead of shapes, provides a multi-level applicability of the models. Visual presentations (digital maquettes, images or animations) of newly generated objects can be stored in a visual-library of the assistant, thus creating a new ‘precedent’ that can be referred to in future by visual analogy. The design-knowledge that has generated the new object, is stored and linked to the image. Thus, the visual stimulus of a precedent can be joined with functional characteristics, production procedures and/or semantic meaning of the object. The paper will present the ‘engine’ of the proposed assistant, its organisation, as well as digital models of precedents that have served as a basis for the design of new architectural objects or structures. The assistant is conceived as an open, complexity supporting structure that can be further developed by the ‘user-architect’. We will discuss the advantages and limitations of the proposed assistant.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id e515
authors Kieferle, Joachim and Wössner, Uwe
year 2001
title Showing the invisible - Seven rules for a new approach of using immersive virtual reality in architecture
doi https://doi.org/10.52842/conf.ecaade.2001.376
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 376-381
summary Virtual reality, especially in a CAVE environment can be used in different ways. In architecture up to now it is mainly used to visualize planned or ancient buildings. Based on the information approach, on the approach that VR can be used not only to show the visual appearance of things but also information, which might be invisible in real world, seven rules are set up. The rules have been applied in university courses as testbed and verified in commercial projects.
keywords Virtual Reality, Information, Cognition, Space, Collaboration
series eCAADe
email
last changed 2022/06/07 07:52

_id 5df9
authors Liu, Y.-T., Chang, Y.-Y. and Wong, C.-H.
year 2001
title Someone Somewhere Some Time in the Middle of Nowhere: Some Observations of Spatial Sense Formation in the Internet
doi https://doi.org/10.52842/conf.ecaade.2001.037
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 37-41
summary Following a previous study which investigated the verbal and visual elements of cyberspace, this study examines the relationship different academic training and the perceptions of the verbal and visual elements found in the previous study. The results of this study seems to indicate that the perception of the verbal elements is not relative to the subject’s academic training while the perception of the visual elements is.
keywords Keywords. Theory Of Space, Virtual Reality, Virtual Space, Web-Based Design, Visual Perception
series eCAADe
email
last changed 2022/06/07 07:59

_id a64e
authors Liu, Yu-Tung
year 2001
title Spatial Representation of Design Thinking in Virtual Space
source J. S. Gero, B. Tversky and T. Purcell (eds), 2001, Visual and Spatial Reasoning in Design, II - Key Centre of Design Computing and Cognition, University of Sydney, Australia
summary “Space” has long been an important concept in architecture;and architectural spaces and forms have been continuously evolved dueto the appearance of new concepts of space. Since the invention ofInternet, new spaces have been created through the computer. Tounderstand how human beings in the digital age experience these newvirtual spaces, and to discover the implications of the possible newconcepts of space into the physical architectural world, this paperdiscusses the nature of virtual spaces by examining the verbal and visualelements involved in the creation of a sense of virtual spaces. All theverbal and visual elements of virtual spaces discovered through ourexperiments and interviews are presented. It is found that the three coreelements of both verbally and visually constructed virtual spaces are:movements, interactions, and acoustic effects. In addition, a comparisonbetween verbally and visually constructed spaces, and between physicaland virtual spaces are explored. Finally, further studies related to therole of digital media in the construction of a sense of space aresuggested at the end of this paper.
series other
email
more http://www.arch.usyd.edu.au/kcdc/conferences/vr01/
last changed 2003/05/02 11:15

_id 6eda
authors Logie, Robert H.
year 2001
title Working Memory: A Mental Space for Design and Discovery
source J. S. Gero, B. Tversky and T. Purcell (eds), 2001, Visual and Spatial Reasoning in Design, II - Key Centre of Design Computing and Cognition, University of Sydney, Australia
summary The design process can be viewed as the product of human creativethinking; the skills of generating new knowledge from old within theexternal constraints of the items to be designed. Expert designers have highlevel skills that assist them in this process. However design effectivenessand the training of design skills could benefit from an understanding of howhuman cognition undertakes the process of creative thinking without suchspecialist training, and what aspects of human cognition impede or enhancethis process. In this paper, I shall discuss some of the empirical researchand theoretical developments that have contributed to an understanding ofon-line visual and spatial cognition that might support creative thinking.The paper starts with a discussion of a particular theoretical frameworkreferred to as working memory, and some of the empirical work that hasused this framework to explore visual and spatial cognitive functions. Thisdiscussion will set the background of the general thesis for the chapter thatvisual and spatial aspects of working memory might play important roles increative thinking and design. This will lead to a discussion of the ways inwhich human working memory and the use of external aids to thinkingmight facilitate or constrain aspects of the creative process. The paper willend with a discussion of why human beings might have developed a workingmemory system, with the possibility that its primary purpose is to supportthe process of generating new knowledge.
series other
email
more http://www.arch.usyd.edu.au/kcdc/conferences/vr01/
last changed 2003/05/02 11:12

_id ga0105
id ga0105
authors Mueller, Robert Emmett
year 2001
title VISIC: A Scoreable Keyboard Color Music
source International Conference on Generative Art
summary This paper describes a system to create a video color music that can be scored like music and played on a standard electronic keyboard. Here called "VISIC" the program generates a great variety of multi-colored visual shapes that are propelled through video space on a computer screenfor a limited length of time. The shapes or lines or planes interact in a systemized manner until they disappear, much like musical tones or chords. A notation convention allows VISIC ideas to be composed, replayed at will, and preserved for future rendition. A VISIC composer can thereforecreate new VISIC for real-time performance and artistic development.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id cf2011_p115
id cf2011_p115
authors Pohl, Ingrid; Hirschberg Urs
year 2011
title Sensitive Voxel - A reactive tangible surface
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 525-538.
summary Haptic and tactile sensations, the active or passive exploration of our built surroundings through our sense of touch, give us a direct feeling and detailed information of space, a sense of architecture (Pallasmaa 2005). This paper presents the prototype of a reactive surface system, which focuses its output on the sense of touch. It explains how touch sensations influence the perception of architecture and discusses potential applications that might arise from such systems in the future. A growing number of projects demonstrate the strong impact of interaction design on the human senses and perception. They offer new ways of sensing and experiencing architectural space. But the majority of these interaction concepts focus on visual and auditory output-effects. The sense of touch is typically used as an input generator, but neglected as as a potential receiver of stimuli. With all the possibilities of sensors and micro-devices available nowadays, there is no longer a technical reason for this. It is possible to explore a much wider range of sense responding projects, to broaden the horizon of sensitive interaction concepts (Bullivant 2006). What if the surfaces of our surroundings can actively change the way it feels to touch them? What if things like walls and furniture get the ability to interactively respond to our touch? What new dimensions of communication and esthetic experience will open up when we conceive of tangibility in this bi-directional way? This paper presents a prototype system aimed at exploring these very questions. The prototype consists of a grid of tangible embedded cells, each one combining three kinds of actuators to produce divergent touch stimuli. All cells can be individually controlled from an interactive computer program. By providing a layering of different combinations and impulse intensities, the grid structure enables altering patterns of actuation. Thus it can be employed to explore a sort of individual touch aesthetic, for which - in order to differentiate it from established types of aesthetic experiences - we have created the term 'Euhaptics' (from the Greek ευ = good and άπτω = touch, finger). The possibility to mix a wide range of actuators leads to blending options of touch stimuli. The sense of touch has an expanded perception- spectrum, which can be exploited by this technically embedded superposition. The juxtaposed arrangement of identical multilayered cell-units offers blending and pattern effects of different touch-stimuli. It reveals an augmented form of interaction with surfaces and interactive material structures. The combination of impulses does not need to be fixed a priori; it can be adjusted during the process of use. Thus the sensation of touch can be made personally unique in its qualities. The application on architectural shapes and surfaces allows the user to feel the sensations in a holistic manner – potentially on the entire body. Hence the various dimensions of touch phenomena on the skin can be explored through empirical investigations by the prototype construction. The prototype system presented in the paper is limited in size and resolution, but its functionality suggests various directions of further development. In architectural applications, this new form of overlay may lead to create augmented environments that let inhabitants experience multimodal touch sensations. By interactively controlling the sensual patterns, such environments could get a unique “touch” for every person that inhabit them. But there may be further applications that go beyond the interactive configuration of comfort, possibly opening up new forms of communication for handicapped people or applications in medical and therapeutic fields (Grunwald 2001). The well-known influence of touch- sensations on human psychological processes and moreover their bodily implications suggest that there is a wide scope of beneficial utilisations yet to be investigated.
keywords Sensitive Voxel- A reactive tangible surface
series CAAD Futures
email
last changed 2012/02/11 19:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_968847 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002