CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 715

_id cf2011_p051
id cf2011_p051
authors Cote, Pierre; Mohamed-Ahmed Ashraf, Tremblay Sebastien
year 2011
title A Quantitative Method to Compare the Impact of Design Mediums on the Architectural Ideation Process.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 539-556.
summary If we compare the architectural design process to a black box system, we can assume that we now know quite well both inputs and outputs of the system. Indeed, everything about the early project either feasibility studies, programming, context integration, site analysis (urban, rural or natural), as well as the integration of participants in a collaborative process can all be considered to initiate and sustain the architectural design and ideation process. Similarly, outputs from that process are also, and to some extent, well known and identifiable. We are referring here, among others, to the project representations or even to the concrete building construction and its post-evaluation. But what about the black box itself that produces the ideation. This is the question that attempts to answer the research. Currently, very few research works linger to identify how the human brain accomplishes those tasks; how to identify the cognitive functions that are playing this role; to what extent they operate and complement each other, and among other things, whether there possibly a chain of causality between these functions. Therefore, this study proposes to define a model that reflects the activity of the black box based on the cognitive activity of the human brain. From an extensive literature review, two cognitive functions have been identified and are investigated to account for some of the complex cognitive activity that occurs during a design process, namely the mental workload and mental imagery. These two variables are measured quantitatively in the context of real design task. Essentially, the mental load is measured using a Bakan's test and the mental imagery with eyes tracking. The statistical software G-Power was used to identify the necessary subject number to obtain for significant variance and correlation result analysis. Thus, in the context of an exploratory research, to ensure effective sample of 0.25 and a statistical power of 0.80, 32 participants are needed. All these participants are students from 3rd, 4th or 5th grade in architecture. They are also very familiar with the architectural design process and the design mediums used, i.e., analog model, freehand drawing and CAD software, SketchUp. In three experimental sessions, participants were asked to design three different projects, namely, a bus shelter, a recycling station and a public toilet. These projects were selected and defined for their complexity similarity, taking into account the available time of 22 minutes, using all three mediums of design, and this in a randomly manner to avoid the order effect. To analyze the two cognitive functions (mental load and mental imagery), two instruments are used. Mental imagery is measured using eye movement tracking with monitoring and quantitative analysis of scan paths and the resulting number and duration of participant eye fixations (Johansson et al, 2005). The mental workload is measured using the performance of a modality hearing secondary task inspired by Bakan'sworks (Bakan et al.; 1963). Each of these three experimental sessions, lasting 90 minutes, was composed of two phases: 1. After calibrating the glasses for eye movement, the subject had to exercise freely for 3 minutes while wearing the glasses and headphones (Bakan task) to get use to the wearing hardware. Then, after reading the guidelines and criteria for the design project (± 5 minutes), he had 22 minutes to execute the design task on a drawing table allowing an upright posture. Once the task is completed, the subject had to take the NASA TLX Test, on the assessment of mental load (± 5 minutes) and a written post-experimental questionnaire on his impressions of the experiment (± 10 minutes). 2. After a break of 5-10 minutes, the participant answered a psychometric test, which is different for each session. These tests (± 20 minutes) are administered in the same order to each participant. Thus, in the first experimental session, the subject had to take the psychometric test from Ekstrom et al. (1978), on spatial performance (Factor-Referenced Cognitive Tests Kit). During the second session, the cognitive style is evaluated using Oltman's test (1971). Finally, in the third and final session, participant creativity is evaluated using Delis-Kaplan test (D-KEFS), Delis et al. (2001). Thus, this study will present the first results of quantitative measures to establish and validate the proposed model. Furthermore, the paper will also discuss the relevance of the proposed approach, considering that currently teaching of ideation in ours schools of architecture in North America is essentially done in a holistic manner through the architectural project.
keywords design, ideation process, mental workload, mental imagery, quantitative mesure
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 0bab
authors Araya, Hirokazu and Kagoshima, Masayuki
year 2001
title Semi-automatic control system for hydraulic shovel
source Automation in Construction 10 (4) (2001) pp. 477-486
summary A semi-automatic control system for a hydraulic shovel has been developed. Using this system, unskilled operators can operate a hydraulic shovel easily and accurately. A mathematical control model of a hydraulic shovel with a controller was constructed and a control algorithm was developed by simulation. This algorithm was applied to a hydraulic shovel and its effectiveness was evaluated. High control accuracy and high-stability performance were achieved by feedback plus feedforward control, nonlinear compensation, state feedback and gain scheduling according to the attitude.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id avocaad_2001_22
id avocaad_2001_22
authors Jos van Leeuwen, Joran Jessurun
year 2001
title XML for Flexibility an Extensibility of Design Information Models
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The VR-DIS research programme aims at the development of a Virtual Reality – Design Information System. This is a design and decision support system for collaborative design that provides a VR interface for the interaction with both the geometric representation of a design and the non-geometric information concerning the design throughout the design process. The major part of the research programme focuses on early stages of design. The programme is carried out by a large number of researchers from a variety of disciplines in the domain of construction and architecture, including architectural design, building physics, structural design, construction management, etc.Management of design information is at the core of this design and decision support system. Much effort in the development of the system has been and still is dedicated to the underlying theory for information management and its implementation in an Application Programming Interface (API) that the various modules of the system use. The theory is based on a so-called Feature-based modelling approach and is described in the PhD thesis by [first author, 1999] and in [first author et al., 2000a]. This information modelling approach provides three major capabilities: (1) it allows for extensibility of conceptual schemas, which is used to enable a designer to define new typologies to model with; (2) it supports sharing of conceptual schemas, called type-libraries; and (3) it provides a high level of flexibility that offers the designer the opportunity to easily reuse design information and to model information constructs that are not foreseen in any existing typologies. The latter aspect involves the capability to expand information entities in a model with relationships and properties that are not typologically defined but applicable to a particular design situation only; this helps the designer to represent the actual design concepts more accurately.The functional design of the information modelling system is based on a three-layered framework. In the bottom layer, the actual design data is stored in so-called Feature Instances. The middle layer defines the typologies of these instances in so-called Feature Types. The top layer is called the meta-layer because it provides the class definitions for both the Types layer and the Instances layer; both Feature Types and Feature Instances are objects of the classes defined in the top layer. This top layer ensures that types can be defined on the fly and that instances can be created from these types, as well as expanded with non-typological properties and relationships while still conforming to the information structures laid out in the meta-layer.The VR-DIS system consists of a growing number of modules for different kinds of functionality in relation with the design task. These modules access the design information through the API that implements the meta-layer of the framework. This API has previously been implemented using an Object-Oriented Database (OODB), but this implementation had a number of disadvantages. The dependency of the OODB, a commercial software library, was considered the most problematic. Not only are licenses of the OODB library rather expensive, also the fact that this library is not common technology that can easily be shared among a wide range of applications, including existing applications, reduces its suitability for a system with the aforementioned specifications. In addition, the OODB approach required a relatively large effort to implement the desired functionality. It lacked adequate support to generate unique identifications for worldwide information sources that were understandable for human interpretation. This strongly limited the capabilities of the system to share conceptual schemas.The approach that is currently being implemented for the core of the VR-DIS system is based on eXtensible Markup Language (XML). Rather than implementing the meta-layer of the framework into classes of Feature Types and Feature Instances, this level of meta-definitions is provided in a document type definition (DTD). The DTD is complemented with a set of rules that are implemented into a parser API, based on the Document Object Model (DOM). The advantages of the XML approach for the modelling framework are immediate. Type-libraries distributed through Internet are now supported through the mechanisms of namespaces and XLink. The implementation of the API is no longer dependent of a particular database system. This provides much more flexibility in the implementation of the various modules of the VR-DIS system. Being based on the (supposed to become) standard of XML the implementation is much more versatile in its future usage, specifically in a distributed, Internet-based environment.These immediate advantages of the XML approach opened the door to a wide range of applications that are and will be developed on top of the VR-DIS core. Examples of these are the VR-based 3D sketching module [VR-DIS ref., 2000]; the VR-based information-modelling tool that allows the management and manipulation of information models for design in a VR environment [VR-DIS ref., 2000]; and a design-knowledge capturing module that is now under development [first author et al., 2000a and 2000b]. The latter module aims to assist the designer in the recognition and utilisation of existing and new typologies in a design situation. The replacement of the OODB implementation of the API by the XML implementation enables these modules to use distributed Feature databases through Internet, without many changes to their own code, and without the loss of the flexibility and extensibility of conceptual schemas that are implemented as part of the API. Research in the near future will result in Internet-based applications that support designers in the utilisation of distributed libraries of product-information, design-knowledge, case-bases, etc.The paper roughly follows the outline of the abstract, starting with an introduction to the VR-DIS project, its objectives, and the developed theory of the Feature-modelling framework that forms the core of it. It briefly discusses the necessity of schema evolution, flexibility and extensibility of conceptual schemas, and how these capabilities have been addressed in the framework. The major part of the paper describes how the previously mentioned aspects of the framework are implemented in the XML-based approach, providing details on the so-called meta-layer, its definition in the DTD, and the parser rules that complement it. The impact of the XML approach on the functionality of the VR-DIS modules and the system as a whole is demonstrated by a discussion of these modules and scenarios of their usage for design tasks. The paper is concluded with an overview of future work on the sharing of Internet-based design information and design knowledge.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 4112
authors Raposo, M., Sampio, M. and Raposo, P.
year 2001
title A City Simulator
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 052-061
doi https://doi.org/10.52842/conf.acadia.2001.052
summary This paper presents a new computer model for city skyline simulation. It works by shaping medium and high-rise buildings to their best performance. This new tool was conceived to simulate and analyze cities where tall buildings are emerging on pre-existing urban schemes with irregular geometry and where inter-building spacing is proportional to the height of built blocks. The model is based on two main inputs, namely: the description of the network formed by land subdivision of the actual or irregular urban schemes, and the building regulations quantitative parameters based on solar obstruction angles and maximum usability rates. By combining data from these inputs, the computer model presents the dimensions of the building envelop for maximum profitability of each plot. That way the architect will immediately know the number of floors that leads to the maximum built area, for certain plots. In addition to this, the built blocks images are presented in the screen, as well as corresponding tables and Cartesian graphs. Furthermore, this model can also be used for analyzing city skyline for large urban areas. This analysis can range from a mere visual inspection of the variety of images built blocks will take under different legal constraints, to a more intricate analysis of how city skyline and built area, amongst others, are affected by different the regulations.
keywords Computing City Shape, Land use performance, Computing city skyline, Urban network design, Computing City Architecture.
series ACADIA
email
last changed 2022/06/07 08:00

_id 9de9
authors Laakso, Mikko
year 2001
title Practical Navigation in Virtual Architectural Environments
source Helsinki University of Technology, Espoo, Finland
summary The interest towards virtual reality (VR) and virtual environments (VE) is growing all the time. The applications being developed for VE run a wide spectrum, from games to business planning. This thesis concentrates on navigation in virtual architectural environments, movement in worlds that are very similar to our own. Navigation in a virtual world should be practical, intuitive and simple. Unfortunately, it is very often far from that - for some reason the usability issues in VEs have been usually left with little attention. Currently it is easy for a user to get lost and disoriented when traveling in a VE. This situation must change, navigating through virtual environments can no longer be considered a task reserved for the experts only. 3D-worlds and architectural applications for the common user require new, intuitive interface techniques. This thesis addresses issues related to both physical and cognitive aspects of navigation as well as theoretical models that bind them together. In the technology survey of this thesis, the virtual environment technology is presented. Different visual display systems, new input devices and some 3D user interface design aspects are described. The literature survey section discusses the main issues concerning navigation theory. The two parts of navigation, travel and wayfinding, are described in detail. The major challenges are discussed and some solutions and various research results are presented. A major part of the thesis consists of the description of HCNav, a new navigation system developed by the author. The system was constructed for use in the virtual room at Helsinki University of Technology. The purpose of HCNav is to provide a very intuitive and practical navigation interface. Three new experimental input devices, namely custom wand, data glove and speech recognition system, were tested. Another important part of the work is to evaluate the effectiveness of the HCNav system. A usability test was conducted to determine if the use of HCNav was actually improving navigation performance. Twelve subjects participated in a test where HCNav was compared with a traditional navigation software used previously in the virtual room. The experiment setup has been described and the results analyzed. The results are promising and show that the navigation methods adopted in HCNav are clearly better.
keywords Virtual Environments, Navigation, Usability
series thesis:MSc
last changed 2003/02/12 22:37

_id 4f37
authors Mahalingam, Ganapathy
year 2001
title POCHE' - Polyhedral Objects Controlled by Heteromorphic Effectors
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 603-614
summary This paper takes the architectural concept of poche' and uses it to explore new possibilities in transforming polyhedra with effectors. In many computer-aided design systems, architectural entities are represented as well-formed polyhedra. Parameters and functions can be used to modify the forms of these polyhedra. For example, a cuboid can be transformed by changing its length, breadth and height, which are its parameters. In a more complex example, a polyhedron can be transformed by a set of user-defined functions, which control its vertices, edges and faces. These parameters and functions can further be embodied as effectors that control and transform the polyhedra in extremely complex ways. An effector is an entity, which has a transforming effect on another entity or system. An effector is more complex than a parameter or function. An effector can be a modelled as a virtual computer. Effectors can take on many roles that range from geometric transformation agents and constraints to performance criteria. The concept of the poche', made famous by Venturi is familiar to architects. The poche' is a device to mediate the differences between an interior and an exterior condition or between two interior conditions. In a poche', the role of the effector changes from being an agent that acts on a polyhedron from the outside, to an agent that acts as a mediator between an interior polyhedron and an exterior polyhedron, which represent interior and exterior environments respectively. This bi-directionality in the role of the effector allows a wide range of architectural responses to be modelled. The effector then becomes an interface in the true sense of the word. This concept will work best in a threedimensional or four-dimensional representational world but can be used effectively in a two-dimensional representational world as well. The application of this concept in design systems is explored with examples drawn from the work of the author, and practitioners who are using the concept of effectors in their work. A brief discussion of how this technique can evolve in the future is presented.
keywords Effectors, Abstract Machines, Design As Interface
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 3645
authors Tsou, Jin-Yeu
year 2001
title Strategy on applying computational fluid dynamic for building performance evaluation
source Automation in Construction 10 (3) (2001) pp. 327-335
summary Predicting and evaluating building performance plays an important role in the training of responsible architects. Building performance includes issues such as: structural stability, acoustic quality, natural lighting, thermal comfort, and ventilation and indoor air quality. These types of analyses are often laborious, non-intuitive, and non-graphical. As a result, these important issues do not arouse the enthusiasm of architecture students or building professionals. The Chinese University of Hong Kong (CUHK) research team proposes to explore and develop a long-term strategy to apply scientific visualization on teaching and research in environmental technology and building performance. This paper presents the development process and results of research projects for applying computational fluid dynamics (CFD) on building performance evaluation. CFD On-line Teaching project's aim is to develop a web-based training course for architecture students to apply CFD simulation on design problem solving. Each lesson not only illustrates basic principles regarding airflow in the building design, it also contains CFD sample files with predefined flow cells for students to test different concepts. GiLin Temple project's aim is to apply CFD simulation on investigating the wind resistance of Tong Dynasty heavy timber structure. Airflow information generated in the project includes the visual representation of the pressure distribution and velocity field on all slices through the temple, and the tracking of particles as they flow around or through a building. The China housing residential airduct study focuses on simulating the indoor airflow regarding the airduct design of China Experimental Urban Housing Scheme. The visual representation of the pressure distribution and velocity field in the airducts provides vital information for helping China Housing Research Center improve the current design.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id avocaad_2001_04
id avocaad_2001_04
authors Yong-seong Kim, Suk-Tae Kim
year 2001
title Abstract for AVOCAAD 2001 Conference
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary This study is on development for framework and implementation of the Web VR based Housing Design Solution System(VRDS). Architects, engineers and architectural consultants working on project through the network can use the VRDS system. The system should be used anywhere and whenever if project teams are connected on Internet. The system should have security protection for permitted users and the main data files for ongoing architectural projects. The main data files are linked with track recording file of users, date, time, and authority level and should be traced to previous version whenever authority requires it. The system is integration of Client Interface System and Server Management System. The Client User Interface System is integrated with Web VR system, so user can use the system easily without heavy education and the system works like utility program. The Server Management System has authority on permission for information management of main data file and records the tracking data. Also the Server Management System provides resource and information in its database by the request of users. The system can be expanded to cyber architectural company with multimedia meeting, communication, discussion and remote management.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id db60
authors Af Klercker, J., Achten, H. and Verbeke, J.
year 2001
title AVOCAAD - A First Step Towards Distance Learning?
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 269-274
doi https://doi.org/10.52842/conf.ecaade.2001.269
summary In the industrial world knowledge is developed very fast. As most countries are depending on employees with a high level of knowledge and skills the term ”Life Long Learning” has been formulated and the concept is more and more accepted. Institutions of higher education are more and more involved in creating supplementary education more independent of time and place. Distance learning was originally carried out by ordinary mail, which was slow but might then have been the only solution for people in remote places. With the Internet and e-mail the distance-learning concept has got a far better tool, for instance better interaction facilities. Architects and engineers in practise are deeply involved in solving the problems of the present projects. Education which is independent of time and place must be of great interest to both parties. The AVOCAAD project has created an education model for students to meet the possibilities of CAAD. The education model can be used in a curriculum at a school as well as for distance learning. Among the possible experiences from it, the one concerning distance learning might be the most important future application of the system in architectural education. This paper sketches the pedagogical background and gives examples from other areas of knowledge, where distance learning is already in use. We will put the question how the AVOCAAD concept meets the experiences from distance learning.
keywords Distance Learning, Pedagogic, CAAD, E-Learning, AVOCAAD
series eCAADe
email
last changed 2022/06/07 07:54

_id 12e3
authors Ahmad Rafi, M.E., Che Zulkhairi, A. and Karboulonis, P.
year 2002
title Interactive Storytelling and Its Role in the Design Process
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 151-158
doi https://doi.org/10.52842/conf.caadria.2002.151
summary Projects of ever increasing complexity and size have incited the need for new and robust design methodologies and tools in an effort to manage complexity, lower costs, ascertain quality and reduce risk. Technology convergence through the growing availability of networked computers, rapid progress in Computer Aided Design (CAD) and information management have encouraged the undertaking of even more complex designs that demand high degrees of interaction, collaboration and the efficient sharing and dissemination of information. It is suggested that interactive storytelling and interactive design (Rafi and Karboulonis, 2001) techniques that use non-linear information mapping systems can be deployed to assist users as they navigate information that is structured to address localized needs as they arise. The design process is a collaborative effort that encompasses diverse knowledge disciplines and demands the management and utilization of available resources to satisfy the needs of a single or set of goals. It is thought that building industry specialists should work close together in an organised manner to solve design problems as they emerge and find alternatives when designs fall short. The design process involves the processing of dynamic and complex information, that can be anything from the amount of soil required to level lands - to the needs of specific lightings systems in operation theatres. Other important factors that affect the design process are related to costs and deadlines. This paper will demonstrate some of our early findings in several experiments to establish nonlinear storytelling. It will conclude with a recommendation for a plausible design of such a system based on experimental work that is currently being conducted and is reaching its final stages. The paper will lay the foundations of a possible path to implementation based on the concept of multi-path animation that is appropriate for structuring the design process as used in the building industry.
series CAADRIA
email
last changed 2022/06/07 07:54

_id 9a04
authors Bouza Rodríguez, J.B., Valcarce, J.D., Baltar, X.L. and Vázquez, M.P.
year 2001
title SISTEMA WEB INTERACTIVO CON CATÁLOGO PSEUDO-TRIDIMENSIONAL DE RODUCTOS Y VÍDEO EN TIEMPO REAL (Interactive Web System with Pseudo-Three-Dimensional Catalogue of Places and Video in Real Time)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 104-106
summary It has been designed and developed a system Web that has video in real time and an interactive product catalogue based on pseudo-three-dimensional models, that is to say, models that they pretend to be three-dimensional, but that in fact do not have geometry 3D properly in the memory, but of an appropriate composition according to the case of geometry 2D (image or any graph), that allows to see the model from several points of view and to consult additional information (weight, material, dimensions, etc.). They have been analyzed and proven the different formats from transmission of video and audio by Internet, studying all its parameters, until finding the optimal ones for this server. In comparison with the use of format VRML (Virtual Reality Modeling Language) used commonly to put models 3D in the Web, this system that we have devised presents like advantages the low time of load, the high precision of the views of the object and the low cost of maintenance of the Web. On the other hand, one does not have the infinity of views and facility of manipulation of the VRML.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 36f5
authors Burry, M., Burry, J. and Faulí, J.
year 2001
title Sagrada Família Rosassa: Global Computeraided Dialogue between Designer and Craftsperson (Overcoming Differences in Age, Time and Distance)
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 076-086
doi https://doi.org/10.52842/conf.acadia.2001.076
summary The rose window (‘rosassa’ in Catalan) recently completed between the two groups of towers that make up the Passion Façade of Gaudí’s Sagrada Família Church in Barcelona measures eight metres wide and thirty-five metres in height [Figure 1]. There were four phases to the design based in three distinct geographical locations. The design was undertaken on site, design description in Australia some eighteen thousand kilometres distant, stone-cutting a thousand kilometres distant in Galicia, with the completion of the window in March 2001. The entire undertaking was achieved within a timeframe of fifteen months from the first design sketch. Within this relatively short period, the entire team achieved a new marriage between architecture and construction, a broader relationship between time-honoured craft technique with high technology, and evidence of leading the way in trans-global collaboration via the Internet. Together the various members of the project team combined to demonstrate that the technical office on site at the Sagrada Família Church now has the capacity to use ‘just-in-time’ project management in order to increase efficiency. The processes and dialogues developed help transcend the tyranny of distance, the difficult relationship between traditional craft based technique and innovative digitally enhanced production methods, and the three generational age differences between the youngest and more senior team members.
keywords Digital Practice, Global Collaboration, Rapid Prototyping
series ACADIA
email
last changed 2022/06/07 07:54

_id ae8a
authors Hanson, Gabriel Quinn
year 2001
title Connection & Transition, Exploring Place-Based Physical Environment in a Digital Media FirmPhysical Environment in a Digital Media Firm
source University of Washington, Design Machine Group
summary The design solution of the typical high-tech firm bombards its employees with the same signs and sleek coded information that they are designing, instead of addressing their innate biological needs. In the workplace specifically, the change in technology has a pernicious result when its relationships are deployed society-wide as subsitutes for face-to face interactions, which are inherently richer than mediated interactions. This thesis presents a design of a media firm that engages build environment with lighting and natural and a CD-Rom digital sketchbookof the design process.
series thesis:MSc
more http://dmg.caup.washington.edu/xmlSiteEngine/browsers/stylin/publications.html
last changed 2004/06/02 19:12

_id ef9e
authors Harris, Robert
year 2001
title The Digital Sandbox: Integrating Design and Analysis in a new Earth-forming Tool
source University of Washington, Design Machine Group
summary The design solution of the typical high-tech firm bombards its employees with the same signs and sleek coded information that they are designing, instead of addressing their innate biological needs. In the workplace specifically, the change in technology has a pernicious result when its relationships are deployed society-wide as subsitutes for face-to face interactions, which are inherently richer than mediated interactions. This thesis presents a design of a media firm that engages build environment with lighting and natural and a CD-Rom digital sketchbookof the design process.
series thesis:MSc
email
more http://dmg.caup.washington.edu/xmlSiteEngine/browsers/stylin/publications.html
last changed 2004/06/02 19:12

_id cf2011_p163
id cf2011_p163
authors Park, Hyoung-June
year 2011
title Mass-Customization in the Design of 4,000 Bus Stops
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 265-278.
summary In Hawaii, ‚"TheBus‚" has been a main transportation system since 1971. Considering the high cost of living in Hawaii and the absence of a rail system, the use of ‚"TheBus‚" has been an instrumental vein of the city life in Honolulu with rhythmical pauses at about 4,000 bus stops in Honolulu. However, existing undifferentiated bus stops are developed from a cost effective mass production system so that they have been problematic for satisfying specific needs from various site conditions. In this research, an integrated computational method of mass-customization for designing 4,000 bus stops is introduced. According to various site conditions, the design of each bus stop is customized. Unlike the mass‚Äêproduced bus stops commonly seen in cities today, the proposed computational method in this paper produces bus stop design outcomes that fit into the physical characteristics of the location in which they are installed. Mass-customization allows for the creation and production of unique or similar buildings and building components, differentiated through digitally‚Äêcontrolled variation (Kolarevic, 2003). The employment of a computational mass‚Äêcustomization in architectural design extends the boundary of design solutions to the satisfaction of multi-objective requirements and unlimited freedom to search alternative solutions (Duarte, 2001; Caldas, 2006). The computational method developed in this paper consists of 1) definition of a prototype, 2) parametric variation, 3) manual deformation, and 4) simulation based deformation. The definition of a prototype is the development of a basic design to be transformed for satisfying various conditions given from a site. In this paper, the bus stop prototype is developed from the analysis of more than 300 bus stops and the categorization of the existing bus stops according to their physical conditions, contextual conditions, climatic conditions, and existing amenities. Based upon the outcome of the analysis, the design variables of a bus stop prototype are defined. Those design variables then guide the basic physical parameters for changing the physical configuration of the prototype according to a given site. From this, many possible design outcomes are generated as instances for further developments. The process of manual deformation is where the designer employs its intuition to develop the selected parametric variation. The designer is compelled to think about the possible implication derived from formal variation. This optional process allows every design decision to have a creative solution from an individual designer with an incidental quality in aesthetics, but substantiated functional quality. Finally the deformation of the selection is guided and controlled by the influence of sun direction/ exposure to the selection. The simulation based deformation starts with the movement of the sun as the trigger for generating the variations of the bus stop prototype. The implementation of the computational method was made within the combination of MEL (Maya Enbedded Language), autodesk MAYA and Ecotect environment.
keywords mass-customization, parametric variation, simulation based deformation
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ecaade03_301_36_rafi
id ecaade03_301_36_rafi
authors Rafi, Ahmad M. E. and Jabar, Mohd. Fazidin
year 2003
title FCM: An Automated Flood Crisis Management System
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 301-304
doi https://doi.org/10.52842/conf.ecaade.2003.301
summary This research presents our progress of the second phase of City Administration System (CAS) (Rafi and Fazidin, 2001). It covers the terrain generation of Kuala Lumpur’s Central Business District about 30km x 30km at 1 meter resolution using the latest stereoscopic satellite data and survey data from Mapping Department of Malaysia’s Ministry of Science, Technology and Environment. CAS will be designed to have three main functions, namely: Flood Crisis Management (FCM), Architectural and Town Planning Management, and City Services and Administration. At a 1meter resolution, CAS will be able to predict, manage and visualise flash and major floods within the city with a very high degree of accuracy. It has been identified for CAS that there is a need to share information through collaborative environment in a more centralised manner that allows collective decisions, facilitates continuous updates, communicates effectively and permits the sharing of experiences and ideas.
keywords CAS; FCM; collaborative environment; sensor
series eCAADe
email
more http://www.mmu.edu.my
last changed 2022/06/07 08:00

_id 4664
authors Russell, Peter
year 2001
title Visualising Non-Visual Building Information
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 546-551
doi https://doi.org/10.52842/conf.ecaade.2001.546
summary Architecture can be understood as a process and as an object. In both forms, it consists of a complex of mass, monetary, energy and information flows that occur over time scales ranging from hours and days to centuries. The parts or elements making up buildings and the processes involved in producing, maintaining, using and disposing of them are highly intertwined and multi-dimensional. The field of Architecture can range from complete building stocks down to individual buildings, their elements, and the materials and processes making up these elements. What is more, it is also necessary to introduce time as a dimension in order to model the complete life cycle of buildings. Current CAD systems concentrate primarily on the replication of the traditional drawing process (sometimes in three dimensions) and the visualisation of the finished building. While these models describe the geometry and visual appearance of buildings, the bulk of the information about the building remains unseen. Recently developed systems such as the German LEGOE system have combined a materials database with specification and CAD systems, which allows for a more comprehensive description of the building. However, this additional information is displayed either rudimentarily or as lists of numbers. The information describing the position or visual quality of building elements is, in fact, minuscule in comparison to that describing the properties of the materials involved, their production methods, the energy needed to produce, transport and install the elements, and information concerning toxicology and environmental issues. What is more, these materials are not simply in situ, but can be considered to flow through the building. These flows also occur at widely varying rates according to the type of material and the type of building. The view is taken that buildings are actually temporary repositories of various “flows” which occupy the building during its lifetime. Thus seen, the various aspects of a building at a certain stage of its life are taken to be the total sum of its inputs and outputs at any given time. Currently, its complexity and the lack of cognitive assistance in its presentation limit the understanding of this information. The author postulates that to better understand this information, visual displays of this “non-visual” building information are needed, at least for those who, like architects, are more visually inclined. The paper describes attempts made to go beyond conventional two-dimensional charts, which have tended to only complicate understanding. This is partly due to the need to display a high number of dimensions in one space. Examples are shown of experimental visual displays using three-dimensional graphs created in VRML as well as a “remodelling” of the building based on statistical rather than spatial information to form a building “artefact”. The remodelled artefacts are based on a null-value three-dimensional form and are then modified according to the specific database information without changing their topology. These artefacts are initially somewhat idiosyncratic, but become more useful when a large enough population has been created. With sufficient numbers, it is possible to compare and classify the artefacts according to their visually discernible attributes. The classification of the artefacts is useful in understanding building types independent of their formal “architectural” or spatial qualities, particularly with age-use-classes. The paper also describes initial attempts to create building information landscapes that unfold from the artefacts allowing detailed views of the summarised information displayed by the individual artefacts.
keywords Building Information, Visualisation, VRML, Life Cycle Analysis
series eCAADe
email
last changed 2022/06/07 07:56

_id ga0128
id ga0128
authors Singh, S.K., Vatsa, M.and Singh, R.
year 2001
title Face Recognizing Robot
source International Conference on Generative Art
summary In the biological evolution process, logical thinking has been the last to evolve, and lies at the surface of our consciousness, its means and methodologies available for introspection. On the other hand, the intelligence required to interpret sensory signals and activate motor commands is so well known biologically that it is buried in the subconscious and is entirely inaccessible at the conscious level. The variation in human intelligence is usually measured by the ability to process logical information, whereas the other forms of intelligence needed in daily life are not normallyassociated with the word intelligence. In the recent years man wants to develop a machine having its own intelligence. He wants to make machine, to which he can treat as a real servant. In this paper a simulated robotic system is described, which can be used as a criminal-detecting robot. In this project, an attempt will be made to design a Robot and it’s software, which will have an optimal solution of conditions (for which the Robot is to be designed i.e. security). It will not only reduce the cost (the cost spend insecurity of VIP’s is very high) but also will increase the security strength and stop the criminal activities. It will take snaps of the people and match from its database to check for criminals. Thus, such operations with minimum errors will cause the better security. Computer vision concerned with the sensing of vision data and its interpretation by a computer. Detecting faces in images with complex backgrounds is a difficult task. The approach presented in this paper, which obtains state of the art results, is based on a new neural network model. To detect a face in an image means to find its position in the image plane (x, y) and its size or scale (z). An image of a face can be considered as a set of features such as eyes, mouth, and nose with constrained positions and size within an oval: an explicit model can be used. The think and adjust himself in any condition, can take the optimal and possible decision. The Robot can perform only those tasks and take decisions, which are specified in its programming code.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id avocaad_2001_07
id avocaad_2001_07
authors Stefan Wrona, Adam Gorczyca
year 2001
title Complexity in Architecture - How CAAD can be involved to Deal with it. - "Duality"
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary “Complexity “ is for us a very ambigous notion. It may be understood in two contexts.1.Thorough solution of a problem.Complexity means full recognition of design area, followed by appropriate work. That work must be thorough and interdisciplinary – if necessary, separated to different co-operatives. These trade designers reqiure a branch coordination and – the most important- all of them must have a „common denominator”. Such as a proper CAAD platform and office standards. That will reduce costs of changes, improve an interplay between designers and somtimes enable to face up a new challenge.Nowadays architects are no longer “solitary” individualists working alone – they must concern a team – they become a member, a part of a huge design machine. “Import/export”, compatibility, interplay – these words must appear and we have to put a stress on them. How to organize work for different trade-designers? How to join in common database architectural design ,engineering design, HVAC design, electricity design, technology design, computer network design and all other trades ?...A key to solve this range of problems is in good work organization. Universal prescription does not exist, but some evergreen rules can be observed. We are going to present a scheme of work in CAAD application ALLPLAN FT v.16 with a Group manager , which starts to conquest polish market and is widely spread in Germany. “Golden rules” of ALLPLAN FT There is one database – it is placed on server. It includes all projects. There is a well-developed office standard. It must be created at the beginning of collaboration, although it is possible to improve it later. It consist of hatches, fonts, symbols, macros, materials, pen-widths, and – the most important –layers . A layer set – predefined structure divided into functional groups – e.g. drafting, text, dimensioning, architecture, HVAC, engineering, urban design, etc.That stucture is a part of an office standard – all workers use a relevant part of it. No name duplicates, no misunderstandings... If however design extends, and a new group of layers is required, it can be easily added, e.g. computer networks, fireguard systems. Administrator of ALLPLAN network defines different users and gives them different permitions of access. For example – an electrician will be able to draft on layer “electricity”, but he won’t modify anything at layer “architecture – walls”, and he won’t even see a layer “engineering- slabs”, because he doesn’t need it..At the same time our electrician will be able to see , how architect moves some walls and how HVAC moved and started to cross with his wires. Every user is able to see relevant changes, after they are saved by author. Two different users can not access at the same time the same file. That excludes inconsistent or overlapping changes . All users operate on a 3D model. While putting some data into a model, they must remember about a “Z” coordinate at work-storey. But at the same time all create a fully-integrated, synchronous database, which can be used later for bills of quantities, specifications, and – of course – for visuaisation. That method can be described as “model-centric”. To simplify complex structure of architectural object -ALLPLAN offers files. Usually one file means one storey, but at special designs it might become a functional part of a storey, or whatever you wish. Files connected with layers easy enable to separate certain structural elements, e.g. if we want to glance only at concrete slabs and columns in the building – we will turn on all files with “layer filter” – “slabs” and “columns”. ALLPLAN is of course one of possible solutions. We described it , because we use it in our workshop. It seems to be stretchy enough to face up every demand and ever-increasing complexity of current projects. The essence of the matter, however, is not a name or version of application – it is a set of features, we mentioned above, which allows to deal with EVERY project. The number of solutions is infinite.2. Increasing difficulties during design process. It may be associated with more and more installations inside of new buildings, especially some “high-tech” examples. The number of these installations increases as well as their complexity. Now buildings are full of sensors, video-screens, computer networks, safety-guard systems... Difficulties are connected with some trends in contemporary architecture, for example an organic architecture, which conceives “morphed” shapes, “moving” surfaces, “soft” solids. This direction is specially supported by modelling or CAD applications. Sometimes it is good – they allow to realize all imaginations, but often they lead to produce “unbuildable” forms, which can exist only in virtual world.Obstacles appear, when we design huge cubatures with “dense” functional scheme. Multi-purposed objects, exhibition halls, olimpic stadium at Sydney – all of them have to be stretchy, even if it requires sliding thousands pound concrete blocks! Requirements were never so high.The last reason, why designs become so complex is obvious - intensifying changes due to specific requirements of clients/developers.We could say “ signum tempori” – everything gets more and more complicated , people have to become specialists, to face up new technology. But how CAAD can help us with it? How?! We have already answered that question. Sometimes CAAD is the only way to imagine and sketch something, to visualize something, to compute a construction , to prepare a simulation... So that human must “only” interprete ready solutions. Sometimes CAAD help us to notify a problem. It works exactly in the same way, as spy-glasses does. For example – without a real-time visualization we we would have never realised (until finished!) some strange interference of solids, which have occured in the upper roof part of our new appartment-house.ConclusionsTemporary CAAD is an integral part of design process – not only as a tool, but sometimes as an inspiration. It helps to organize our work, to define problems, to filter relevant elements and to render our visions. It becomes an integral part of our senses – and that will be a real complexity in architecture...
series AVOCAAD
email
last changed 2005/09/09 10:48

_id viswa
id viswa
authors Viswanadha,Kameshwari
year 2001
title Digital Charrette: A Web Based Tool to Supplement the Admission Procedure to Graduate Architectural Degree Programs
source Texas A&M University
summary The NAAB (National Architectural Accrediting Board Inc.), as an evaluator of architectural education in the United States has established both graduate architectural curriculum criteria and student performance criteria expected to be fulfilled by the student at the time of graduation. To fulfill these standards set by the NAAB, the graduate selection committees of architecture schools require the ability to predict graduate design studio performance of the applicants. The high percentage of international applicants suggests the necessity of a standardized evaluation tool.

This research presents a standardized web based testing environment titled Digital Charrete‚ that would contribute towards the fair evaluation of applicants to graduate architectural degree programs. Spatial ability is related to Design and Visualization skills‚, a part of the NAAB criteria, and also associated with design studio performance of architecture students. The Digital Charrette is a VRML environment within which spatial exercises are administered. It is designed to supplement the current admission procedure, and would enable the selection of students with greater potential to perform well in graduate architectural design studios. This research is also an attempt to understand the implications of using virtual three-dimensional environments for such testing purposes. The ability of this web based tool to predict student performance in architectural design studios is investigated. Finally, the user reactions to testing in a virtual three-dimensional environment and timed tasks are included in this study.

Analysis of the results showed that the test takers thought the Digital Charrette was a good evaluator of their spatial ability. The study population showed a preference for paper-based media in the pre-task analysis. A huge percentage of the study population found the Digital Charrette Œfun to do‚ and Œchallenging‚. The major drawback of this study was that the VRML environment was unable to render itself for testing purposes in a way that the medium would not hinder the test takers‚ performance. This may also be considered a cause for a relatively smaller percentage of success amongst test takers. The study population however unanimously considered the concept of the Digital Charrette, i.e. testing in virtual environments, significant to evaluation of architecture students.

keywords Architectural Education
series thesis:MSc
email
last changed 2003/12/06 08:18

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_902862 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002