CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 717

_id 739d
authors Pereira, Gilberto Corso
year 2001
title PROJETO SALVADOR: INTERATIVIDADE E ANIMAÇÃO NA ANÁLISE DO ESPAÇO URBANO (The Salvador Project: Interaction and Animation in the Urban Space Analysis)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 319-321
summary The project discussed here wants to investigate the use of multimedia as a tool to present and to analyze geographical information by making a interactive software for visualization and understanding of urban space of Salvador using thematic cartography, animations, remote sense images, photography and texts, allowing software user to build his personal cartographic visualization.
series SIGRADI
email
last changed 2016/03/10 09:57

_id avocaad_2001_05
id avocaad_2001_05
authors Alexander Koutamanis
year 2001
title Analysis and the descriptive approach
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The rise of consciousness concerning the quality of working and living conditions has been a permanent though frequently underplayed theme in architecture and building since the reconstruction period. It has led to an explosive growth of programmatic requirements on building behaviour and performance, thus also stimulating the development of design analysis. The first stage of development was characterized by the evolution of prescriptive systems. These reversed the structure of pre-existing proscriptive systems into sequences of known steps that should be taken in order to achieve adequate results. Prescriptive systems complemented rather than replaced proscriptive ones, thereby creating an uncertain mixture of orthodoxy and orthopraxy that failed to provide design guidance for improving design performance and quality.The second stage in the development of design analysis focuses on descriptive methods and techniques for analyzing and supporting evaluation. Technologies such as simulation and scientific visualization are employed so as to produce detailed, accurate and reliable projections of building behaviour and performance. These projections can be correlated into a comprehensive and coherent description of a building using representations of form as information carriers. In these representations feedback and interaction assume a visual character that fits both design attitudes and lay perception of the built environment, but on the basis of a quantitative background that justifies, verifies and refines design actions. Descriptive analysis is currently the most promising direction for confronting and resolving design complexity. It provides the designer with useful insights into the causes and effects of various design problems but frequently comes short of providing clear design guidance for two main reasons: (1) it adds substantial amounts of information to the already unmanageable loads the designer must handle, and (2) it may provide incoherent cues for the further development of a design. Consequently the descriptive approach to analysis is always in danger of been supplanted by abstract decision making.One way of providing the desired design guidance is to complement the connection of descriptive analyses to representations of form (and from there to synthesis) with two interface components. The first is a memory component, implemented as case-bases of precedent designs. These designs encapsulate integrated design information that can be matched to the design in hand in terms of form, function and performance. Comparison between precedents with a known performance and a new design facilitate identification of design aspects that need be improved, as well as of wider formal and functional consequences. The second component is an adaptive generative system capable of guiding exploration of these aspects, both in the precedents and the new design. The aim of this system is to provide feedback from analysis to synthesis. By exploring the scope of the analysis and the applicability of the conclusions to more designs, the designer generates a coherent and consistent collection of partial solutions that explore a relevant solution space. Development of the first component, the design case-bases, is no trivial task. Transformability in the representation of cases and flexible classification in a database are critical to the identification and treatment of a design aspect. Nevertheless, the state of the art in case-based reasoning and the extensive corpus of analysed designs provide the essential building blocks. The second component, the adaptive generative system, poses more questions. Existing generative techniques do not possess the necessary richness or multidimensionality. Moreover, it is imperative that the designer plays a more active role in the control of the process than merely tweaking local variables. At the same time, the system should prevent that redesigning degenerates into a blind trial-and-error enumeration of possibilities. Guided empirical design research arguably provides the means for the evolutionary development of the second component.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 04f2
authors Cimerman, Benjamin
year 2001
title Clients, architects, houses and computers: Experiment and reflection on new roles and relationships in design
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 100-109
doi https://doi.org/10.52842/conf.acadia.2001.100
summary This paper reports on recent work that focused on the potential impact of standard computer technology on the relationship between client and architect in the context of residential design. A study of software applications a client could use to develop and evaluate ideas exposed the dearth of software available for the design of spatial complexity by individuals without advanced computer skills, and led to the design of a specific piece of software we call “Space Modeler.” It was prototyped using off-the-shelf virtual reality technology, and tested by a group of freshmen students. The paper discusses the specificities of the software and provides analysis and reflection based on the results of the test, both in terms of design artifacts and users’ comments. The paper concludes that the evolution of the interface to electronic environments is a matter of interest for those concerned with rethinking the training, role and activity of the architect. In the near future prospective homeowners may be able to experience and experiment with the space of their home before it is built. How can the profession embrace new information technology developments and appropriate them for the benefits of society at large?
keywords Design Software, Design Participation, Visualization, Simulation
series ACADIA
email
last changed 2022/06/07 07:52

_id 4dd3
authors Reymen, Isabelle M.M.J.
year 2001
title Improving design processes through structured reflection : a domain-independent approach
source Eindhoven University of Technology
summary In the world of designing, three fields of attention can be recognised, namely design research, design practice, and design education. Gaps exist between these three fields. In this thesis about designing, the focus is on the gap between design research and design practice. Design practice includes many design disciplines and an increasing number of multidisciplinary teams. Main problems in design practice are the communication between designers with a different background and the integration and co-ordination of important aspects during a design process. By tackling these problems, the effectiveness and efficiency of design processes in practice can be improved. The study of similarities and differences between design processes in several design disciplines and the development of support for reflection on design processes are topics that can improve design practice and that deserve more attention in design research. The goal of my research is to decrease the gap between design research and design practice in order to improve design processes. Reflection on design processes can help designers to improve their design process, its results, and the designer’s proficiency: By reflecting explicitly on the current design situation and on the performed design activities, in a systematic way and on a regular basis, designers can plan next design activities that can be performed effectively and efficiently given the design goal at that moment. In this thesis, the combination of systematic and regular reflection is called structured reflection. To improve design processes in various design disciplines in practice, the study of similarities and differences between design processes in several disciplines can be useful. Similarities between design processes are the basis for domain-independent design knowledge (as distinguished from domain-specific design knowledge). To reach the goal of my research, I have chosen to combine, in a broad explorative study, the development of support for structured reflection on design processes and the development of domain-independent design knowledge. This thesis describes a domain-independent approach to improve design processes through structured reflection. My research process can be summarised as follows. I studied three design disciplines, namely architecture, mechanical engineering, and software engineering. To get input from design practice, I did qualitative empirical research: I performed twelve case studies in the three disciplines to inventory characteristics of design processes and I compared the cases for similarities and differences. The similarities, together with the results of a literature study, have been the basis for the development of domain-independent descriptive design knowledge. The developed descriptive knowledge, in turn, formed the basis for developing domain-independent prescriptive design knowledge. At the end of the project, I confronted all results with design practice to get feedback on the results in another empirical study and I performed a literature study to position the results in the design literature. My design philosophy and design frame are the descriptive results developed to answer the first research question, namely “How to describe design processes in a domain-independent way?”. My design philosophy is a set of domain-independent concepts and terms for describing a design process. The concepts and terms are based on an application of the general theory of state-transition systems to the context of designing; the concepts of state and state transition correspond to the main concepts of design situation and design activity in my design philosophy. The answer to the first research question given by the design philosophy is refined in a design frame: The design frame offers a means to structure the description of a design process in a domain-independent way. Major structuring concepts of the design frame are dimensions and subjects. I define three dimensions, namely level, perspective, and time. These dimensions define a three-dimensional space, called a positioning space, in which important aspects of design processes can be positioned. A positioning space must be defined for each subject, being the three parts of a design situation: the product being designed, the design process, and the design context. My design frame is a domain-independent structure formed by the combination of the three dimensions for each subject. My design method is the prescriptive result developed to answer the second research question, namely “How to support structured reflection on design processes in a domain-independent way?”. My design method is a domain-independent aid that offers designers support for reflecting on design processes in a structured way. Reflection on design processes is defined as an introspective contemplation on the designer’s perception of the design situation and on the remembered design activities. A reflection process is described as a process that consists of three steps that are called preparation, image forming, and conclusion drawing. The design method is based on two main concepts: The first concept is the systematic description and analysis of design situations and design activities by means of forms and checklists; only systematic support for the preparation step of a reflection process is developed. The second concept is the idea of design sessions, introduced to stimulate designers to reflect regularly during a design process. A design session is defined as a period of time during which one or more designers are working on a subtask of a certain design task, for example, one afternoon, a whole day, or a week. Both concepts are combined to support structured reflection on design processes. The complete design method consists of five steps for each design session, namely planning a design session, defining the subtask of the design session, reflecting at the beginning of a design session, designing during the core of a design session, and reflecting at the end of a design session. A prototype software tool, called ECHO, has been developed to explore the benefits of using a software system to facilitate the use of the design method. Together, the design philosophy and the design frame offer concepts, a vocabulary, and a structure to describe design processes in a domain-independent way. The design method is a first proposal of a method that supports structured reflection on design processes. My results are thus possible answers to the mentioned research questions and are starting points to improve the effectiveness and efficiency of design processes. Based on the feedback I collected, I am optimistic about the applicability of my results in design practice. By asking input from design practice and by developing results that are useful for design practice and that contribute to design research, I contribute to decrease the gap between design research and design practice. The most important recommendations for further research are to test all results extensively in design practice and to investigate how to apply the results in design education.
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 1543
authors Bailey, Rohan O.
year 2001
title A digital design coach for young designers
source CAADRIA 2001 [Proceedings of the Sixth Conference on Computer Aided Architectural Design Research in Asia / ISBN 1-86487-096-6] Sydney 19-21 April 2001, pp. 311-314
doi https://doi.org/10.52842/conf.caadria.2001.311
summary It is the intention of this paper is to construct for the reader a suitable foundation on which to determine a digital design coach. It seeks to define this possibility by examining two ideas. The first is visual thinking, as used by designers in the process of design. The second idea, that of providing students with expert partners for the learning of design is supported by evidence from a variation on protocol analysis (developed by the author) and a related design studio conducted in New Zealand and Jamaica. Using these concepts in relation to recent advances in the development of digital tools the paper proposes what a digital coach may look like.
series CAADRIA
email
last changed 2022/06/07 07:54

_id 837c
authors Ball, L.J., Lambell, N.J., Ormerod, Th.C., Slavin, S. and Mariani, John A.
year 2001
title Representing design rationale to support innovative design reuse: a minimalist approach
source Automation in Construction 10 (6) (2001) pp. 663-674
summary The reuse of previous design knowledge is a potentially important way to improve design efficiency. In practice, however, design reuse is plagued with difficulties, including those associated with the indexing, retrieval, understanding and modification of prior design knowledge. We propose that such difficulties can be ameliorated by employing insights deriving from design-rationale research concerning how best to represent and retrieve design information. We illustrate these insights by describing the development of a design-reuse system that maximizes the benefits of rationale capture and information retrieval whilst minimising the costs to the designer that might arise from disruption to natural design work.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 6756
authors Butler, K.S., Rincón, H., Maria Lane, K. and Brand, R.
year 2001
title Construyendo una ciudad sostenible en la frontera: planificación de la ciudad de Colombia, Nuevo León, México [Constructing A Sustainable City In the Border: Planning of the City of Colombia, Nuevo León, Mexico ]
source 2da Conferencia Venezolana sobre Aplicación de Computadores en Arquitectura, Maracaibo (Venezuela) december 2001, pp. 194-203
summary The policy rationale for promotion of urban development in the Mexico-Texas borderland of Nuevo León is likely to be sustained and even strengthened. The University of Texasí participation in new town planning for Colombia spans at least three hierarchical levels with students, faculty members, practitioners and government officials joining efforts. At the ìstudio levelî, students completed a comprehensive landscape assessment for portions of the future city using GPS surveying and GIS database and modeling. Graduate students, using field data, updated 2000 maps/shapefiles, and spatial modeling as an analysis tool, created a series of spatial models to produce useful information about the study areaís inherent suitability for agriculture, human settlement and preservation. This work culminated in a research symposium, planning charrette, refinement of land use and infrastructure assumptions, and the development of masterplan elements for the future city. In contrast to the professional firm, the project provides unique opportunities for intensive learning and applied research that contribute to the ecological, social and economic well-being of new cities and developing regions,
keywords USA-Mexico Border; Sustainable Development; Regional Planning; Arch View
series other
email
last changed 2003/02/14 08:29

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id cf2011_p051
id cf2011_p051
authors Cote, Pierre; Mohamed-Ahmed Ashraf, Tremblay Sebastien
year 2011
title A Quantitative Method to Compare the Impact of Design Mediums on the Architectural Ideation Process.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 539-556.
summary If we compare the architectural design process to a black box system, we can assume that we now know quite well both inputs and outputs of the system. Indeed, everything about the early project either feasibility studies, programming, context integration, site analysis (urban, rural or natural), as well as the integration of participants in a collaborative process can all be considered to initiate and sustain the architectural design and ideation process. Similarly, outputs from that process are also, and to some extent, well known and identifiable. We are referring here, among others, to the project representations or even to the concrete building construction and its post-evaluation. But what about the black box itself that produces the ideation. This is the question that attempts to answer the research. Currently, very few research works linger to identify how the human brain accomplishes those tasks; how to identify the cognitive functions that are playing this role; to what extent they operate and complement each other, and among other things, whether there possibly a chain of causality between these functions. Therefore, this study proposes to define a model that reflects the activity of the black box based on the cognitive activity of the human brain. From an extensive literature review, two cognitive functions have been identified and are investigated to account for some of the complex cognitive activity that occurs during a design process, namely the mental workload and mental imagery. These two variables are measured quantitatively in the context of real design task. Essentially, the mental load is measured using a Bakan's test and the mental imagery with eyes tracking. The statistical software G-Power was used to identify the necessary subject number to obtain for significant variance and correlation result analysis. Thus, in the context of an exploratory research, to ensure effective sample of 0.25 and a statistical power of 0.80, 32 participants are needed. All these participants are students from 3rd, 4th or 5th grade in architecture. They are also very familiar with the architectural design process and the design mediums used, i.e., analog model, freehand drawing and CAD software, SketchUp. In three experimental sessions, participants were asked to design three different projects, namely, a bus shelter, a recycling station and a public toilet. These projects were selected and defined for their complexity similarity, taking into account the available time of 22 minutes, using all three mediums of design, and this in a randomly manner to avoid the order effect. To analyze the two cognitive functions (mental load and mental imagery), two instruments are used. Mental imagery is measured using eye movement tracking with monitoring and quantitative analysis of scan paths and the resulting number and duration of participant eye fixations (Johansson et al, 2005). The mental workload is measured using the performance of a modality hearing secondary task inspired by Bakan'sworks (Bakan et al.; 1963). Each of these three experimental sessions, lasting 90 minutes, was composed of two phases: 1. After calibrating the glasses for eye movement, the subject had to exercise freely for 3 minutes while wearing the glasses and headphones (Bakan task) to get use to the wearing hardware. Then, after reading the guidelines and criteria for the design project (± 5 minutes), he had 22 minutes to execute the design task on a drawing table allowing an upright posture. Once the task is completed, the subject had to take the NASA TLX Test, on the assessment of mental load (± 5 minutes) and a written post-experimental questionnaire on his impressions of the experiment (± 10 minutes). 2. After a break of 5-10 minutes, the participant answered a psychometric test, which is different for each session. These tests (± 20 minutes) are administered in the same order to each participant. Thus, in the first experimental session, the subject had to take the psychometric test from Ekstrom et al. (1978), on spatial performance (Factor-Referenced Cognitive Tests Kit). During the second session, the cognitive style is evaluated using Oltman's test (1971). Finally, in the third and final session, participant creativity is evaluated using Delis-Kaplan test (D-KEFS), Delis et al. (2001). Thus, this study will present the first results of quantitative measures to establish and validate the proposed model. Furthermore, the paper will also discuss the relevance of the proposed approach, considering that currently teaching of ideation in ours schools of architecture in North America is essentially done in a holistic manner through the architectural project.
keywords design, ideation process, mental workload, mental imagery, quantitative mesure
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ddss9829
id ddss9829
authors De Hoog, J., Hendriks, N.A. and Rutten, P.G.S.
year 1998
title Evaluating Office Buildings with MOLCA(Model for Office Life Cycle Assessment)
source Timmermans, Harry (Ed.), Fourth Design and Decision Support Systems in Architecture and Urban Planning Maastricht, the Netherlands), ISBN 90-6814-081-7, July 26-29, 1998
summary MOLCA (Model for Office Life Cycle Assessment) is a project that aims to develop a tool that enables designers and builders to evaluate the environmental impact of their designs (of office buildings) from a environmental point of view. The model used is based on guidelinesgiven by ISO 14000, using the so-called Life Cycle Assessment (LCA) method. The MOLCA project started in 1997 and will be finished in 2001 resulting in the aforementioned tool. MOLCA is a module within broader research conducted at the Eindhoven University of Technology aiming to reduce design risks to a minimum in the early design stages.Since the MOLCA project started two major case-studies have been carried out. One into the difference in environmental load caused by using concrete and steel roof systems respectively and the role of recycling. The second study focused on biases in LCA data and how to handle them. For the simulations a computer-model named SimaPro was used, using the world-wide accepted method developed by CML (Centre for the Environment, Leiden, the Netherlands). With this model different life-cycle scenarios were studied and evaluated. Based on those two case studies and a third one into an office area, a first model has been developed.Bottle-neck in this field of study is estimating average recycling and re-use percentages of the total flow of material waste in the building sector and collecting reliable process data. Another problem within LCA studies is estimating the reliability of the input data and modelling uncertainties. All these topics will be subject of further analysis.
keywords Life-Cycle Assessment, Office Buildings, Uncertainties in LCA
series DDSS
last changed 2003/08/07 16:36

_id 448f
authors De Vecchi, A., Colajanni, S., Corrao, R. and Marano, L.
year 2001
title M.I.C.R.A. - A WBI System to Manage Information for the Recovery of Ancient Buildings
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 61-66
doi https://doi.org/10.52842/conf.ecaade.2001.061
summary In the field of Architecture and Building Construction is increasing the tendency to search information in the old construction handbooks to find more easily the best solutions to the recovery of ancient buildings: to make them easily accessible we are developing an “electronic handbook” by using the technologies related to Internet. The paper reports on M.I.C.R.A. (Manuale Informatizzato per la Codifica della Regola d’Arte), a WBI System able to allow different kind of users (from experts in the fields of Architecture and Building Construction to university students) to easily find the information stored in the old construction handbooks -edited since the 18th century and normally stored in different libraries around Europe- and to immediately compare them each other. The system information management and the data structuring are explained by describing the design strategies and the specific “research criteria” we have adopted to the development of the system.
keywords Web Knowledge Repository, Didactic Strategies, Information Accessibility, Information Management, Data Structuring
series eCAADe
last changed 2022/06/07 07:55

_id e63c
authors Donath, Dirk and González, Luis Felipe
year 2001
title INTEGRATED PLANNING SUPPORT SYSTEM FOR LOW-INCOME HOUSING
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 113-116
summary This article describes our current research focused at the development of an integrated planning support system for the low-income housing production, using as exploration field the participative-planning strategies, particularly implemented by the progressive housing program in Concepción, Chile. Setting our sights on the implementation of modern IT (Information Technology) into architectural field to support the entire planning process, it will be exposed the general deficiencies, diverse IT-tools, their combination possibilities and their practical contribution in order to prove the feasibility of a computer-aided system within a new concept of housing planning.
series SIGRADI
email
last changed 2016/03/10 09:50

_id 5c22
authors Durmisevic, S., Ciftcioglu, Ö. and Sariyildiz, S.
year 2001
title Quantifying the Qualitative Design Aspects
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 111-116
doi https://doi.org/10.52842/conf.ecaade.2001.111
summary Architecture is a mixture of art and technique. This implies that the architect deals not only with engineering aspects that can be easily quantified and thereafter processed, but deals with aesthetics as well which is in first place qualitative and therefore rather difficult to estimate and numerically represent. As an example, in such cases, these ‘qualitative quantities’ are expressed in linguistic form which should be somehow expressed in numerical form in order to treat such data by powerful and conclusive numerical analysis methods. Expressions such as: bright colour, light room, large space are some of these examples. These expressions are fuzzy concepts whose actual interpretation is hidden and all of them together attach a qualitative value to a certain space. To deal with such information the emerging technologies of the last decade can provide an important aid. One of them is the soft computing technology that can deal with such soft data. In this paper, based on the case studies, we explain the potential of using soft computing techniques.
keywords Qualitative Design Data, Information Processing, Soft Computing, Knowledge Modeling, Neuro-Fuzzy Network
series eCAADe
email
last changed 2022/06/07 07:55

_id d146
authors He, Jie
year 2001
title CAD Study in Visual Analysis of the Visual Sustainability for China Urban Natural Landscape Planning
source Chinese University of Hong Kong
summary In this thesis a GIS-based CAD system prototype of evaluating visual quality of urban natural landscape environment is presented. This prototype is an indispensable component of the integrative Visual Sustainability research, and offers a calculable and visualizable technique to urban visual natural landscape assessment. This scientific method provides precise data to estimate the visibility of natural landscape in urban construction actuality. Furthermore, it can also work out supporting information for maintaining and protecting valuable visual landscape resources in further planning. Introduction of this methodology intends to improve the natural landscape cooperation in China urban planning through visual protection. Combining with popular CAD software such as AutoCAD and Microstation, the research team uses ArcView GIS software and its 3D Analyst extension to accomplish a set of research procedure, which includes data modification, model making, viewshed and view sensibility analysis. In addition, this system can create simultaneous 3D scenes or hire other information media as reference tools for professional analysis, design consultation and intercommunication. The core technologies of this proposed system are viewshed calculation and overlay analysis. In viewshed analysis, human visual characteristics are simulated by a series of ergonomics parameters of viewpoints. Viewshed of each viewpoint can be calculated into vector data and mapped by polygons identifying which region is visible and which is not. Overlay function of the proposed system is used in visual sensibility analysis to achieve the division of higher visual sensible area which indicates the common visible area from different viewpoints. Additionally, viewshed maps and visual sensibility results can add more information to mark out the areas that can satisfy certain visual parameters such as appropriate visual angle or visual distance. These overlaying results can visualized the visible areas into hierarchical visual perception quality categories in order to define the visual landscape significance of particular planning regions. A case study was operated to evaluate this system. The case is in Zhongshan city, Guangdong Province of China. Jinzishan hill region is the study site that picked by collaborating discussion of research team and the local government. It is located on the edge of urban built-up area. Jinzishan massif is the prominent landscape element of the surrounding environment. There are three topics in Jinzishan visual perception in this paper. The first topic is the visual quality evaluation of the intersections of its surrounding road system. The second is the integrated visual perception of two main roads called Qiwandao and Bo’ailu. Finally is the analysis of the hill skyline visual quality in surrounding area. The analysis results in GIS vector data can be converted into popular data format and combined with other spatial information for practical application. And comments for future urban planning are collected and analyzed by professional responses to the computer-generated information investigation.
keywords Natural Landscaping; Computer-Aided Design; Landscape Architecture; City Planning; Geographic Information Systems
series thesis:MSc
email
last changed 2003/02/12 22:37

_id e6c5
authors Heintz, John L.
year 2001
title Coordinating virtual building design teams
source Stellingwerff, Martijn and Verbeke, Johan (Eds.), ACCOLADE - Architecture, Collaboration, Design. Delft University Press (DUP Science) / ISBN 90-407-2216-1 / The Netherlands, pp. 65-76 [Book ordering info: m.c.stellingwerff@bk.tudelft.nl]
summary Most research in design project management support systems treats the subject as an isolated objective problem. The goals to be met are defined in terms of a supposed universal view of the project, and now outside concerns are taken into account. While such approaches, including project simulation, may yield excellent results, they ignore what, for many projects, are the real difficulties. Design projects are not isolated. All participants have other obligations that compete with the given project for attention and resources. The various participants in the design process have different goals. For these reasons it is proposed that design project management can be best facilitated by tools which assist the participating actors to share suitable management information in order to make better co-ordination possible, while allowing the resource balancing between projects to occur in private. Such a tool represents the design project management task as a negotiation task that spans both projects and firms; the management of one project is the management of all. The model of design collaboration upon which the Design Coordination System (DeCo) is built was developed from 1) a heuristic case study used to gain insight into the ways in which designers co-ordinate their efforts, and 2) the application of the theory of the social contract as developed by John Rawls to the problem of design project management. The key innovation in the DeCo system is the shaping of the project management system around existing practices of collaborative project design management and planning. DeCo takes advantage of how designers already co-ordinate their work with each other and resolve disputes over deadlines and time lines. The advantage of DeCo is that it formalises these existing practices in order to accommodate both the increasing co-ordination burden and the difficulties brought about by the internationalisation of design practice. DeCo, the design project management system proposed here, provides a representation, a communications protocol, and a game theoretical decision structure. The combination of these three units provides users with the ability to exchange structured pictures of the project as seen from the points of view of individual actors. Further, it suggests a mechanism based on a specific principle of fairness for arriving at mutually acceptable project plans. The DeCo system permits the users freedom to manage their design processes as they will, while providing a basic compatibility between practices of design team members which supports their collaborative efforts to co-ordinate their design work.
series other
last changed 2001/09/14 21:30

_id caadria2007_233
id caadria2007_233
authors Hoseini, Ali Ghaffarian; Rahinah Ibrahim
year 2007
title Using Social Network Analysis for Visualising Spatial Planning During Conceptual Design Phase
source CAADRIA 2007 [Proceedings of the 12th International Conference on Computer Aided Architectural Design Research in Asia] Nanjing (China) 19-21 April 2007
doi https://doi.org/10.52842/conf.caadria.2007.x.i8r
summary Spatial diagramming exercises with clients are difficult when most clients are not able to visualize the end results of their requirements. This paper would like to introduce a computational tool—Social Network Analysis (SNA)—commonly used in the communications field to study relationships between people we believe can resolve this visualization problem. Our research intent is to affirm whether or not we can use SNA as a spatial planning tool during conceptual building design. We posit that since the nodes and structural relationships between the nodes may have similar architectural characteristics, the tool would enable architects to make changes by moving any spaces on a floor plan while safely maintaining their spatial relationships to other spaces. In this paper, we would like to develop a proof-of-concept model using an available SNA tool to facilitate spatial diagramming visualization during conceptual design phase. We tested the use of a SNA tool at four levels. The first level determined whether we could develop spatial relationship between functional spaces (such as the living room must be adjacent to the front entry). The second level is on setting priorities values for the different nodes and the linkages. The third level determined whether we could develop grouping relationship between several functional spaces that have a common characteristic (such as public versus private spaces) on one horizontal plane. The final fourth level determined whether we could develop multiple layers that are connected by one common connector (such as a staircase in a double-story house). Our models are validated intellectually by visual comparison between our model and another diagramming by Nooshin (2001) that was developed manually. We are most interested in the fourth level because complexity in the spatial diagramming exercises is caused by multi-layered spatial arrangements at the horizontal and vertical planes. We expect our study to provide us guidelines in developing a prototype for a spatial diagramming tool using SNA, which architects can use to resolve visualization problems when conducting the exercise with their clients.
series CAADRIA
email
last changed 2022/06/07 07:50

_id avocaad_2001_22
id avocaad_2001_22
authors Jos van Leeuwen, Joran Jessurun
year 2001
title XML for Flexibility an Extensibility of Design Information Models
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The VR-DIS research programme aims at the development of a Virtual Reality – Design Information System. This is a design and decision support system for collaborative design that provides a VR interface for the interaction with both the geometric representation of a design and the non-geometric information concerning the design throughout the design process. The major part of the research programme focuses on early stages of design. The programme is carried out by a large number of researchers from a variety of disciplines in the domain of construction and architecture, including architectural design, building physics, structural design, construction management, etc.Management of design information is at the core of this design and decision support system. Much effort in the development of the system has been and still is dedicated to the underlying theory for information management and its implementation in an Application Programming Interface (API) that the various modules of the system use. The theory is based on a so-called Feature-based modelling approach and is described in the PhD thesis by [first author, 1999] and in [first author et al., 2000a]. This information modelling approach provides three major capabilities: (1) it allows for extensibility of conceptual schemas, which is used to enable a designer to define new typologies to model with; (2) it supports sharing of conceptual schemas, called type-libraries; and (3) it provides a high level of flexibility that offers the designer the opportunity to easily reuse design information and to model information constructs that are not foreseen in any existing typologies. The latter aspect involves the capability to expand information entities in a model with relationships and properties that are not typologically defined but applicable to a particular design situation only; this helps the designer to represent the actual design concepts more accurately.The functional design of the information modelling system is based on a three-layered framework. In the bottom layer, the actual design data is stored in so-called Feature Instances. The middle layer defines the typologies of these instances in so-called Feature Types. The top layer is called the meta-layer because it provides the class definitions for both the Types layer and the Instances layer; both Feature Types and Feature Instances are objects of the classes defined in the top layer. This top layer ensures that types can be defined on the fly and that instances can be created from these types, as well as expanded with non-typological properties and relationships while still conforming to the information structures laid out in the meta-layer.The VR-DIS system consists of a growing number of modules for different kinds of functionality in relation with the design task. These modules access the design information through the API that implements the meta-layer of the framework. This API has previously been implemented using an Object-Oriented Database (OODB), but this implementation had a number of disadvantages. The dependency of the OODB, a commercial software library, was considered the most problematic. Not only are licenses of the OODB library rather expensive, also the fact that this library is not common technology that can easily be shared among a wide range of applications, including existing applications, reduces its suitability for a system with the aforementioned specifications. In addition, the OODB approach required a relatively large effort to implement the desired functionality. It lacked adequate support to generate unique identifications for worldwide information sources that were understandable for human interpretation. This strongly limited the capabilities of the system to share conceptual schemas.The approach that is currently being implemented for the core of the VR-DIS system is based on eXtensible Markup Language (XML). Rather than implementing the meta-layer of the framework into classes of Feature Types and Feature Instances, this level of meta-definitions is provided in a document type definition (DTD). The DTD is complemented with a set of rules that are implemented into a parser API, based on the Document Object Model (DOM). The advantages of the XML approach for the modelling framework are immediate. Type-libraries distributed through Internet are now supported through the mechanisms of namespaces and XLink. The implementation of the API is no longer dependent of a particular database system. This provides much more flexibility in the implementation of the various modules of the VR-DIS system. Being based on the (supposed to become) standard of XML the implementation is much more versatile in its future usage, specifically in a distributed, Internet-based environment.These immediate advantages of the XML approach opened the door to a wide range of applications that are and will be developed on top of the VR-DIS core. Examples of these are the VR-based 3D sketching module [VR-DIS ref., 2000]; the VR-based information-modelling tool that allows the management and manipulation of information models for design in a VR environment [VR-DIS ref., 2000]; and a design-knowledge capturing module that is now under development [first author et al., 2000a and 2000b]. The latter module aims to assist the designer in the recognition and utilisation of existing and new typologies in a design situation. The replacement of the OODB implementation of the API by the XML implementation enables these modules to use distributed Feature databases through Internet, without many changes to their own code, and without the loss of the flexibility and extensibility of conceptual schemas that are implemented as part of the API. Research in the near future will result in Internet-based applications that support designers in the utilisation of distributed libraries of product-information, design-knowledge, case-bases, etc.The paper roughly follows the outline of the abstract, starting with an introduction to the VR-DIS project, its objectives, and the developed theory of the Feature-modelling framework that forms the core of it. It briefly discusses the necessity of schema evolution, flexibility and extensibility of conceptual schemas, and how these capabilities have been addressed in the framework. The major part of the paper describes how the previously mentioned aspects of the framework are implemented in the XML-based approach, providing details on the so-called meta-layer, its definition in the DTD, and the parser rules that complement it. The impact of the XML approach on the functionality of the VR-DIS modules and the system as a whole is demonstrated by a discussion of these modules and scenarios of their usage for design tasks. The paper is concluded with an overview of future work on the sharing of Internet-based design information and design knowledge.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 3c96
authors Kang, H., Anderson, S.D. and Clayton, M.J.
year 2001
title Web4D: Challenges and Practices for Construction Scheduling
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 132-141
doi https://doi.org/10.52842/conf.acadia.2001.132
summary Research has demonstrated that four-dimensional computer aided design (4D CAD), in which a three-dimensional (3D) CAD model is animated through time, is useful in helping professionals understand the construction schedule. However, cumbersome processes to update a 4D CAD model, which involve changing geometry representations, changing schedules and bar charts, linking the geometry to the scheduling information, and generating animations, may discourage professionals from using 4D CAD in actual construction projects. A software prototype implementing 4D CAD in a Web environment overcomes limitations of current 4D CAD tools. This software permits editing of the construction schedule over the Internet and shows the revised construction sequence visually on a Web browser using 3D computer graphics. This software is composed of a database on a server, Active Server Pages (ASP) scripts, and a Java applet that was developed using Java 3D Application Programming Interface (API) and Java JDBC. The Java applet retrieves the 4D model at the appropriate level of completion over the Internet and allows users to navigate around the model on the Web browser. Web4D visualization software can help professionals to expedite the schedule updating process by involving designers and constructors in collaborative decision- making.
keywords Web4D, 4D CAD, 4D Visualization, Construction Schedule, Internet
series ACADIA
email
last changed 2022/06/07 07:52

_id 3322
authors Klinger, Kevin R.
year 2001
title Making Digital Architecture: Historical, Formal, and Structural Implications of Computer Controlled Fabrication and Expressive Form
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 239-244
doi https://doi.org/10.52842/conf.ecaade.2001.239
summary Digital output from computer modeling represents a significant new method for visualization and fabrication of architecture. The ability to move directly from three-dimensional modeling to real three-dimensional output challenges the need for traditional means of representation such as plan, section, etc. Moreover, the necessity for conversion of architectural intentions into a code (construction documents, shop drawings, etc.) to be translated by the contractor will also be tested with these new potentials in fabrication. This subjugation of traditional forms of representation and fabrication has serious implications for architectural design process and production. The intention of this paper is to scrutinize underlying issues inherent in a design process of developing architectural solutions using the computer both as a tool for threedimensional visualization as well as for guiding three-dimensional fabrication. Precedent of historic expressive architectural form (seen through the lens of fabrication) will be presented to lay the foundation for the examination of new fabrication techniques and structural concerns for computer generated expressive forms. A series of rapid prototype studies from a digital architecture seminar will also be analyzed to outline the need for developing visualization/fabrication process ideas and research into methods for making digital architecture.
keywords Expressive Form, Digital Visualization, Digital Fabrication, Rapid Prototyping, Five-Axis Milling
series eCAADe
email
last changed 2022/06/07 07:51

_id 17ba
authors Koutamanis, Alexander
year 2001
title Fuzzy Modeling of Floor Plan Layout
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 314-321
doi https://doi.org/10.52842/conf.acadia.2001.314
summary Fuzzy modeling provides methods and techniques for qualifying and quantifying imprecise and uncertain information. The main advantages of fuzzy design representation are fluency, abstraction and continuity, at a level similar to that of analogue techniques, as well as the possibility of local autonomy, i.e. segmentation of a representation into self-regulating and cooperating components. The paper investigates the applicability of fuzziness to digital architectural sketching of floor plan layouts. Based on an analysis of the paradigmatic dimension in analogue floor plan sketches three alternative forms are proposed: (1) Canonical objects with tolerances, (2) objects described by minimal and maximal values, and (3) point sets which decompose the form of an object into a number of discrete, autonomous particles that describe the object by their position and spatial or structural relationships.
keywords Representation, Sketching, Floor Plan, Fuzziness
series ACADIA
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_551747 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002