CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 704

_id be0b
authors Dokonal, W., Martens, B. and Ploesch, R.
year 2001
title Continuing work on a 3-d city model for architectural education
doi https://doi.org/10.52842/conf.caadria.2001.319
source CAADRIA 2001 [Proceedings of the Sixth Conference on Computer Aided Architectural Design Research in Asia / ISBN 1-86487-096-6] Sydney 19-21 April 2001, pp. 319-322
summary This paper describes continuing experiences with the creation of a 3D-City Model at Graz University of Technology. It presents an innovative approach in establishing a city model with the substantial support of students in the study fields of architecture and surveying. Doubtlessly other projects already revealed similar issues, but so far without direct collaborative input by students.
keywords 3D City Modeling
series CAADRIA
email
last changed 2022/06/07 07:55

_id 5ac1
authors Bourdakis, Vassilis
year 2001
title On Developing Standards for the Creation of VR City Models
doi https://doi.org/10.52842/conf.ecaade.2001.404
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 404-409
summary The paper is an inclusive summary of research work on creating VR city models carried out over the last six years in the UK and Greece aiming to put into discussion the guidelines/ rules developed by the author. The paper is structured in three sections referring to the main stages in terms of either technical expertise and problem solving or conceptual structuring of information: creation of 3D city models, CAAD versus VR in digital city modelling and finally utilizing digital city models. The expected outcome of the work presented is the establishment of a body of knowledge that will facilitate the development of standards and guidelines for the creation of city models. There are obvious advantages in having a compatible set of city 3D models. On the other hand, there are different rules to be followed and issues to be solved, according to the scale of the model, level of detail that is needed—all these rules relate to the projected use of the model.
keywords Digital City Models, 3D Modelling, Virtual Reality, Urban Planning
series eCAADe
email
last changed 2022/06/07 07:54

_id bfc8
authors Fukai, Dennis and Srinivasan, Ravi
year 2001
title PCIS Revisited: A Visual Database for Design and Construction
doi https://doi.org/10.52842/conf.acadia.2001.372
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 372-379
summary This paper presents research on a piece-based construction information system called PCIS(pronounced “pieces”) first published as a visual information concept at ACADIA’96, Tucson. After more than five years of development it has evolved into a multidimensional visual information system for design and construction. It includes a piece-based anatomical construction model layered according to a work breakdown structure; a dataTheater that surrounds the model as an index to plans, elevations, sections, and details; and a dataWorld with cameras fixed to the intersections of its latitudes and longitudes to add context and perspective. A standard services matrix (SSM) controls layer visibility and camera settings. PCIS can be “played” to access archived resources; support design development, analyze and resolve preconstruction conflicts, and coordinate construction activities. Current research will be used to demonstrate how PCIS might be valuable to increase the potential for technical cooperation, collaboration, and communication by literally aligning the points of view of architectural, engineering, and construction methodology.
keywords Construction, Pictorial, 3D/4D, Modeling, Database
series ACADIA
email
last changed 2022/06/07 07:50

_id f1c4
authors Holmgren, S., Rüdiger, B. and Tournay, B.
year 2001
title The 3D-City Model – A New Space
doi https://doi.org/10.52842/conf.ecaade.2001.430
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 430-435
summary We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain this shift in paradigms we begin by describing some of the concrete models we have made, showing the relationship between model structure (methodology and content) and model use. We also describe the projects we are working on at present in order to illustrate new ideas concerning the potential development of 3D city models.
keywords Digital 3D City Model, Urban Regeneration, Participatory Design, On Line Community
series eCAADe
email
last changed 2022/06/07 07:50

_id e9b1
authors Heylighen, Ann and Neuckermans, Herman
year 2001
title Destination: Practice – Towards a maintenance contract for the architect’s degree
doi https://doi.org/10.52842/conf.acadia.2001.090
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 090-099
summary Addressing the subject of Case-Based Reasoning (CBR) in architectural design, we present a Web-based design assistant for student- and professional architects called DYNAMO. Its main objective is to initiate and nurture the life-long process of learning from (design) experience as suggested by CBR’s cognitive model. Rather than adopting this model as such, DYNAMO extrapolates it beyond the individual by stimulating and intensifying several modes of interaction. One mode – the focus of this paper – concerns the interaction between the realm of design education and the world of practice. DYNAMO offers a platform for exchanging design efforts and insights, in the form of cases, between both parties, which perfectly chimes with the current tendency towards life-long learning and continuing education. Just like our university advises graduates to ‘Take a maintenance contract with your degree’, architecture schools may encourage recently qualified architects to subscribe to DYNAMO. To what extent the tool can fulfill this role of maintenance contract is discussed at the end of the paper, which reports on how DYNAMO was used and appreciated by professional architects at different levels of expertise.
keywords Case-Based Reasoning, Web-Based Learning, Digital Repositories
series ACADIA
email
last changed 2022/06/07 07:50

_id 7501
authors Apley, Julie
year 2001
title A Virtual Reconstruction: Isthmia Roman Bath
doi https://doi.org/10.52842/conf.acadia.2001.410
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 410-411
summary The Isthmia Roman Bath is located in Greece overlooking a great ravine on the Isthmus of Corinth. It was in use during the 2nd through the 4th centuries. I have created a 3D VRML walkthrough of the ancient bath. This interdisciplinary project utilizes the research of an archaeologist, architect, and art historian. Because the researchers live in different locations, it made sense to use the Internet as a research tool. When clicking on the numbers on the home page, you can see the process that I went through to model the Roman Bath. After seeing the images, the researchers were able to visualize their research, reply to questions, and re-evaluate their findings. VRML promises an accessible, highly visual, and interactive representation of difficult to see data, opening up new ways of presenting research. It is possible to walk within the bath by clicking on the Virtual Reconstruction link. When in the "Entrance view", click on the vase to see a map of the ruin. There are three places within the project that link to the existing excavated site. Links are also available to walk outside. The project runs best on Windows NT using Netscape. You must have the plug-ins for Cosmoplayer (VRML) and Quicktime (movie). Because the VRML plug-in doesn't work as well on a Mac, it is possible that you may only be able to view the images and movie from the project.
series ACADIA
last changed 2022/06/07 07:55

_id 7eb9
authors Dokonal, Wolfgang and Martens, Bob
year 2001
title A Working Session on 3-D City Modeling
doi https://doi.org/10.52842/conf.ecaade.2001.417
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 417-422
summary On the occasion of a presentation on a city model for Graz at the eCAADe-conference in Weimar (2000), some attendees informed us about their previous work in this field and the idea of preparing a working session with collegues involved in 3-D city modeling was born. During the initial phase of research for this eCAADe conference activity it turned out that a large number of city models has been created in the course of time for different reasons resp. purposes. Therefore a rich variety in the production of city models can be noticed. This working session on 3-D city modeling brings together experts focusing on different aspects concerning the creation and use of city models, such as data input, data structure, data storage and data quality. Also the definition of a perspective on the future of 3-D city modeling can be regarded as an important topic. In this paper a rough overview on the different submissions will be presented. Furthermore three blitz statements are incorporated as time was too short to produce a full paper. Both with the individual contributions as with this overview paper it is intended to present a knowledge-base to this working field. Finally, the start for a growing bibliography was made in order to support future work in this area.
keywords Urban Modeling, 3-D Modeling, Collaboration, City Information, Model Adaptation
series eCAADe
email
last changed 2022/06/07 07:55

_id d146
authors He, Jie
year 2001
title CAD Study in Visual Analysis of the Visual Sustainability for China Urban Natural Landscape Planning
source Chinese University of Hong Kong
summary In this thesis a GIS-based CAD system prototype of evaluating visual quality of urban natural landscape environment is presented. This prototype is an indispensable component of the integrative Visual Sustainability research, and offers a calculable and visualizable technique to urban visual natural landscape assessment. This scientific method provides precise data to estimate the visibility of natural landscape in urban construction actuality. Furthermore, it can also work out supporting information for maintaining and protecting valuable visual landscape resources in further planning. Introduction of this methodology intends to improve the natural landscape cooperation in China urban planning through visual protection. Combining with popular CAD software such as AutoCAD and Microstation, the research team uses ArcView GIS software and its 3D Analyst extension to accomplish a set of research procedure, which includes data modification, model making, viewshed and view sensibility analysis. In addition, this system can create simultaneous 3D scenes or hire other information media as reference tools for professional analysis, design consultation and intercommunication. The core technologies of this proposed system are viewshed calculation and overlay analysis. In viewshed analysis, human visual characteristics are simulated by a series of ergonomics parameters of viewpoints. Viewshed of each viewpoint can be calculated into vector data and mapped by polygons identifying which region is visible and which is not. Overlay function of the proposed system is used in visual sensibility analysis to achieve the division of higher visual sensible area which indicates the common visible area from different viewpoints. Additionally, viewshed maps and visual sensibility results can add more information to mark out the areas that can satisfy certain visual parameters such as appropriate visual angle or visual distance. These overlaying results can visualized the visible areas into hierarchical visual perception quality categories in order to define the visual landscape significance of particular planning regions. A case study was operated to evaluate this system. The case is in Zhongshan city, Guangdong Province of China. Jinzishan hill region is the study site that picked by collaborating discussion of research team and the local government. It is located on the edge of urban built-up area. Jinzishan massif is the prominent landscape element of the surrounding environment. There are three topics in Jinzishan visual perception in this paper. The first topic is the visual quality evaluation of the intersections of its surrounding road system. The second is the integrated visual perception of two main roads called Qiwandao and Bo’ailu. Finally is the analysis of the hill skyline visual quality in surrounding area. The analysis results in GIS vector data can be converted into popular data format and combined with other spatial information for practical application. And comments for future urban planning are collected and analyzed by professional responses to the computer-generated information investigation.
keywords Natural Landscaping; Computer-Aided Design; Landscape Architecture; City Planning; Geographic Information Systems
series thesis:MSc
email
last changed 2003/02/12 22:37

_id ecaade2023_221
id ecaade2023_221
authors Imam, Chowdhury Ali and Ligler, Heather
year 2023
title 3D Voxel Grammar of Mangalabas (Goodwill House)
doi https://doi.org/10.52842/conf.ecaade.2023.2.441
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 441–450
summary Mangalabas (Goodwill House) is a historic multi-court mansion in Farashganj, Old Dhaka, Bangladesh. The spatial layout combines multiple courtyards, demonstrating how the courtyard is an integral part of traditional Bengali houses and vernacular buildings. During the British colonial period, Mangalabas and many other multi-court mansions were built in Dhaka by combining the native spatial organization of courtyard buildings with imported European elements (Rahmam and Haque, 2001). This typology is unique to Bangladesh and offers configurations with spatial, social, and environmental values that are often missing from contemporary housing in Dhaka. This paper revisits the vernacular essence of Bengali courtyard-based living and presents a 3D voxel-based interpretation of Mangalabas to promote the potential of this building form. The research focuses on inferring shape rules of the volumetric composition to understand the programmatic relations between the courtyards and overall massing. Voxels are used to represent these relationships in a straightforward way and to strategize for the computer implementation of grammar in future work. The current study sets a foundation for understanding this Bengali housing type and the logic of its building form as a basis for designing new housing prototypes that learn from this vernacular.
keywords Shape Grammar, Voxel Grammar, Courtyard, Colonial Architecture
series eCAADe
email
last changed 2023/12/10 10:49

_id avocaad_2001_22
id avocaad_2001_22
authors Jos van Leeuwen, Joran Jessurun
year 2001
title XML for Flexibility an Extensibility of Design Information Models
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The VR-DIS research programme aims at the development of a Virtual Reality – Design Information System. This is a design and decision support system for collaborative design that provides a VR interface for the interaction with both the geometric representation of a design and the non-geometric information concerning the design throughout the design process. The major part of the research programme focuses on early stages of design. The programme is carried out by a large number of researchers from a variety of disciplines in the domain of construction and architecture, including architectural design, building physics, structural design, construction management, etc.Management of design information is at the core of this design and decision support system. Much effort in the development of the system has been and still is dedicated to the underlying theory for information management and its implementation in an Application Programming Interface (API) that the various modules of the system use. The theory is based on a so-called Feature-based modelling approach and is described in the PhD thesis by [first author, 1999] and in [first author et al., 2000a]. This information modelling approach provides three major capabilities: (1) it allows for extensibility of conceptual schemas, which is used to enable a designer to define new typologies to model with; (2) it supports sharing of conceptual schemas, called type-libraries; and (3) it provides a high level of flexibility that offers the designer the opportunity to easily reuse design information and to model information constructs that are not foreseen in any existing typologies. The latter aspect involves the capability to expand information entities in a model with relationships and properties that are not typologically defined but applicable to a particular design situation only; this helps the designer to represent the actual design concepts more accurately.The functional design of the information modelling system is based on a three-layered framework. In the bottom layer, the actual design data is stored in so-called Feature Instances. The middle layer defines the typologies of these instances in so-called Feature Types. The top layer is called the meta-layer because it provides the class definitions for both the Types layer and the Instances layer; both Feature Types and Feature Instances are objects of the classes defined in the top layer. This top layer ensures that types can be defined on the fly and that instances can be created from these types, as well as expanded with non-typological properties and relationships while still conforming to the information structures laid out in the meta-layer.The VR-DIS system consists of a growing number of modules for different kinds of functionality in relation with the design task. These modules access the design information through the API that implements the meta-layer of the framework. This API has previously been implemented using an Object-Oriented Database (OODB), but this implementation had a number of disadvantages. The dependency of the OODB, a commercial software library, was considered the most problematic. Not only are licenses of the OODB library rather expensive, also the fact that this library is not common technology that can easily be shared among a wide range of applications, including existing applications, reduces its suitability for a system with the aforementioned specifications. In addition, the OODB approach required a relatively large effort to implement the desired functionality. It lacked adequate support to generate unique identifications for worldwide information sources that were understandable for human interpretation. This strongly limited the capabilities of the system to share conceptual schemas.The approach that is currently being implemented for the core of the VR-DIS system is based on eXtensible Markup Language (XML). Rather than implementing the meta-layer of the framework into classes of Feature Types and Feature Instances, this level of meta-definitions is provided in a document type definition (DTD). The DTD is complemented with a set of rules that are implemented into a parser API, based on the Document Object Model (DOM). The advantages of the XML approach for the modelling framework are immediate. Type-libraries distributed through Internet are now supported through the mechanisms of namespaces and XLink. The implementation of the API is no longer dependent of a particular database system. This provides much more flexibility in the implementation of the various modules of the VR-DIS system. Being based on the (supposed to become) standard of XML the implementation is much more versatile in its future usage, specifically in a distributed, Internet-based environment.These immediate advantages of the XML approach opened the door to a wide range of applications that are and will be developed on top of the VR-DIS core. Examples of these are the VR-based 3D sketching module [VR-DIS ref., 2000]; the VR-based information-modelling tool that allows the management and manipulation of information models for design in a VR environment [VR-DIS ref., 2000]; and a design-knowledge capturing module that is now under development [first author et al., 2000a and 2000b]. The latter module aims to assist the designer in the recognition and utilisation of existing and new typologies in a design situation. The replacement of the OODB implementation of the API by the XML implementation enables these modules to use distributed Feature databases through Internet, without many changes to their own code, and without the loss of the flexibility and extensibility of conceptual schemas that are implemented as part of the API. Research in the near future will result in Internet-based applications that support designers in the utilisation of distributed libraries of product-information, design-knowledge, case-bases, etc.The paper roughly follows the outline of the abstract, starting with an introduction to the VR-DIS project, its objectives, and the developed theory of the Feature-modelling framework that forms the core of it. It briefly discusses the necessity of schema evolution, flexibility and extensibility of conceptual schemas, and how these capabilities have been addressed in the framework. The major part of the paper describes how the previously mentioned aspects of the framework are implemented in the XML-based approach, providing details on the so-called meta-layer, its definition in the DTD, and the parser rules that complement it. The impact of the XML approach on the functionality of the VR-DIS modules and the system as a whole is demonstrated by a discussion of these modules and scenarios of their usage for design tasks. The paper is concluded with an overview of future work on the sharing of Internet-based design information and design knowledge.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 728a
authors Mantere, Markku
year 2001
title Visualization of Flow Data in Photo-realistic Virtual Environment
source Helsinki University of Technology, Espoo, Finland
summary Virtual reality technology has been adopted in many different fields and new application areas are searched continuously. At the moment virtual reality has been applied separately for instance to scientific visualization and illustration of architectural spaces. In this work, a photo-realistic room model and a visualization of an air flow inside the room has been combined. The integrated illustrative three-dimensional model is presented within an immersive virtual environment. The first part of the work covers scientific visualization and virtual reality implementation techniques. The visualization review begins with a discussion about human percepion of visual information and proceeds with an introduction to three-dimensional visualization. The focus is on illustration of a flow data produced as a result of a computational simulation. The flow visualization techniques utilizing all three dimensions are discussed and many examples of different graphical elements are presented. Virtual reality is examined from technical solutions point of view. The features having effect on the quality of a virtual experience are discussed and three different commonly used display techniques are introduced. The hardware of Experimental Virtual Environment -facility at Helsinki University of Technology is given as a detailed example. The implementation of a visualization software is described in the applied part of this thesis. Discussion covers the evaluation of different software tools, the tool selection process, and a detailed description of the design principles and implementation of the software. The different visualization solutions are also justified in this part. In the implementation, the real-time system requirements and utilization of all three dimensions have been taken into account. Finally, the results and their meaning are discussed and the performance of the implementation is evaluated. The applied part successfully integrated the room model and the flow visualization in an interactive virtual environment.
keywords Virtual Environments, Virtual Reality, Flow Visualization, CFD, 3D, Computer Graphics
series thesis:MSc
last changed 2003/02/12 22:37

_id avocaad_2001_07
id avocaad_2001_07
authors Stefan Wrona, Adam Gorczyca
year 2001
title Complexity in Architecture - How CAAD can be involved to Deal with it. - "Duality"
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary “Complexity “ is for us a very ambigous notion. It may be understood in two contexts.1.Thorough solution of a problem.Complexity means full recognition of design area, followed by appropriate work. That work must be thorough and interdisciplinary – if necessary, separated to different co-operatives. These trade designers reqiure a branch coordination and – the most important- all of them must have a „common denominator”. Such as a proper CAAD platform and office standards. That will reduce costs of changes, improve an interplay between designers and somtimes enable to face up a new challenge.Nowadays architects are no longer “solitary” individualists working alone – they must concern a team – they become a member, a part of a huge design machine. “Import/export”, compatibility, interplay – these words must appear and we have to put a stress on them. How to organize work for different trade-designers? How to join in common database architectural design ,engineering design, HVAC design, electricity design, technology design, computer network design and all other trades ?...A key to solve this range of problems is in good work organization. Universal prescription does not exist, but some evergreen rules can be observed. We are going to present a scheme of work in CAAD application ALLPLAN FT v.16 with a Group manager , which starts to conquest polish market and is widely spread in Germany. “Golden rules” of ALLPLAN FT There is one database – it is placed on server. It includes all projects. There is a well-developed office standard. It must be created at the beginning of collaboration, although it is possible to improve it later. It consist of hatches, fonts, symbols, macros, materials, pen-widths, and – the most important –layers . A layer set – predefined structure divided into functional groups – e.g. drafting, text, dimensioning, architecture, HVAC, engineering, urban design, etc.That stucture is a part of an office standard – all workers use a relevant part of it. No name duplicates, no misunderstandings... If however design extends, and a new group of layers is required, it can be easily added, e.g. computer networks, fireguard systems. Administrator of ALLPLAN network defines different users and gives them different permitions of access. For example – an electrician will be able to draft on layer “electricity”, but he won’t modify anything at layer “architecture – walls”, and he won’t even see a layer “engineering- slabs”, because he doesn’t need it..At the same time our electrician will be able to see , how architect moves some walls and how HVAC moved and started to cross with his wires. Every user is able to see relevant changes, after they are saved by author. Two different users can not access at the same time the same file. That excludes inconsistent or overlapping changes . All users operate on a 3D model. While putting some data into a model, they must remember about a “Z” coordinate at work-storey. But at the same time all create a fully-integrated, synchronous database, which can be used later for bills of quantities, specifications, and – of course – for visuaisation. That method can be described as “model-centric”. To simplify complex structure of architectural object -ALLPLAN offers files. Usually one file means one storey, but at special designs it might become a functional part of a storey, or whatever you wish. Files connected with layers easy enable to separate certain structural elements, e.g. if we want to glance only at concrete slabs and columns in the building – we will turn on all files with “layer filter” – “slabs” and “columns”. ALLPLAN is of course one of possible solutions. We described it , because we use it in our workshop. It seems to be stretchy enough to face up every demand and ever-increasing complexity of current projects. The essence of the matter, however, is not a name or version of application – it is a set of features, we mentioned above, which allows to deal with EVERY project. The number of solutions is infinite.2. Increasing difficulties during design process. It may be associated with more and more installations inside of new buildings, especially some “high-tech” examples. The number of these installations increases as well as their complexity. Now buildings are full of sensors, video-screens, computer networks, safety-guard systems... Difficulties are connected with some trends in contemporary architecture, for example an organic architecture, which conceives “morphed” shapes, “moving” surfaces, “soft” solids. This direction is specially supported by modelling or CAD applications. Sometimes it is good – they allow to realize all imaginations, but often they lead to produce “unbuildable” forms, which can exist only in virtual world.Obstacles appear, when we design huge cubatures with “dense” functional scheme. Multi-purposed objects, exhibition halls, olimpic stadium at Sydney – all of them have to be stretchy, even if it requires sliding thousands pound concrete blocks! Requirements were never so high.The last reason, why designs become so complex is obvious - intensifying changes due to specific requirements of clients/developers.We could say “ signum tempori” – everything gets more and more complicated , people have to become specialists, to face up new technology. But how CAAD can help us with it? How?! We have already answered that question. Sometimes CAAD is the only way to imagine and sketch something, to visualize something, to compute a construction , to prepare a simulation... So that human must “only” interprete ready solutions. Sometimes CAAD help us to notify a problem. It works exactly in the same way, as spy-glasses does. For example – without a real-time visualization we we would have never realised (until finished!) some strange interference of solids, which have occured in the upper roof part of our new appartment-house.ConclusionsTemporary CAAD is an integral part of design process – not only as a tool, but sometimes as an inspiration. It helps to organize our work, to define problems, to filter relevant elements and to render our visions. It becomes an integral part of our senses – and that will be a real complexity in architecture...
series AVOCAAD
email
last changed 2005/09/09 10:48

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 9e0d
authors Dokonal, Wolfgang and Martens, Bob
year 2002
title Round Table Session on “3D-City-Modeling”
doi https://doi.org/10.52842/conf.ecaade.2002.610
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 610-613
summary According to eCAADe’s mission, the exchange and collaboration within the area of computer aided architectural design education and research, while respecting the pedagogical and administrative approaches in the different schools and countries, can be regarded as a core activity. On the occasion of eCAADe 2001 in Helsinki a working session on the topic “3D-City-Modeling” was held, in which a varietybundle of papers was presented. The eCAADe 2002 round table session on “3D-City-Modeling” is opening up for an intensive discussion on a number of goals which were elaborated by a working group in Helsinki.
series eCAADe
email
last changed 2022/06/07 07:55

_id 3dcd
authors Ennis, Gary and Maver, Tom
year 2001
title Visit VR Glasgow - Welcoming multiple visitors to the Virtual City
doi https://doi.org/10.52842/conf.ecaade.2001.423
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 423-429
summary The development of the Virtual Reality Modelling Language (VRML) for the Internet has resulted in the emergence of a multiplicity of 3D web sites. The metaphor used by these sites varies enormously from virtual galleries to virtual cities and style varies from abstract to reality. Additionally these worlds are populated by virtual objects, some having reactive or interactive properties, including movement, audio, video, databases, artificial intelligence etc. Perhaps the most stimulating embodiment of these new environments are those that offer the participant the opportunity to meet and communicate with other visitors exploring the same virtual space/world. The Glasgow Directory is an established 3D web space, with around 10,000 visitors per year. The model represents approximately 10,000 properties in the city and is populated by contextual information on its culture and socio-economic topography. This paper describes the background to this VR space, and suggests a set of design criteria for successfully deploying multi-user software within this and similar environments. These criteria take into account lessons learned by ‘observing’ and analysing how participants interact with the existing system under different conditions and also what benefits they perceive on entering the environment via the multi-user interface. These recommendations will hopefully be applicable to a wide spectrum of internet virtual environment builders and users.
keywords Virtual, City, 3-D, Databases, Interaction
series eCAADe
email
last changed 2022/06/07 07:55

_id 7134
id 7134
authors Penttilä, Hannu (Ed.)
year 2001
title Architectural Information Management [Conference Proceedings]
doi https://doi.org/10.52842/conf.ecaade.2001
source 19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1 / Helsinki (Finland) 29-31 August 2001, 578 p.
summary Several common phrases, such as “information society” or “virtual reality” point out the fact that information technology, digital tools and numerous different services via various communication networks have become crucially important factors of our western lifestyle and living environment. The trends of the society reflects naturally the working environments of the construction field, architectural discipline being amongst them. It is almost inconceivable to even imagine an architect without computer-based tools anymore. This evolutional development process has, from historical perspective, only recently started. The process is constantly evolving and rapidly increasing our possibilities to use and enjoy these modern digital fruits. The sometimes unpredictable and rapid changes in our working environment should make architects nervous about the impacts of the changes. All those delicate methods and collective traditions of the several thousand year architectural discipline(!), just simply cannot be transferred into the digital realm in a few decades. Researchers and teachers should very carefully, but still open mindedly, critically explore, analyse and adjust the so-called “modern technology” into the world of architecture, construction, design, planning – and education. We are not just “endusers”, It is we, in fact, who should define what, where and how are we willing to use it(IT). The value of information is constantly growing in our society, and in the future it will evidently be even more so. The value of information is quite hard to define with measurable or agreed concepts, but information evidently contains value-factors. The information which the architects are creating, modifying and manipulating, contains essential and valuable core data concerning the whole built environment of our society. It affects the physical surroundings of our society, in which we will be living for decades – hence, the information has a historical basis. The architectural core information also very strongly affects the quality of life of our fellow citizens – consequently, it has deep social meaning. The essentials of architectural information relies on the tradition of centuries – hence, it clearly has acknowledged cultural values, which are also extremely difficult to quantify. So how could architectural information be described? The information covers a wide range of heterogeneous concepts, items, values, methods, tools, materials, true facts, rumours, intuition and knowledge, plus a multitude of yet undefined or unpredictable factors, which still have to be watched and prepared for. Since the information deals with common and general subjects, it should also be described with common and general concepts. On the other hand as the information is also concerned with the minutiae of specific projects, the architectural information should also be described with well identified and unique entities. With our digital tools we handle all information – including architectural – more and more digitally. We have to handle and manipulate information currently as digital data, which could be understood the ”raw material” of architectural information. Digital data becomes valuable information, when some kind of meaning or purpose to somebody can be attributed to it. In the early gloomy days of ”digital architecture” in the 1960’s and 1970’s, researchers tried to describe architectural artefacts and even design process mathematically. The details of architectural information were quite difficult to describe with binary alphanumeric information of main-frame machines. The architects’ tools development then led to a trend where architects could better represent and visualize the design objects digitally. The widespread and common use of 2D-drawing and 3D-modelling tools is still a very strong trend within our discipline. In fact it is “the way” the majority of architectural information is managed today. During the last 15–20 years, so-called conceptual modelling or product data modelling, done in various technical and construction field research units worldwide, has from one viewpoint clarified the basis and essence of architectural information. Hence, it’s not only CAD-software application development, but also elementary and theoretical research that gives us valuable help to survive among the ever growing seas of terabits of data in the future to come. Architectural information is something that simply cannot be described just with DWG-drawings or dummy scanned photographs any more. Although drawings and photos may contain very important bits of architectural documentation, we need ntimes more “complexity layers”, concepts and tools to manage and understand the essence of architectural information today. A proper way to manage the data we are working with, has to cover the whole architectural discipline. The methods and tools also have to be valid and flexible for several decades in the future.
keywords Information Management & Data Structuring, Education & Curricula, Modeling & City Planning
series eCAADe
email
more http://www.hut.fi/events/ecaade/
last changed 2022/06/07 07:49

_id 48db
authors Proctor, George
year 2001
title CADD Curriculum - The Issue of Visual Acuity
doi https://doi.org/10.52842/conf.ecaade.2001.192
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 192-200
summary Design educators attempt to train the eyes and minds of students to see and comprehend the world around them with the intention of preparing those students to become good designers, critical thinkers and ultimately responsible architects. Over the last eight years we have been developing the digital media curriculum of our architecture program with these fundamental values. We have built digital media use and instruction on the foundation of our program which has historically been based in physical model making. Digital modeling has gradually replaced the capacity of physical models as an analytical and thinking tool, and as a communication and presentation device. The first year of our program provides a foundation and introduction to 2d and 3d design and composition, the second year explores larger buildings and history, the third year explores building systems and structure through design studies of public buildings, fourth year explores urbanism, theory and technology through topic studios and, during the fifth year students complete a capstone project. Digital media and CADD have and are being synchronized with the existing NAAB accredited regimen while also allowing for alternative career options for students. Given our location in the Los Angeles region, many students with a strong background in digital media have gone on to jobs in video game design and the movie industry. Clearly there is much a student of architecture must learn to attain a level of professional competency. A capacity to think visually is one of those skills and is arguably a skill that distinguishes members of the visual arts (including Architecture) from other disciplines. From a web search of information posted by the American Academy of Opthamology, Visual Acuity is defined as an ability to discriminate fine details when looking at something and is often measured with the Snellen Eye Chart (the 20/20 eye test). In the context of this paper visual acuity refers to a subject’s capacity to discriminate useful abstractions in a visual field for the purposes of Visual Thinking- problem solving through seeing (Arnheim, 1969, Laseau 1980, Hoffman 1998). The growing use of digital media and the expanding ability to assemble design ideas and images through point-and-click methods makes the cultivation and development of visual skills all the more important to today’s crop of young architects. The advent of digital media also brings into question the traditional, static 2d methods used to build visual skills in a design education instead of promoting active 3d methods for teaching, learning and developing visual skills. Interactive digital movies provide an excellent platform for promoting visual acuity, and correlating the innate mechanisms of visual perception with the abstractions and notational systems used in professional discourse. In the context of this paper, pedagogy for building visual acuity is being considered with regard to perception of the real world, for example the visual survey of an environment, a site or a street scene and how that visual survey works in conjunction with practice.
keywords Curriculum, Seeing, Abstracting, Notation
series eCAADe
email
last changed 2022/06/07 08:00

_id 11be
authors Ripper Kós, José
year 2001
title ICONES URBANOS: A CIDADE REVELADA A TRAVÉS DE MODELOS 3D (Urban Icons: The City Revealed Through 3D Models)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 19-21
summary This paper presents reflections raised during the research carried out at the Graduate Program of Urban Design (PROURB) of the Federal University of Rio de Janeiro. Our research group investigate the city of Rio de Janeiro through an analysis of its main architectural and urban icons using hypertext based on 3D models. The distinguished works by Walter Benjamin and Rem Koolhaas about Paris and New York are examined for their relationship to the theme. The Ministry of Education Building and its site analysis are presented as the prototype for the investigation of the city history in the XX Century.
series SIGRADI
email
last changed 2016/03/10 09:58

_id fc1f
authors Zhang, Z., Tsou, J.-Y. and Hall, T.W.
year 2001
title Web-Based Virtual-Reality for Collaboration on Urban Visual Environment Assessment
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 781-794
summary This research aims to facilitate public participation in urban landscape visual assessment (ULVA). To support virtual collaboration in ULVA, it is desirable to provide both quantitative analysis and 3D simulation over the Internet. Although the rendering of urban models in common web browser plug-ins often lacks vividness compared with native workstation applications, the integration of VRML modeling and Java programming proves effective in sharing and rendering urban scenes through a familiar web interface. The ULVA simulation supports not only static scene rendering, but also interactive functional simulations. They include the viewpoint setting up, view corridor and panorama generation. Although popular VRML viewers such as CosmoPlayer provide similar functions, users are often disoriented by the interface. The obfuscation inhibits people’s immersion in the virtual urban environment and makes the assessment inconvenient. To eliminate such disorientation and improve users’ feelings of immersion, we integrate both a two-dimensional map and a three-dimensional model of the urban area in the user interface. The interaction between 2D map and 3D world includes the matching of avatar positions, visualization of avatar posture, and the setting up of viewpoints and view corridors. To support a web-based urban planning process, the system adopts client/server architecture. The city map is managed by a specific database management system (DBMS) on the server side. Users may retrieve information for various “what if” simulations. The system automatically remodels the virtual environment to respond to users’ requests.
keywords Geographic Information Systems, Internet, Urban Landscape, Visual Assessment, Virtual Reality
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 6430
authors Jabi, Wassim (Ed.)
year 2001
title ACADIA 2001 [Conference Proceedings]
doi https://doi.org/10.52842/conf.acadia.2001
source Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1/ Buffalo (New York) 11-14 October 2001, 415 p.
summary The theme, which preceded my knowledge of ACADIA’s true age, resulted from a realization regarding the development and current state of CAD in Research, Education, and Practice. While I only got involved with ACADIA in the last half of its current life to date, I had the honor of studying with some of the early pioneers of CAD: 1) Harold Borkin, a founding member of ACADIA, 2) Jim Turner, a longtime ACADIAn, and a past ACADIA Conference organizer (actually the very first conference I attended), and 3) Ted Hall, another longtime ACADIAn. What I have learned from conversations with them and later witnessed for myself is a fundamental shift of focus in CAD from building tools to using tools. That is, while early CAD students, including myself, used to learn how to create software and tools to solve a particular problem, the current focus in the majority of schools that include a CAD component in their curriculum is on teaching the use of commercial software and/or the use of digital media in the design studio. One need only take a look at old list of courses that used to be offered in the CAD area and compare it with a new list to see this shift. Yet, one form of tool building that is continuing in a significant number of schools is the creation of scripts or small software modules (usually built using a visual editor) to create interactive systems for delivery over the web or on CD-ROM. Examples include the use of Macromedia Director or Flash for creating interactive digital titles. While this current state of affairs has increased the receptivity to digital tools and media, it does obscure an important fact. For knowledge to advance in this area, we need researchers who can not only use tools, but also invent new ones to solve new problems that are not addressed by the existing crop of commercial software. The more time we spend not educating our students in the art and science of building digital tools, the harder it will be to: 1) find teachers in the future with those skills, 2) advance and influence the development of the state-of-the-art in CAD, and 3) erase the use of CAD as a euphemism for slick computer-generated imagery. While not common, the tradition of tool building is still going on most notably in architecture schools with strong financial resources and those that offer doctoral level education. Commercial, governmental and business/education entities are also continuing the research tradition of tool building. ACADIA, as a reflection of the field it focuses on, has widened its scope to solicit papers that deal with CAD education and the use of CAD in practice. Thus, you will read in this book papers that focus on all three aspects: research, education, and practice and in some cases the intersection of two or more of those areas. Thankfully, ACADIA, while concerned with CAD in education has maintained its receptivity to basic research papers as well as a willingness to publish innovative papers in the area of practice. As chair of the technical committee, I made sure that the call for papers and the final selection reflects this desire. We should continue to emphasize the need for presenting this diversity of work in our annual conferences and I am optimistic that the ACADIA community is in support of this notion.
series ACADIA
email
more www.acadia.org
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_999925 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002