CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 715

_id 3e51
authors Cerulli, C., Peng, C. and Lawson, B.
year 2001
title Capturing Histories of Design Processes for Collaborative Building Design Development. Field Trial of the ADS Prototype
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 427-437
summary The ADS Project - Advanced Design Support for the Construction Design Process - builds on the technological results of the previous COMMIT Project to exploit and demonstrate the benefits of a CAD based Design Decision Support System. COMMIT provides a system for storing knowledge about knowledge within the design process. It records design decisions, the actors who take them and the roles they play when doing so. ADS links COMMIT to an existing object-oriented CAD system, MicroStation/J from Bentley Systems. The project focuses on tackling the problem of managing design information without intruding too much on the design process itself. It provides the possibility to effectively link design decisions back to requirements, to gather rationale information for later stages of the building lifecycle, and to gather knowledge of rationale for later projects. The system enables members of the project team, including clients and constructors, to browse and search the recorded project history of decision making both during and after design development. ADS aims to facilitate change towards a more collaborative process in construction design, to improve the effectiveness of decision-making throughout the construction project and to provide clients with the facility to relate design outcomes to design briefs across the whole building life cycle. In this paper we will describe the field trials of the ADS prototype carried out over a three-month period at the Building Design Partnership (BDP) Manchester office. The objective of these trials is to assess the extent, to which the approach underlying ADS enhances the design process, and to gather and document the views and experiences of practitioners. The ADS prototype was previously tested with historical data of real project (Peng, Cerulli et al. 2000). To gather more valuable knowledge about how a Decision Support System like ADS can be used in practice, the testing and evaluation will be extended to a real project, while it is still ongoing. The live case study will look at some phases of the design of a mixed residential and retail development in Leeds, UK, recording project information while it is created. The users’ feedback on the system usability will inform the continuous redevelopment process that will run in parallel to the live case study. The ADS and COMMIT Projects were both funded by EPSRC.
keywords Design Rationale, Design Support Systems, Usability Evaluation
series CAAD Futures
email
last changed 2006/11/07 07:22

_id cf2011_p051
id cf2011_p051
authors Cote, Pierre; Mohamed-Ahmed Ashraf, Tremblay Sebastien
year 2011
title A Quantitative Method to Compare the Impact of Design Mediums on the Architectural Ideation Process.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 539-556.
summary If we compare the architectural design process to a black box system, we can assume that we now know quite well both inputs and outputs of the system. Indeed, everything about the early project either feasibility studies, programming, context integration, site analysis (urban, rural or natural), as well as the integration of participants in a collaborative process can all be considered to initiate and sustain the architectural design and ideation process. Similarly, outputs from that process are also, and to some extent, well known and identifiable. We are referring here, among others, to the project representations or even to the concrete building construction and its post-evaluation. But what about the black box itself that produces the ideation. This is the question that attempts to answer the research. Currently, very few research works linger to identify how the human brain accomplishes those tasks; how to identify the cognitive functions that are playing this role; to what extent they operate and complement each other, and among other things, whether there possibly a chain of causality between these functions. Therefore, this study proposes to define a model that reflects the activity of the black box based on the cognitive activity of the human brain. From an extensive literature review, two cognitive functions have been identified and are investigated to account for some of the complex cognitive activity that occurs during a design process, namely the mental workload and mental imagery. These two variables are measured quantitatively in the context of real design task. Essentially, the mental load is measured using a Bakan's test and the mental imagery with eyes tracking. The statistical software G-Power was used to identify the necessary subject number to obtain for significant variance and correlation result analysis. Thus, in the context of an exploratory research, to ensure effective sample of 0.25 and a statistical power of 0.80, 32 participants are needed. All these participants are students from 3rd, 4th or 5th grade in architecture. They are also very familiar with the architectural design process and the design mediums used, i.e., analog model, freehand drawing and CAD software, SketchUp. In three experimental sessions, participants were asked to design three different projects, namely, a bus shelter, a recycling station and a public toilet. These projects were selected and defined for their complexity similarity, taking into account the available time of 22 minutes, using all three mediums of design, and this in a randomly manner to avoid the order effect. To analyze the two cognitive functions (mental load and mental imagery), two instruments are used. Mental imagery is measured using eye movement tracking with monitoring and quantitative analysis of scan paths and the resulting number and duration of participant eye fixations (Johansson et al, 2005). The mental workload is measured using the performance of a modality hearing secondary task inspired by Bakan'sworks (Bakan et al.; 1963). Each of these three experimental sessions, lasting 90 minutes, was composed of two phases: 1. After calibrating the glasses for eye movement, the subject had to exercise freely for 3 minutes while wearing the glasses and headphones (Bakan task) to get use to the wearing hardware. Then, after reading the guidelines and criteria for the design project (± 5 minutes), he had 22 minutes to execute the design task on a drawing table allowing an upright posture. Once the task is completed, the subject had to take the NASA TLX Test, on the assessment of mental load (± 5 minutes) and a written post-experimental questionnaire on his impressions of the experiment (± 10 minutes). 2. After a break of 5-10 minutes, the participant answered a psychometric test, which is different for each session. These tests (± 20 minutes) are administered in the same order to each participant. Thus, in the first experimental session, the subject had to take the psychometric test from Ekstrom et al. (1978), on spatial performance (Factor-Referenced Cognitive Tests Kit). During the second session, the cognitive style is evaluated using Oltman's test (1971). Finally, in the third and final session, participant creativity is evaluated using Delis-Kaplan test (D-KEFS), Delis et al. (2001). Thus, this study will present the first results of quantitative measures to establish and validate the proposed model. Furthermore, the paper will also discuss the relevance of the proposed approach, considering that currently teaching of ideation in ours schools of architecture in North America is essentially done in a holistic manner through the architectural project.
keywords design, ideation process, mental workload, mental imagery, quantitative mesure
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ec4d
authors Croser, J.
year 2001
title GDL Object
source The Architect’s Journal, 14 June 2001, pp. 49-50
summary It is all too common for technology companies to seek a new route to solving the same problem but for the most part the solutions address the effect and not the cause. The good old-fashioned pencil is the perfect example where inventors have sought to design-out the effect of the inherent brittleness of lead. Traditionally different methods of sharpening were suggested and more recently the propelling pencil has reigned king, the lead being supported by the dispensing sleeve thus reducing the likelihood of breakage. Developers convinced by the Single Building Model approach to design development have each embarked on a difficult journey to create an easy to use feature packed application. Unfortunately it seems that the two are not mutually compatible if we are to believe what we see emanating from Technology giants Autodesk in the guise of Architectural Desktop 3. The effect of their development is a feature rich environment but the cost and in this case the cause is a tool which is far from easy to use. However, this is only a small part of a much bigger problem, Interoperability. You see when one designer develops a model with one tool the information is typically locked in that environment. Of course the geometry can be distributed and shared amongst the team for use with their tools but the properties, or as often misquoted, the intelligence is lost along the way. The effect is the technological version of rubble; the cause is the low quality of data-translation available to us. Fortunately there is one company, which is making rapid advancements on the whole issue of collaboration, and data sharing. An old timer (Graphisoft - famous for ArchiCAD) has just donned a smart new suit, set up a new company called GDL Technology and stepped into the ring to do battle, with a difference. The difference is that GDL Technology does not rely on conquering the competition, quite the opposite in fact their success relies upon the continued success of all the major CAD platforms including AutoCAD, MicroStation and ArchiCAD (of course). GDL Technology have created a standard data format for manufacturers called GDL Objects. Product manufacturers such as Velux are now able to develop product libraries using GDL Objects, which can then be placed in a CAD model, or drawing using almost any CAD tool. The product libraries can be stored on the web or on CD giving easy download access to any building industry professional. These objects are created using scripts which makes them tiny for downloading from the web. Each object contains 3 important types of information: · Parametric scale dependant 2d plan symbols · Full 3d geometric data · Manufacturers information such as material, colour and price Whilst manufacturers are racing to GDL Technologies door to sign up, developers and clients are quick to see the benefit too. Porsche are using GDL Objects to manage their brand identity as they build over 300 new showrooms worldwide. Having defined the building style and interior Porsche, in conjunction with the product suppliers, have produced a CD-ROM with all of the selected building components such as cladding, doors, furniture, and finishes. Designing and detailing the various schemes will therefore be as straightforward as using Lego. To ease the process of accessing, sizing and placing the product libraries GDL Technology have developed a product called GDL Object Explorer, a free-standing application which can be placed on the CD with the product libraries. Furthermore, whilst the Object Explorer gives access to the GDL Objects it also enables the user to save the object in one of many file formats including DWG, DGN, DXF, 3DS and even the IAI's IFC. However, if you are an AutoCAD user there is another tool, which has been designed especially for you, it is called the Object Adapter and it works inside of AutoCAD 14 and 2000. The Object Adapter will dynamically convert all GDL Objects to AutoCAD Blocks during placement, which means that they can be controlled with standard AutoCAD commands. Furthermore, each object can be linked to an online document from the manufacturer web site, which is ideal for more extensive product information. Other tools, which have been developed to make the most of the objects, are the Web Plug-in and SalesCAD. The Plug-in enables objects to be dynamically modified and displayed on web pages and Sales CAD is an easy to learn and use design tool for sales teams to explore, develop and cost designs on a Notebook PC whilst sitting in the architects office. All sales quotations are directly extracted from the model and presented in HTML format as a mixture of product images, product descriptions and tables identifying quantities and costs. With full lifecycle information stored in each GDL Object it is no surprise that GDL Technology see their objects as the future for building design. Indeed they are not alone, the IAI have already said that they are going to explore the possibility of associating GDL Objects with their own data sharing format the IFC. So down to the dirty stuff, money and how much it costs? Well, at the risk of sounding like a market trader in Petticoat Lane, "To you guv? Nuffin". That's right as a user of this technology it will cost you nothing! Not a penny, it is gratis, free. The product manufacturer pays for the license to host their libraries on the web or on CD and even then their costs are small costing from as little as 50p for each CD filled with objects. GDL Technology has come up trumps with their GDL Objects. They have developed a new way to solve old problems. If CAD were a pencil then GDL Objects would be ballistic lead, which would never break or loose its point. A much better alternative to the strategy used by many of their competitors who seek to avoid breaking the pencil by persuading the artist not to press down so hard. If you are still reading and you have not already dropped the magazine and run off to find out if your favorite product supplier has already signed up then I suggest you check out the following web sites www.gdlcentral.com and www.gdltechnology.com. If you do not see them there, pick up the phone and ask them why.
series journal paper
email
last changed 2003/04/23 15:14

_id 7e02
authors Elger, Dietrich and Russell, Peter
year 2002
title The Virtual Campus: A new place for (lifelong) learning?
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 472-477
doi https://doi.org/10.52842/conf.ecaade.2002.472
summary 472 eCAADe 20 [design e-ducation] Modeling Real and Virtual Worlds Session 13 In the early spring of 2001 a collection of German universities founded a virtual faculty of architecture, which was named „Liquid Campus“. Current thinking about future forms of education in the field of architecture combined with over 4 years of experience with net-based design studios, led to questions about the future of existing universities, their buildings and their use. This problem was put to 43 students in the form of a design exercise to create a place for a virtual university. In the current situation, in which the administration of knowledge is more and more located on the internet, and even the so-called meeting places themselves can be virtualised through the help of video-conference-software, the exercise was to design a virtual campus in the framework and to carry out this design work in a simulation of distributed practice. Initial criticism of the project came from the students in that exemplary working methods were not described, but left for the students to discover on their own. The creation of a concept for the Liquid Campus meant that the participants had to imagine working in a world without the face to face contacts that form the basis (at present) of personal interaction. Additionally, the assignment to create or design possible links between the real and the virtual was not an easy task for students who normally design and plan real physical buildings. Even the tutors had difficulties in producing focused constructive criticism about a virtual campus; in effect the virtualisation of the university leads to a distinctive blurring of its boundaries. The project was conducted using the pedagogical framework of the netzentwurf.de; a relatively well established Internet based communication platform. This means that the studio was organised in the „traditional“ structure consisting of an initial 3 day workshop, a face to face midterm review, and a collective final review, held 3,5 months later in the Museum of Communication in Frankfurt am Main, Germany. In teams of 3 (with each student from a different university and a tutor located at a fourth) the students worked over the Internet to produce collaborative design solutions. The groups ended up with designs that spanned a range of solutions between real and virtual architecture. Examples of the student’s work (which is all available online) as well as their working methods are described. It must be said that the energy invested in the studio by the organisers of the virtual campus (as well as the students who took part) was considerably higher than in normal design studios and the paper seeks to look critically at the effort in relation to the outcomes achieved. The range and depth of the student’s work was surprising to many in the project, especially considering the initial hurdles (both social and technological) that had to overcome. The self-referential nature of the theme, the method and the working environment encouraged the students to take a more philosophical approach to the design problem. The paper explores the implications of the student’s conclusions on the nature of the university in general and draws conclusions specific to architectural education and the role of architecture in this process.
series eCAADe
email
last changed 2022/06/07 07:55

_id e6c5
authors Heintz, John L.
year 2001
title Coordinating virtual building design teams
source Stellingwerff, Martijn and Verbeke, Johan (Eds.), ACCOLADE - Architecture, Collaboration, Design. Delft University Press (DUP Science) / ISBN 90-407-2216-1 / The Netherlands, pp. 65-76 [Book ordering info: m.c.stellingwerff@bk.tudelft.nl]
summary Most research in design project management support systems treats the subject as an isolated objective problem. The goals to be met are defined in terms of a supposed universal view of the project, and now outside concerns are taken into account. While such approaches, including project simulation, may yield excellent results, they ignore what, for many projects, are the real difficulties. Design projects are not isolated. All participants have other obligations that compete with the given project for attention and resources. The various participants in the design process have different goals. For these reasons it is proposed that design project management can be best facilitated by tools which assist the participating actors to share suitable management information in order to make better co-ordination possible, while allowing the resource balancing between projects to occur in private. Such a tool represents the design project management task as a negotiation task that spans both projects and firms; the management of one project is the management of all. The model of design collaboration upon which the Design Coordination System (DeCo) is built was developed from 1) a heuristic case study used to gain insight into the ways in which designers co-ordinate their efforts, and 2) the application of the theory of the social contract as developed by John Rawls to the problem of design project management. The key innovation in the DeCo system is the shaping of the project management system around existing practices of collaborative project design management and planning. DeCo takes advantage of how designers already co-ordinate their work with each other and resolve disputes over deadlines and time lines. The advantage of DeCo is that it formalises these existing practices in order to accommodate both the increasing co-ordination burden and the difficulties brought about by the internationalisation of design practice. DeCo, the design project management system proposed here, provides a representation, a communications protocol, and a game theoretical decision structure. The combination of these three units provides users with the ability to exchange structured pictures of the project as seen from the points of view of individual actors. Further, it suggests a mechanism based on a specific principle of fairness for arriving at mutually acceptable project plans. The DeCo system permits the users freedom to manage their design processes as they will, while providing a basic compatibility between practices of design team members which supports their collaborative efforts to co-ordinate their design work.
series other
last changed 2001/09/14 21:30

_id c0f5
authors Russell, Peter
year 2001
title Creating Place in the Virtual Design Studio
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 231-242
summary The current wave of attempts to create virtual design studios has demonstrated a wide range of didactical as well as computational models. Through work performed over the past year, an evolution of many of these concepts has been created which fosters a sense of place. This aspect of place has to do with identity and community rather than with form and space. Initial virtual design studio projects were often merely a digital pin-up board, which enabled distributed and asynchronous criticism and review. However, the web sites were more analogous to a directory than to the studio setting of an upper level design problem. The establishment of a truly distributed design studio in the past year, which involved design teams spread over three universities (not parallel to one another) led to the need for an independent place to share and discuss the student's work. Previous virtual design studios have also established web sites with communication facilities, but one was always alone with the information. In order to enhance this virtual design studio and to give it a sense of place, a studio platform that serves as a console for participants was developed. The console is a front end to a dynamic database which mediates information about the participants, their work, timetables and changes to the dynamic community. Through a logon mechanism, the presence of members is traceable and displayed. When a member logs onto the console, other members currently online are displayed to the participant. An online embedded talk function allows informal impromptu discussions to occur at a mouseclick, thus imitating ways similar to the traditional design studio setting. Personal profiles and consultation scheduling constitute the core services available. Use of the platform has proven to be well above expected levels. The students often used the platform as a meeting place to see what was going on and to co-ordinate further discussions using other forums (videoconferences, irc chats or simple telephone conversations. Surveys taken at the end of the semester show a strong affinity for the platform concept in conjunction with a general frustration in pursuing collaboration with low bandwidth communication channels.
keywords Virtual Environments, Virtual Design Studio, Internet Utilisation
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 5b1e
authors Stellingwerff, Martijn
year 2001
title The concept of Carrying in Collaborative Virtual Environments
source Stellingwerff, Martijn and Verbeke, Johan (Eds.), ACCOLADE - Architecture, Collaboration, Design. Delft University Press (DUP Science) / ISBN 90-407-2216-1 / The Netherlands, pp. 195-208 [Book ordering info: m.c.stellingwerff@bk.tudelft.nl]
summary Collaborative Architectural Design can take place within a virtual environment with a team of remote but virtually present people. However, in most virtual environments, the ability to perform actions is still limited to the availability of some interactive objects and a set of tools for the specific purposes of the system. As the interface of most systems is designed for unshared use, the graphic feedback signals are limited to local information about the state of objects and tools. If multiuser interaction is added to such Virtual Environments, many new possibilities and problems emerge. Users of shared applications should not only be informed about the state of local objects, tools and their own actions, they should also be made aware of what the other users undertake. Aspects, which are in daily life so obvious, should be restudied thoroughly for the application within Virtual Environments for Collaborative Design. Much research has to be undertaken in order to make such virtual places as intuitively interactive as ordinary shared working places. The 'concept of carrying', which is proposed and explained in this paper, is expected to become a useful metaphoric mechanism for solving several issues related to Spatial User Interfaces (SUI's) and Collaborative Virtual Environments (CVE's). The visual feedback from 'carrying-events' should provide more mutual understanding about ongoing processes in shared applications and it should add a more 'natural' interface for processes concerning people, tools and content in virtual and digitally augmented environments. At the start of this paper some basic human action patterns for tasks on a 2Ddesktop are compared to tasks in a 3D-environment. These action patterns are checked for their implementation in Windows Icons Menus and Pointer (WIMP) interfaces and Virtual Reality systems. Carrying is focused upon as an important interactive event in Virtual Environments. Three carrying actions related to Collaborative Architectural Design are explained by means of prototypes in Virtual Reality Modeling Language (VRML). Finally the usefulness of a general carrying concept as part of a new Visual Language is considered. The research at hand is in its first exploring phases and draws from a running PhD research about SUI's for Context Related Architectural Design and from recent experiences in CVE's.
series other
email
last changed 2001/09/14 21:30

_id avocaad_2001_16
id avocaad_2001_16
authors Yu-Ying Chang, Yu-Tung Liu, Chien-Hui Wong
year 2001
title Some Phenomena of Spatial Characteristics of Cyberspace
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary "Space," which has long been an important concept in architecture (Bloomer & Moore, 1977; Mitchell, 1995, 1999), has attracted interest of researchers from various academic disciplines in recent years (Agnew, 1993; Benko & Strohmayer, 1996; Chang, 1999; Foucault, 1982; Gould, 1998). Researchers from disciplines such as anthropology, geography, sociology, philosophy, and linguistics regard it as the basis of the discussion of various theories in social sciences and humanities (Chen, 1999). On the other hand, since the invention of Internet, Internet users have been experiencing a new and magic "world." According to the definitions in traditional architecture theories, "space" is generated whenever people define a finite void by some physical elements (Zevi, 1985). However, although Internet is a virtual, immense, invisible and intangible world, navigating in it, we can still sense the very presence of ourselves and others in a wonderland. This sense could be testified by our naming of Internet as Cyberspace -- an exotic kind of space. Therefore, as people nowadays rely more and more on the Internet in their daily life, and as more and more architectural scholars and designers begin to invest their efforts in the design of virtual places online (e.g., Maher, 1999; Li & Maher, 2000), we cannot help but ask whether there are indeed sensible spaces in Internet. And if yes, these spaces exist in terms of what forms and created by what ways?To join the current interdisciplinary discussion on the issue of space, and to obtain new definition as well as insightful understanding of "space", this study explores the spatial phenomena in Internet. We hope that our findings would ultimately be also useful for contemporary architectural designers and scholars in their designs in the real world.As a preliminary exploration, the main objective of this study is to discover the elements involved in the creation/construction of Internet spaces and to examine the relationship between human participants and Internet spaces. In addition, this study also attempts to investigate whether participants from different academic disciplines define or experience Internet spaces in different ways, and to find what spatial elements of Internet they emphasize the most.In order to achieve a more comprehensive understanding of the spatial phenomena in Internet and to overcome the subjectivity of the members of the research team, the research design of this study was divided into two stages. At the first stage, we conducted literature review to study existing theories of space (which are based on observations and investigations of the physical world). At the second stage of this study, we recruited 8 Internet regular users to approach this topic from different point of views, and to see whether people with different academic training would define and experience Internet spaces differently.The results of this study reveal that the relationship between human participants and Internet spaces is different from that between human participants and physical spaces. In the physical world, physical elements of space must be established first; it then begins to be regarded as a place after interaction between/among human participants or interaction between human participants and the physical environment. In contrast, in Internet, a sense of place is first created through human interactions (or activities), Internet participants then begin to sense the existence of a space. Therefore, it seems that, among the many spatial elements of Internet we found, "interaction/reciprocity" Ñ either between/among human participants or between human participants and the computer interface Ð seems to be the most crucial element.In addition, another interesting result of this study is that verbal (linguistic) elements could provoke a sense of space in a degree higher than 2D visual representation and no less than 3D visual simulations. Nevertheless, verbal and 3D visual elements seem to work in different ways in terms of cognitive behaviors: Verbal elements provoke visual imagery and other sensory perceptions by "imagining" and then excite personal experiences of space; visual elements, on the other hand, provoke and excite visual experiences of space directly by "mapping".Finally, it was found that participants with different academic training did experience and define space differently. For example, when experiencing and analyzing Internet spaces, architecture designers, the creators of the physical world, emphasize the design of circulation and orientation, while participants with linguistics training focus more on subtle language usage. Visual designers tend to analyze the graphical elements of virtual spaces based on traditional painting theories; industrial designers, on the other hand, tend to treat these spaces as industrial products, emphasizing concept of user-center and the control of the computer interface.The findings of this study seem to add new information to our understanding of virtual space. It would be interesting for future studies to investigate how this information influences architectural designers in their real-world practices in this digital age. In addition, to obtain a fuller picture of Internet space, further research is needed to study the same issue by examining more Internet participants who have no formal linguistics and graphical training.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id avocaad_2001_18
id avocaad_2001_18
authors Aleksander Asanowicz
year 2001
title The End of Methodology - Towards New Integration
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The present paper is devoted to the deliberation on the genesis and development of designing from the point of view of the potential use of computers in the process. Moreover, it also presents the great hopes which were connected with the use of the systematic designing methods in the 1960’s, as well as the great disappointment resulting from the lack of concrete results. At this time a great deal of attention was paid to the process of design as a branch of a wider process of problem-solving. Many people believed that the intuitive methods of design traditionally used by architects were incapable of dealing with the complexity of the problems to be solved. Therefore, the basic problem was the definition of a vertical structure of the designing process, which would make it possible to optimise each process of architectural design. The studies of design methodology directed at the codification of the norms of actions have not brought about any solutions which could be commonly accepted, as the efforts to present the designing process as a formally logical one and one that is not internally “uncontrary” from the mathematical point of view, were doomed to fail. Moreover, the difficulties connected with the use of the computer in designing were caused by the lack of a graphic interface, which is so very characteristic of an architect’s workshop. In result, the methodology ceased to be the main area of the architect’s interest and efforts were focused on facilitating the method of the designer’s communication with the computer. New tools were created, which enabled both the automatic generation of diversity and the creation of forms on the basis of genetic algorithms, as well as the presentation of the obtained results in the form of rendering, animation and VRML. This was the end of the general methodology of designing and the beginning of a number of methods solving the partial problems of computer-supported design. The present situation can be described with the words of Ian Stewart as a “chaotic run in all directions”. An immediate need for new integration is felt. Cyber-real space could be a solution to the problem. C-R-S is not a virtual reality understood as an unreal world. Whilst VR could be indeed treated as a sort of an illusion, C-R-S is a much more realistic being, defining the area in which the creative activities are taking place. The architect gains the possibility of having a direct contact with the form he or she is creating. Direct design enables one to creatively use the computer technology in the designing process. The intelligent system of recognising speech, integrated with the system of virtual reality, will allow to create an environment for the designer – computer communication which will be most natural to the person. The elimination of this obstacle will facilitate the integration of the new methods into one designing environment. The theoretical assumptions of such an environment are described in the present paper.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id acadia23_v3_129
id acadia23_v3_129
authors Ayres, Phil
year 2023
title Sensitive Scaffolds – Cultivating Spatio-temporal Dialogues with Living Complexes
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary Thank you to the ACADIA team for extending the invitation to come here. For me, it's a really fantastic moment to reconnect with the ACADIA community. I've been dipping in and out of it since -- I think my first ACADIA was in Savannah, Georgia. Does anyone remember what year that was? 2001? 2002? I've been dipping in and out. And I really see this community as a model. You know, we could talk about the Mississippi and how it meanders, and passages of energy and matter and information begin to change. And the ACADIA community meanders across these different territories, but somehow it maintains its particular identity. And that identity, I think, is shrouded within ideals of sharing -- knowledge sharing -- and within a kind of creative design research, you know, rigor, which I find really fascinating.
series ACADIA
type keynote
email
last changed 2024/04/17 13:59

_id 174f
authors Bakker, N.H.
year 2001
title Spatial Orientation in Virtual Environments
source Delft University of Technology
summary Recently, a growing interest can be detected in the application of Virtual Environment (VE) technology as an operator interface. VEs are three-dimensional computer-generated images that can be shown on a conventional monitor, on a large screen display, or on a head-mounted display. In order to use these three-dimensional interfaces for finding and retrieving information, the user must be able to spatially orient themselves. Different types of VE technology are available for navigating in these VEs, and different types of navigation can be enabled. A choice has to be made between the different options to enable good spatial orientation of the user. There are two main types of VE interfaces: an immersive interface that provides rich sensory feedback to the user when moving around in the VE, and a non-immersive interface that provides only visual feedback to the user when moving around in the VE. Furthermore, navigation through the VE can either be continuous providing fluent motion, or can be discontinuous which means that the viewpoint is displaced instantaneously over a large distance. To provide insight into the possible effects of these options a series of nine experiments was carried out. In the experiments the quality of spatial orientation behaviour of test subjects is measured while using the different types of interface and the different types of navigation. The results of the experiments indicate that immersive navigation improves the perception of displacement through the VE, which in turn aids the acquisition of spatial knowledge. However, as soon as the spatial layout of the VE is learned the two types of navigation interface do not lead to differences in spatial orientation performance. A discontinuous displacement leads to temporary disorientation, which will hinder the acquisition of spatial knowledge. The type of discontinuous displacements has an effect on the time needed for anticipation. The disorienting effects of a discontinuous displacement can be compensated for by enabling cognitive anticipation to the destination of the displacement. These results suggest that immersive navigation might only be beneficial for application domains in which new spatial layouts have to be learned every time or in domains where the primary users are novices. For instance, in training firemen to teach them the layout of new buildings with VE, or in using architectural walkthroughs in VE to show new building designs to potential buyers. Discontinuous movement should not be allowed when exploring a new environment. Once the environment is learned and if fast displacement is essential then discontinuous displacement should be preferred. In this case, the interface designer must make sure that information is provided about the destination of a discontinuous displacement.
series thesis:PhD
last changed 2003/11/21 15:16

_id avocaad_2001_10
id avocaad_2001_10
authors Bige Tunçer, Rudi Stouffs, Sevil Sariyildiz
year 2001
title Facilitating the complexity of architectural analyses
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary It is common practice for architecture students to collect documents on prominent buildings relevant to their design task in the early stage of design. While practitioners can rely on a body of design experience of their own, during the process of a new design, students can only draw from the examples of success and failure from other architects. In the past, such precedent based learning was implicit in the master-apprentice relationship common in the educational system. Nowadays academics commonly no longer have the possibility to maintain an extensive design practice, and instead introduce important outside precedents to the students. Thus, the study of important historical precedents or designs plays an important role in design instruction and in the students’ design processes. While there is no doubt that the most effective outcome of such a study would be achieved when the student does entire the study herself, students also benefit from a collaboration with peers, where they form groups to do an analysis of various aspects of a same building or over a group of buildings. By integrating the respective results into a common, extensible, library, students can draw upon other results for comparisons and relationships between different aspects or buildings. The complexity this introduces is best supported in a computer medium.The Web offers many examples of architectural analyses on a wide variety of subjects. Commonly, these analyses consist of a collection of documents, categorized and hyperlinked to support navigation through the information space. More sophisticated examples rely on a database for storage and management of the data, and offer a more complex categorization of the information entities and their relationships. These studies present effective ways of accessing and browsing information, however, it is precluded within these analyses to distinguish and relate different components within the project documents. If enabled, instead, this would offer a richer information structure presenting new ways of accessing, viewing, and interpreting this information. Hereto, documents can be decomposed by content. This implies both expanding the document structure, replacing document entities by detailed substructures, and augmenting the structure’s relatedness with content information. The relationships between the resulting components make the documents inherently related by content.We propose a methodology to integrate project documents into a single model, and present an application for the presentation of architectural analyses in an educational setting. This approach provides the students with a simple interface and mechanisms for the presentation of an analysis of design precedents, and possibly their own designs. Since all the information is integrated within a single environment, students will benefit from each others’ studies, and can draw new conclusions across analyses and presentations from their peers.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id ecaade2015_217
id ecaade2015_217
authors Davis, Felecia and Dumitrescu, Delia
year 2015
title What and When Is the Textile? Extending the Reach of Computation through Textile Expression
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 417-426
doi https://doi.org/10.52842/conf.ecaade.2015.2.417
wos WOS:000372316000048
summary The authors of this article argue for 'making time appear' in computational materials and objects so that it can be used to help people become aware of their relation to their environments. [Hallnäs & Redström 2001] As more computational and responsive materials come into play when designing architectural spaces designers might consider opening up the dimension of time to 'make time appear' rather than disappear. [Hallnäs & Redström 2001] Computational materials are materials which transform expression and respond to inputs read by computer programs. Making time appear can have many uses particularly in applications where people can be helped by the awareness of unfolding of time, where the temporality is linked to transformative body experience rather than project efficiency or collapsing distance. If architects, designers, engineers and others could begin to consider and use time as a way to promote reflection then it would be possible to design materials which could expand human thinking through the material itself.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=44daf674-70d7-11e5-8041-1b36fa35af4a
last changed 2022/06/07 07:56

_id f9d8
authors De Valpine, John and Black, Benjamin
year 2001
title Physically Based Daylight Simulation and Visualization
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 406-407
doi https://doi.org/10.52842/conf.acadia.2001.406
summary While architects typically agree that daylight is a powerful influence for design, architects rarely collect and use daylighting data to help make informed design decisions. This deficiency exists partially because there are no common tools available to provide useful and accessible data. The objective of this project is to provide accurate daylighting data of a prominent urban building site and present it in a clear way so that the architects can make well informed design decisions that respond to site daylighting conditions and improve architectural performance. An urban 3D computer model was created with AutoCad, a commercial CAD application. Daylight was simulated with Radiance, the physically based rendering engine developed at Lawrence Berkeley National Laboratory. The standard CIE model for clear sky and sun was used to produce over 500 images that represent daylight conditions for three different times of year at 10 minute intervals in both luminance and illuminance formats. The simulation data was packaged for analysis with a unique browser tool that enables the architect to easily cycle through the data to evaluate and compare behavior by time of day and by season. The architect can also toggle between luminance and illuminance format to easily visualize both qualitative and quantitative data. The exploration and use of the simulation data can be applied with sensitivity to inform the design and decision making process for the exterior building site.
series ACADIA
last changed 2022/06/07 07:55

_id 8599
authors Heylighen, Ann and Neuckermans, Herman
year 2001
title Baptism of fire of a Web-based design assistant
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 111-124
summary DYNAMO – a Dynamic Architectural Memory On-line – is a Web-based design assistant to support architectural design education. The tool is conceived as an (inter-)active workhouse rather than a passive warehouse: it is interactively developed by and actively develops its users' design knowledge. Its most important feature is not merely that it presents students with design cases, but that those cases trigger in-depth explorations, stimulate reflection and prime discussions between students, design teachers and professional architects. Whereas previous papers have focused on the theoretical ideas behind DYNAMO and on how Web-technology enabled us to translate these ideas into a working prototype, this paper reports on the prototype's baptism of fire in a 4th year design studio. It describes the setting and procedure of the baptism, the participation of the studio teaching staff, and the reactions and appreciation of the students. Based on students' responses to a questionnaire and observations of the tool in use, we investigated whether DYNAMO succeeded in engaging students and what factors stimulated/hampered this engagement. Despite the prototype nature of the system, students were noticeably enthusiastic about the tool. Moreover, DYNAMO turned out to be fairly 'democratic', in the sense that it did not seem to privilege students with private access to or prior knowledge of computer technology. However, the responses to the questionnaire raise questions about the nature of students' engagement. Three factors revealed themselves as major obstacles to student (inter-)action: lack of time, lack of encouragement by the teachers and lack of studio equipment. Although these obstacles may not relate directly to DYNAMO itself, they might have prevented the tool from functioning the way it was originally meant to. The paper concludes with lessons learned for the future of DYNAMO and, more in general, of ICT in architectural design education.
keywords Design Studios, Utilization Of Internet, Design Support, Case-Based Design
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 6430
authors Jabi, Wassim (Ed.)
year 2001
title ACADIA 2001 [Conference Proceedings]
source Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1/ Buffalo (New York) 11-14 October 2001, 415 p.
doi https://doi.org/10.52842/conf.acadia.2001
summary The theme, which preceded my knowledge of ACADIA’s true age, resulted from a realization regarding the development and current state of CAD in Research, Education, and Practice. While I only got involved with ACADIA in the last half of its current life to date, I had the honor of studying with some of the early pioneers of CAD: 1) Harold Borkin, a founding member of ACADIA, 2) Jim Turner, a longtime ACADIAn, and a past ACADIA Conference organizer (actually the very first conference I attended), and 3) Ted Hall, another longtime ACADIAn. What I have learned from conversations with them and later witnessed for myself is a fundamental shift of focus in CAD from building tools to using tools. That is, while early CAD students, including myself, used to learn how to create software and tools to solve a particular problem, the current focus in the majority of schools that include a CAD component in their curriculum is on teaching the use of commercial software and/or the use of digital media in the design studio. One need only take a look at old list of courses that used to be offered in the CAD area and compare it with a new list to see this shift. Yet, one form of tool building that is continuing in a significant number of schools is the creation of scripts or small software modules (usually built using a visual editor) to create interactive systems for delivery over the web or on CD-ROM. Examples include the use of Macromedia Director or Flash for creating interactive digital titles. While this current state of affairs has increased the receptivity to digital tools and media, it does obscure an important fact. For knowledge to advance in this area, we need researchers who can not only use tools, but also invent new ones to solve new problems that are not addressed by the existing crop of commercial software. The more time we spend not educating our students in the art and science of building digital tools, the harder it will be to: 1) find teachers in the future with those skills, 2) advance and influence the development of the state-of-the-art in CAD, and 3) erase the use of CAD as a euphemism for slick computer-generated imagery. While not common, the tradition of tool building is still going on most notably in architecture schools with strong financial resources and those that offer doctoral level education. Commercial, governmental and business/education entities are also continuing the research tradition of tool building. ACADIA, as a reflection of the field it focuses on, has widened its scope to solicit papers that deal with CAD education and the use of CAD in practice. Thus, you will read in this book papers that focus on all three aspects: research, education, and practice and in some cases the intersection of two or more of those areas. Thankfully, ACADIA, while concerned with CAD in education has maintained its receptivity to basic research papers as well as a willingness to publish innovative papers in the area of practice. As chair of the technical committee, I made sure that the call for papers and the final selection reflects this desire. We should continue to emphasize the need for presenting this diversity of work in our annual conferences and I am optimistic that the ACADIA community is in support of this notion.
series ACADIA
email
more www.acadia.org
last changed 2022/06/07 07:49

_id bd13
authors Martens, B., Turk, Z. and Cerovsek, T.
year 2001
title Digital Proceedings: Experiences regarding Creating and Using
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 25-29
doi https://doi.org/10.52842/conf.ecaade.2001.025
summary This paper describes the developments of the CUMINCAD database since 1999 when it was first presented and some statistical information, how the service is being used. CUMINCAD started as a bibliographic database storing meta information about CAADrelated publications. Recently, full texts are being added. The process of creation of electronic copies of papers in pdf-format is described as well as decisions which were taken in this context. Over the last two years 20.000 users visited CUMINCAD. We present a brief analysis of their behavior and interaction patterns. This and the forthcoming possibility of a full-text-search will open up a new perspective for CAAD-research.
keywords CAAD-Related Publications, Web-Based Bibliographic Database, Searchable Index, Retrospective CAAD Research, Purpose Analysis
series eCAADe
email
last changed 2022/06/07 07:59

_id 3c71
authors Maver, Tom and Petric, Jelena
year 2001
title MEDIA in MEDIATION Prospects for Computer Assisted Design Participation
source Stellingwerff, Martijn and Verbeke, Johan (Eds.), ACCOLADE - Architecture, Collaboration, Design. Delft University Press (DUP Science) / ISBN 90-407-2216-1 / The Netherlands, pp. 121-134 [Book ordering info: m.c.stellingwerff@bk.tudelft.nl]
summary One of the most consistent, powerful and philosophical ideas which has run like a silk thread through the short and erratic history of the development of computer aided architectural design is that of user participation in the design decision-making process. It is not an idea with which the architectural profession is particularly comfortable but it is, the authors claim, one which is central to the professional ethic and, therefore, to be its ultimate survival. Design decision-making is, if addressed properly, a hugely, complex multi-variate, multi-person process on which precious little serious research has been focused. In the late 1960's the Design Methods Group in the USA and the Design Research Society in the UK formulated paper-based models of the design process and anticipated, in some regards with un-nerving accuracy, the way in which the application of information technologies would impinge beneficially on the process of design decision-making and, therefore, on the quality of the built environment. One concept expressed at that time was as follows: the application of computers to the modelling and prediction of the cost and performance behaviour of alternative design solutions allows subjective value judgements to be better informed and more explicitly audited, and that such subjective value judgements should be made by those most affected by them, i.e. the future owners and users of buildings. This paper is devoted to the critical re-examination of this concept, on the seminal research and development which has kept the notion alive over 30 years, and, how the current advances in multimedia, virtual reality and internet access make its ubiquitous adoption inevitable: in short, Media in Mediation.
series other
email
last changed 2003/04/16 11:52

_id ga0122
id ga0122
authors Miranda Carranza, Pablo
year 2001
title Self-design and Ontogenetic evolution
source International Conference on Generative Art
summary The context and long term goal of the project is to develop design environments in which the computer becomes an active and creative partner in the design process. To try to set-up a system that would enhance the design process by suggesting possibilities, has been preferredto an approach that emphasises optimisation and problem-solving.The work develops around the general concept of morphogenesis, the process of development of a system's form or structure. Besides the obvious example of embryological growth, biological evolution, learning, and societal development can also be considered as morphogenetic processes.The aim is to set a foundation from where latter work can develop in the study of how form unravels, and the implications and possibilities of the utilisation of such processes in design. Some basic principles are established, regarding the idea of Ontogenesis, the study of thedevelopment of organisms, and Epigenesis, the mode Ontogenesis operates.Drawing on D’Arcy Thompson’s ideas and inspired on the models and approaches developed in the recent field of Artificial Life, this work explores the possibilities of using a model based in bone accretion to develop structural systems. The mechanisms by which bone is able toadapt are relatively known and simple, and at the same time they address a sensible problem, such as it is the case of the static performance of a structure. This may seem contradictory with what was mentioned above regarding problem solving. The problem is anyway approached not with the intention of finding optimal solutions, but challenging and creativeones. It is not answers the computer should provide, but questions about the problematic of the design. It is in this context of “problem-worrying” (as opposed to problem solving) that the work has been carried.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 53e3
authors Muñoz, P., Rezk, A., López Coronel, J.P. and Varela, R.
year 2001
title DIBUJO Y CAD: ESTRATEGIAS Y CUESTIONAMIENTOS (Drawing and CAD: Strategies and Questions)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 92-94
summary Drawings are pre-figurative media for designers, though they are neither objective nor equivalent to what they represent. The progressive use of computer-graphics in the area of Morphology for Industrial Design does not eliminate hand-made renderings but it broadens the communication tools available. Each mode, and even its combination, has potentials and restrictions that make it suitable for different moments of the design process. Design’s greatest wealth lies in the integration -not in the dissolution- of what is different, so CAD’s images should not be the only ones to appear. What fascinates at first sight, tires if endlessly repeated.
series SIGRADI
email
last changed 2016/03/10 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_513500 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002