CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 718

_id 77c8
authors Wu, Wei and Ng, Edward
year 2001
title Accuracy and usability of daylighting simulation for designing buildings in urban sites
doi https://doi.org/10.52842/conf.caadria.2001.211
source CAADRIA 2001 [Proceedings of the Sixth Conference on Computer Aided Architectural Design Research in Asia / ISBN 1-86487-096-6] Sydney 19-21 April 2001, pp. 211-216
summary The unique urban environment of Hong Kong presents designers and students alike unique challenges. Firstly, rules of thumb not longer apply. Secondly, few design tools, mostly developed for low-rise open sites could be used. Advanced computational lighting simulation software could be used to address the design need of information. This study examined the accuracy of two daylighting simulation software: Lightscape and Desktop Radiance, under heavily obstructed urban conditions in Hong Kong. In addition, it evaluates the performance and usability of these two software packages from the designerís perspective. It can be reported that, with due care, both software give reasonably accurate results. However, from the designerís perspective, the look and feel of the two software, and the need for a priori knowledge of lighting design determine their eventual adoptability.
series CAADRIA
email
last changed 2022/06/07 07:57

_id 3645
authors Tsou, Jin-Yeu
year 2001
title Strategy on applying computational fluid dynamic for building performance evaluation
source Automation in Construction 10 (3) (2001) pp. 327-335
summary Predicting and evaluating building performance plays an important role in the training of responsible architects. Building performance includes issues such as: structural stability, acoustic quality, natural lighting, thermal comfort, and ventilation and indoor air quality. These types of analyses are often laborious, non-intuitive, and non-graphical. As a result, these important issues do not arouse the enthusiasm of architecture students or building professionals. The Chinese University of Hong Kong (CUHK) research team proposes to explore and develop a long-term strategy to apply scientific visualization on teaching and research in environmental technology and building performance. This paper presents the development process and results of research projects for applying computational fluid dynamics (CFD) on building performance evaluation. CFD On-line Teaching project's aim is to develop a web-based training course for architecture students to apply CFD simulation on design problem solving. Each lesson not only illustrates basic principles regarding airflow in the building design, it also contains CFD sample files with predefined flow cells for students to test different concepts. GiLin Temple project's aim is to apply CFD simulation on investigating the wind resistance of Tong Dynasty heavy timber structure. Airflow information generated in the project includes the visual representation of the pressure distribution and velocity field on all slices through the temple, and the tracking of particles as they flow around or through a building. The China housing residential airduct study focuses on simulating the indoor airflow regarding the airduct design of China Experimental Urban Housing Scheme. The visual representation of the pressure distribution and velocity field in the airducts provides vital information for helping China Housing Research Center improve the current design.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id a46a
authors Tsou, J.-Y., Lam, S. and Hall, T.W.
year 2001
title Integrating Scientific Visualization with Studio Education – Developing Design Options by Applying CFD
doi https://doi.org/10.52842/conf.acadia.2001.302
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 302-310
summary To meet the urgent need of education in environmentally responsive architecture, the Architecture Department of The Chinese University of Hong Kong has organized lectures and studios to provide students with knowledge and hands-on experience in environmental design strategies. Considering the context of Hong Kong with a hot-humid sub-tropical climate and hyper-dense urban environment, the current approach in the design studio education has been mainly based on intuition with very limited supports in terms of technical know-how and scientific evidence. Many students of architecture tend to follow established paradigms that have evolved through experience with similar projects. In this paper, we report the research findings of a pilot study that applied advanced scientific simulation skills in studio education designed to help students explore environmental design strategies during early stages of project design development.
keywords Scientific Visualization, Studio Education, Computer-Aided Architectural Design
series ACADIA
email
last changed 2022/06/07 07:57

_id 7526
authors Tsou, J.-Y., Yimin, Z. and Lam, S.
year 2001
title Improving Air Quality of Public Transport Interchanges - Design Strategies to integrate CFD simulation in early design process
doi https://doi.org/10.52842/conf.ecaade.2001.054
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 54-59
summary Indoor public transport interchanges (PTI) are ubiquitous in Hong Kong. In the hyperdense urban context, land use has been optimized through the design of complex public facilities. Owing to the use of diesel engines by public transport vehicles, the main pollutants are sulphur dioxide, nitrogen dioxide and carbon monoxides. Although the Hong Kong Government took measurements to improve the air quality in PTI, unfortunately, the problem has not been solved up to now. To effectively integrate the architectural design with efficient ventilation system to remove pollutants, designers and engineers need to predict and visualize the pollutant concentration and the time history of pollutant transfer during early stage of design. With time dependent computational fluid dynamics (CFD) simulation and the scientific visualization technology, architects and engineers could visualize the pollutant distribution in real time, and “what-if” scenarios could be investigated collaboratively. In this project, we have established a time-dependent CFD multiphase model to describe the pollutant concentration and the time history of pollutant transfer in PTI. On the basis of simulation results, several new design schemes are proposed and tested.
keywords Public Transport Interchanges, Early Design Process, Computational Fluid Dynamics Simulation (CFD) & Scientific Visualization
series eCAADe
email
last changed 2022/06/07 07:57

_id ga0208
id ga0208
authors Wang, Xu and Lau, Siu Yu
year 2002
title Pursuing New Urban Living Environment In The New Millennium: Projecting The Future Of High-Rise And High Density Living In Hong Kong
source International Conference on Generative Art
summary High-rise and high density living is a way of life for most of the 6.7 Million population of Hong Kong. The merits and demerits affiliated with Hong Kong’s compact urban form continues to attract academic deliberations and debates over the acceptability of such urban form as an alternative to urban sprawl for future city and urban life-style. This paper traces the development and causes for Hong Kong’s high-rise and high-density urban form over the past fifty years or so, and focuses its discussions on the pros and cons of high-rise living based on subjective user survey in late 2001 and early 2002. Because of an articulated land shortage, acute topography, escalating population growth, and shortage of time, Hong Kong government and planners have little options left but to adopt vertical development, resulted in a densely and mixed use urban habitat packed with closely built high-rise residences and commercial buildings. From the survey, it is clear that mixed and intensive land use, high quality of living and recreation infrastructure, efficient public transportation network, and segregation of pedestrian and traffic can facilitate the performance of compact urban form. In addition, most of Hong Kong families have been accustomed to high-rise living pattern and the disadvantages such living pattern might cause on its resident’s social communication and children education are readily ignored by most of the people. Based on the analysis of current living situation and development trends in Hong Kong, new pattern of future city form is conceived to be a likely applicable development way in a coastal city with such high density as Hong Kong in the next 50 years. Design countermeasures are presented in this paper to suggest ways of alleviating the pressure of the forever-increasing house requirements in Hong Kong. high-density, high-rise, compact city, social acceptance, life-style.
keywords high-density, high-rise, compact city, social acceptance, life-style
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 0b74
authors Chow, B., Lam, S. and Tsou, J.
year 2001
title The impact of computer-based design tools for daylighting simulation and prediction for a built environment
doi https://doi.org/10.52842/conf.caadria.2001.169
source CAADRIA 2001 [Proceedings of the Sixth Conference on Computer Aided Architectural Design Research in Asia / ISBN 1-86487-096-6] Sydney 19-21 April 2001, pp. 169-179
summary This paper investigates the application of computer daylighting simulation to provide qualitative assessment and comparison for designers to improve the built environment especially for non-technical architecture students. A comprehensive study was carried out to evaluate different daylighting design tools and to identify the limitation of current systems in the academic field. The paper will focus mainly on the dynamic information exchange between scientific visualization and the design decision-making process. Both architectural design studio environment and practical design problems in the real world setting were experimented and evaluated. Two case studies are presented: a proposed gallery space for a museum, and a detail architectural design of a community church. Architectural design alterations are proposed, simulated and discussed. The recursive feedback of the designers are studied and documented. Through a combination of qualitative assessment and comparison, designers can evaluate and compare different design options in the computing environment before implementing in the real world situation.
series CAADRIA
email
last changed 2022/06/07 07:56

_id f9d8
authors De Valpine, John and Black, Benjamin
year 2001
title Physically Based Daylight Simulation and Visualization
doi https://doi.org/10.52842/conf.acadia.2001.406
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 406-407
summary While architects typically agree that daylight is a powerful influence for design, architects rarely collect and use daylighting data to help make informed design decisions. This deficiency exists partially because there are no common tools available to provide useful and accessible data. The objective of this project is to provide accurate daylighting data of a prominent urban building site and present it in a clear way so that the architects can make well informed design decisions that respond to site daylighting conditions and improve architectural performance. An urban 3D computer model was created with AutoCad, a commercial CAD application. Daylight was simulated with Radiance, the physically based rendering engine developed at Lawrence Berkeley National Laboratory. The standard CIE model for clear sky and sun was used to produce over 500 images that represent daylight conditions for three different times of year at 10 minute intervals in both luminance and illuminance formats. The simulation data was packaged for analysis with a unique browser tool that enables the architect to easily cycle through the data to evaluate and compare behavior by time of day and by season. The architect can also toggle between luminance and illuminance format to easily visualize both qualitative and quantitative data. The exploration and use of the simulation data can be applied with sensitivity to inform the design and decision making process for the exterior building site.
series ACADIA
last changed 2022/06/07 07:55

_id 8a28
authors Ng, E., Yan-Yung, P., Lam, K., Wei, W. and Nagakura, T.
year 2001
title Advanced lighting simulation in architectural design in the tropics
source Automation in Construction 10 (3) (2001) pp. 365-379
summary This paper outlines a 2-year research program that the team attempted to apply one of the most powerful computational lighting simulation softwares, to assist in the daylighting design of an actual building in the tropics. The validation studies, which were carried out in the Asian Civilisation Museum (ACM) in Singapore, showed that can be used to predict the internal illuminance with a high degree of accuracy under overcast sky conditions. The experimental application of to daylighting investigation of the ACM further supports its capabilities as well as its accuracy. Using to study two daylighting control options (curtains and louvers), it can be found that louvers are more effective than curtains as daylighting control devices, and that the angle of the louvers have more effect than their reflectance on daylight penetration and distribution.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 33e9
authors Paranandi, Murali
year 2001
title Computer-Aided Daylight Simulation - A Hybrid Approach to Recording and Exploring Ideas
doi https://doi.org/10.52842/conf.ecaade.2001.534
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 534-539
summary Accuracy and facility for iterative exploration are two of the most appealing promises of computer use in architectural design. In this paper, we discuss daylighting visualization, a very important aspect of the architectural design process, where computers do not yet fulfill these promises. We initiated a project to understand the reasons for this and to develop methods to deal with it in architectural design education. We report our work in progress, which combines creative thinking with scientific procedures to resolve the bottlenecks in computer graphics technologies making them suitable for design exploration. Our strategy seeks to fill the gaps in the science of photo realistic visualization with time tested physical modeling techniques. We present some of our student work based on this strategy.
keywords Photorealism, Rendering, Daylighting Design, Visualization, Simulation, Scale (Physical) Models, Design Education
series eCAADe
email
last changed 2022/06/07 08:00

_id avocaad_2001_13
id avocaad_2001_13
authors Alexander Koutamanis
year 2001
title Modeling irregular and complex forms
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Computational technologies provide arguably the first real opportunity architectural design has had for a comprehensive description of built form. With the advent of affordable computer-aided design systems (including drafting, modeling, visualization and simulation tools), architects believe they can be in full control of geometric aspects and, through these, of a wide spectrum of other aspects that are implicit or explicit in the geometric representation. This belief is based primarily on the efficiency and effectiveness of computer systems, ranging from the richness and adaptability of geometric primitives to the utility of geometric representations in simulations of climatic aspects. Such capabilities support attempts to design and construct more irregular or otherwise complex forms. These fall under two main categories: (1) parsing of irregularity into elementary components, and (2) correlation of the form of a building with complex geometric structures.The first category takes advantage of the compactness and flexibility of computational representations in order to analyse the form of a design into basic elements, usually elementary geometric primitives. These are either arranged into simple, unconstrained configurations or related to each other by relationships that define e.g. parametric relative positioning or Boolean combinations. In both cases the result is a reduction of local complexity and an increase of implicit or explicit relationships, including the possibility of hierarchical structures.The second category attempts to correlate built form with constraints that derive usually from construction but can also be morphological. The correlation determines the applicability of complex geometric structures (minimally ruled surfaces) to the description of a design. The product of this application is generally variable in quality, depending upon the designer's grounding in geometry and his ability to integrate constraints from different aspects in the definition of the design's geometry.Both categories represent a potential leap forward but are also equally hampered by the rigidity of the implementation mechanisms upon which they rely heavily. The paper proposes an approach to making these mechanisms subordinate to the cognitive and technical aspects of architectural thinking through fuzzy modeling. This way of modeling involves a combination of (a) canonical forms, (b) tolerances around canonical forms and positions, (c) minimal and maximal values, (d) fuzzy boundaries, and (e) plastic interaction between elements based on the dual principles of local intelligence and autonomy. Fuzzy models come therefore closer to the intuitive manners of sketching, while facilitating transition to precise and complex forms. The paper presents two applications of fuzzy modeling. The first concerns the generation of schematic building layouts, including adaptive control of programmatic requirements. The second is a system for designing stairs that can adapt themselves to changes in their immediate environment through a fuzzy definition of geometric and topological parametrization.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2178
authors Chevrier, C. and Perrin, J.P.
year 2001
title Interactive 3D reconstruction for urban areas. An image based tool
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 753-765
summary Urban applications (for example arrangement, new buildings, virtual sightseeing and walkthrough) require a three dimensional (3D) geometrical model of town areas. However, most of them do not need an accurate model of reality. Such model would occupy a considerable memory space and would be too slow to handle. Architects, urban designers and civil engineers can find in our tool a medium to conceive their projects. Some types of software exist but they do not correspond exactly to our needs. Consequently we have conceived and developed an interactive tool for virtual 3D rough reconstruction of buildings. The software development has been performed in the Maya environment (ALIAS Wavefront) with C++ language and MEL (Maya Embedded Language). A constraint we set for ourselves was the use of only light devices (for easy transportation) at low price (everybody can buy such devices). The principle is to overlay on the scanned photograph of the area we want to deal with, the two dimensional (2D) cadastral plan displayed from the same viewpoint as the picture. Then each building body can be extruded from its ground polygon and the roof can be created from what the user sees on the picture. A constraint is the flatness of the polygonal surfaces. Our application context was the town of Nancy in France for which some areas have been reconstructed. Some pictures have been used as textures for polygonal surfaces, giving more reality effect to the simulation.
keywords Geometrical Modelling, Architecture, Urban Area, Virtual Visit
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 642c
authors Chiu, Mao-Lin and Lan, Ju-Hung
year 2001
title Discovery of historical Tainan: a digital approach
source Automation in Construction 10 (3) (2001) pp. 355-364
summary This paper depicts the use of computers in the urban studies, and provides a digital way of understanding historical buildings and the relations with the city. "Discovery of Historical Tainan" is a joint project among historians and computer-aided design (CAD) researchers to preserve historical evidences of the central city of Tainan by using computer visual simulation. The importance of historical scenes is revealed by the efforts of integration with digital information and models. The process of modeling and the issues of computer visual simulation in the large-scale urban models are presented.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 04f2
authors Cimerman, Benjamin
year 2001
title Clients, architects, houses and computers: Experiment and reflection on new roles and relationships in design
doi https://doi.org/10.52842/conf.acadia.2001.100
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 100-109
summary This paper reports on recent work that focused on the potential impact of standard computer technology on the relationship between client and architect in the context of residential design. A study of software applications a client could use to develop and evaluate ideas exposed the dearth of software available for the design of spatial complexity by individuals without advanced computer skills, and led to the design of a specific piece of software we call “Space Modeler.” It was prototyped using off-the-shelf virtual reality technology, and tested by a group of freshmen students. The paper discusses the specificities of the software and provides analysis and reflection based on the results of the test, both in terms of design artifacts and users’ comments. The paper concludes that the evolution of the interface to electronic environments is a matter of interest for those concerned with rethinking the training, role and activity of the architect. In the near future prospective homeowners may be able to experience and experiment with the space of their home before it is built. How can the profession embrace new information technology developments and appropriate them for the benefits of society at large?
keywords Design Software, Design Participation, Visualization, Simulation
series ACADIA
email
last changed 2022/06/07 07:52

_id 7e02
authors Elger, Dietrich and Russell, Peter
year 2002
title The Virtual Campus: A new place for (lifelong) learning?
doi https://doi.org/10.52842/conf.ecaade.2002.472
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 472-477
summary 472 eCAADe 20 [design e-ducation] Modeling Real and Virtual Worlds Session 13 In the early spring of 2001 a collection of German universities founded a virtual faculty of architecture, which was named „Liquid Campus“. Current thinking about future forms of education in the field of architecture combined with over 4 years of experience with net-based design studios, led to questions about the future of existing universities, their buildings and their use. This problem was put to 43 students in the form of a design exercise to create a place for a virtual university. In the current situation, in which the administration of knowledge is more and more located on the internet, and even the so-called meeting places themselves can be virtualised through the help of video-conference-software, the exercise was to design a virtual campus in the framework and to carry out this design work in a simulation of distributed practice. Initial criticism of the project came from the students in that exemplary working methods were not described, but left for the students to discover on their own. The creation of a concept for the Liquid Campus meant that the participants had to imagine working in a world without the face to face contacts that form the basis (at present) of personal interaction. Additionally, the assignment to create or design possible links between the real and the virtual was not an easy task for students who normally design and plan real physical buildings. Even the tutors had difficulties in producing focused constructive criticism about a virtual campus; in effect the virtualisation of the university leads to a distinctive blurring of its boundaries. The project was conducted using the pedagogical framework of the netzentwurf.de; a relatively well established Internet based communication platform. This means that the studio was organised in the „traditional“ structure consisting of an initial 3 day workshop, a face to face midterm review, and a collective final review, held 3,5 months later in the Museum of Communication in Frankfurt am Main, Germany. In teams of 3 (with each student from a different university and a tutor located at a fourth) the students worked over the Internet to produce collaborative design solutions. The groups ended up with designs that spanned a range of solutions between real and virtual architecture. Examples of the student’s work (which is all available online) as well as their working methods are described. It must be said that the energy invested in the studio by the organisers of the virtual campus (as well as the students who took part) was considerably higher than in normal design studios and the paper seeks to look critically at the effort in relation to the outcomes achieved. The range and depth of the student’s work was surprising to many in the project, especially considering the initial hurdles (both social and technological) that had to overcome. The self-referential nature of the theme, the method and the working environment encouraged the students to take a more philosophical approach to the design problem. The paper explores the implications of the student’s conclusions on the nature of the university in general and draws conclusions specific to architectural education and the role of architecture in this process.
series eCAADe
email
last changed 2022/06/07 07:55

_id 7c0e
authors Koutamanis, Alexander and Den Hartog, Peter
year 2001
title Simulation and representation. Learning from airflow analyses in buildings
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 657-666
summary The simulation of environmental aspects is a current priority in design research and practice. The availability of relatively efficient and reliable simulation systems and the emphasis on environmental aspects throughout a building’s lifecycle combine to stimulate exploration of aspects such as lighting and air quality by computational means. Nevertheless, a frequent complaint is that the addition of such simulations makes design information processing timeconsuming and cumbersome, thereby increasing uncertainty and indecision. Therefore, it is imperative that simulation is integrated in the strategies and tools normally used by the digitally-minded architect. In this respect a central issue is the relations between the simulation and the design representation used as connecting tissue for the whole design environment. Input of design information in the simulation means identification of relevant objects, aspects, parts and properties of these objects, as well as relationships between objects. The explicit description of objects such as spaces, doors and windows in the design representation allows for ready extraction of relevant information, including automatic recognition of relationships such as adjacency between a window and a space. The addition of information specific to the airflow analysis was resolved by the extension of the representation to cover front-end service components such as inlets and outlets and general properties (annotations) such as activities accommodated in a space and the primary choice of cooling and heating subsystems. The design representation is also the obvious target for the output of the simulation (feedback). Visualization of airflow in terms of the resulting voxels makes effortless and enjoyable viewing but merely allowing the visualization to coexist with the representation of spaces and building elements does not provide design guidance. One way of achieving that is by treating spaces not as integral entities but as containers of relevant surfaces. These surfaces determine the adaptive subdivision of the space and function as attractors for voxel clustering.
keywords Simulation, Representation, Visualization
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 470c
authors Kuenstle, Michael W.
year 2001
title COMPUTATIONAL FLUID DYNAMIC APPLICATIONS IN WIND ENGINEERING FOR THE DESIGN OF BUILDING STRUCTURES IN WIND HAZARD PRONE AREAS (Computational Flow Dynamic Applications in Wind Engineering for the Design of Building Structures in Wind Hazard Prone Urban Areas)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 67-70
summary This paper documents an initial study investigating the integration of Computational Fluid Dynamics (CFD) simulation modeling into wind mitigation design for building structures located in wind hazard prone areas. Some of the basic principles and theoretical concepts of fluid flow and wind pressure as well as their translation into design criteria for structural analysis and design are reviewed, followed by a discussion of a CFD application case study for a simulated hurricane force wind flow over a low rectangular building using the k-epsilon turbulence model. The techniques and parameters for development of the simulation are discussed and some preliminary interpretations of the results are evaluated by comparing its predictions against existing experimental and analytical data, with special attention paid to the American Society of Civil Engineers, Minimum Design Loads for Buildings and Other Structures, ACSE 7-98 and the Uniform Building Code .
series SIGRADI
email
last changed 2016/03/10 09:54

_id 39ea
authors Maver, T., Harrison, C. and Grant, M.
year 2001
title Virtual Environments for Special Needs. Changing the VR Paradigm
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 151-159
summary The normal application of Virtual Reality is to the simulation of environments, which are in some way special - remote, hazardous or purely imaginary. This paper describes research and development work which changes the paradigm by simulating perfectly ordinary buildings for special people. Some 15% of the population have some form of physical impairment - a proportion which is likely to rise in line with an ageing population. New legislation, such as the UK Disability Discrimination Act places additional responsibility on building owners to ensure adequate access for people with an impairment and this in turn will place additional responsibility on the architect. Current methods of auditing access for new building are primitive and require the auditor to interpret plans/sections of the proposed building against a checklist of requirements specific to the special need. This paper reports on progress in the use of an immersive VR facility to simulate access to buildings for two broad classes of user: i) those with a mobility impairment; ii) those with visual impairment. In the former case, a wheelchair motion platform has been designed which allows the wheelchair user to navigate the virtual building; a brake and motor connected to the rollers on which the wheelchair sits facilitate the effects of slope and surface resistance. In the latter case, the main categories and degrees of visual impairment can be simulated allowing architects to assess the contribution of form, colour and signage to safe access.
keywords Virtual Reality, Mobility Impairment, Visual Impairment, Access, Simulation
series CAAD Futures
email
last changed 2006/11/07 07:22

_id cf2011_p163
id cf2011_p163
authors Park, Hyoung-June
year 2011
title Mass-Customization in the Design of 4,000 Bus Stops
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 265-278.
summary In Hawaii, ‚"TheBus‚" has been a main transportation system since 1971. Considering the high cost of living in Hawaii and the absence of a rail system, the use of ‚"TheBus‚" has been an instrumental vein of the city life in Honolulu with rhythmical pauses at about 4,000 bus stops in Honolulu. However, existing undifferentiated bus stops are developed from a cost effective mass production system so that they have been problematic for satisfying specific needs from various site conditions. In this research, an integrated computational method of mass-customization for designing 4,000 bus stops is introduced. According to various site conditions, the design of each bus stop is customized. Unlike the mass‚Äêproduced bus stops commonly seen in cities today, the proposed computational method in this paper produces bus stop design outcomes that fit into the physical characteristics of the location in which they are installed. Mass-customization allows for the creation and production of unique or similar buildings and building components, differentiated through digitally‚Äêcontrolled variation (Kolarevic, 2003). The employment of a computational mass‚Äêcustomization in architectural design extends the boundary of design solutions to the satisfaction of multi-objective requirements and unlimited freedom to search alternative solutions (Duarte, 2001; Caldas, 2006). The computational method developed in this paper consists of 1) definition of a prototype, 2) parametric variation, 3) manual deformation, and 4) simulation based deformation. The definition of a prototype is the development of a basic design to be transformed for satisfying various conditions given from a site. In this paper, the bus stop prototype is developed from the analysis of more than 300 bus stops and the categorization of the existing bus stops according to their physical conditions, contextual conditions, climatic conditions, and existing amenities. Based upon the outcome of the analysis, the design variables of a bus stop prototype are defined. Those design variables then guide the basic physical parameters for changing the physical configuration of the prototype according to a given site. From this, many possible design outcomes are generated as instances for further developments. The process of manual deformation is where the designer employs its intuition to develop the selected parametric variation. The designer is compelled to think about the possible implication derived from formal variation. This optional process allows every design decision to have a creative solution from an individual designer with an incidental quality in aesthetics, but substantiated functional quality. Finally the deformation of the selection is guided and controlled by the influence of sun direction/ exposure to the selection. The simulation based deformation starts with the movement of the sun as the trigger for generating the variations of the bus stop prototype. The implementation of the computational method was made within the combination of MEL (Maya Enbedded Language), autodesk MAYA and Ecotect environment.
keywords mass-customization, parametric variation, simulation based deformation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 4112
authors Raposo, M., Sampio, M. and Raposo, P.
year 2001
title A City Simulator
doi https://doi.org/10.52842/conf.acadia.2001.052
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 052-061
summary This paper presents a new computer model for city skyline simulation. It works by shaping medium and high-rise buildings to their best performance. This new tool was conceived to simulate and analyze cities where tall buildings are emerging on pre-existing urban schemes with irregular geometry and where inter-building spacing is proportional to the height of built blocks. The model is based on two main inputs, namely: the description of the network formed by land subdivision of the actual or irregular urban schemes, and the building regulations quantitative parameters based on solar obstruction angles and maximum usability rates. By combining data from these inputs, the computer model presents the dimensions of the building envelop for maximum profitability of each plot. That way the architect will immediately know the number of floors that leads to the maximum built area, for certain plots. In addition to this, the built blocks images are presented in the screen, as well as corresponding tables and Cartesian graphs. Furthermore, this model can also be used for analyzing city skyline for large urban areas. This analysis can range from a mere visual inspection of the variety of images built blocks will take under different legal constraints, to a more intricate analysis of how city skyline and built area, amongst others, are affected by different the regulations.
keywords Computing City Shape, Land use performance, Computing city skyline, Urban network design, Computing City Architecture.
series ACADIA
email
last changed 2022/06/07 08:00

_id 0767
authors Ries, Robert and Mahdavi, Ardeshir
year 2001
title Evaluation of Design Performance through Regional Environmental Simulation
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 629-642
summary Computational building simulation tools have historically viewed buildings as artefacts isolated and disconnected from their contexts. At most, the external environmental conditions have been viewed as outside influences or stressors encapsulated in, for example, weather files for energy simulation or sky models for lighting simulation. In the field of environmental assessment, life cycle analysis (LCA) has followed a similar path of isolating the artefact under analysis from its context. Modeling the building artefact as a participant in multiple contexts over time so that the interactions and dependencies between the regions and the building can be adequately explored in the design process requires support for the modeling of regional areas, as well as the artefact and the related life cycle processes. Using computational design and evaluation tools can provide the computing capability required for effective design decision support. This paper presents the implementation of the affordance impact assessment method and the regional environmental simulation in Ecologue. Ecologue is the computational tool for life cycle environmental impact assessment in the SEMPER integrated building design and simulation system. Ecologue contains a building model and an environmental model. The building model is automatically derived from the shared building model of the SEMPER system. The environmental model is a combination of a representation of the processes and emissions occurring in the life cycle of buildings and an impact assessment model. The impact assessment model is a combination of a context model of the physical characteristics of a region and a sub-regional fate and transport model based on the fugacity concept.
keywords Environmental Simulation, Design Decision Support, Life Cycle Analysis
series CAAD Futures
email
last changed 2006/11/07 07:22

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_342539 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002