CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 680

_id ascaad2004_paper12
id ascaad2004_paper12
authors Al-Qawasmi, Jamal
year 2004
title Reflections on e-Design: The e-Studio Experience
source eDesign in Architecture: ASCAAD's First International Conference on Computer Aided Architectural Design, 7-9 December 2004, KFUPM, Saudi Arabia
summary The influence of digital media and information technology on architectural design education and practice is increasingly evident. The practice and learning of architecture is increasingly aided by and dependant on digital media. Digital technologies not only provide new production methods, but also expand our abilities to create, explore, manipulate and compose space. In contemporary design education, there is a continuous demand to deliver new skills in digital media and to rethink architectural design education in the light of the new developments in digital technology. During the academic years 2001-2003, I had the chance to lead the efforts to promote an effective use of digital media for design education at Department of Architecture, Jordan University of Science and Technology (JUST). Architectural curriculum at JUST dedicated much time for teaching computing skills. However, in this curriculum, digital media was taught in the form of "software use" education. In this context, digital media is perceived and used mainly as a presentation tool. Furthermore, Computer Aided Architectural Design and architectural design are taught in separate courses without interactions between the two.
series ASCAAD
email
last changed 2007/04/08 19:47

_id d9f0
authors Bhavnani, S.K., Reif, F. and John, B.E.
year 2001
title Beyond Command Knowledge: Identifying and Teaching Strategic Knowledge for Using Complex Computer Applications
source Proceedings of CHI' 01 (2001), 229-236
summary Despite experience, many users do not make efficient use of complex computer applications. We argue that this is caused by a lack of strategic knowledge that is difficult to acquire just by knowing how to use commands. To address this problem, we present efficient and general strategies for using computer applications, and identify the components of strategic knowledge required to use them. We propose a framework for teaching strategic knowledge, and show how we implemented it in a course for freshman students. In a controlled study, we compared our approach to the traditional approach of just teaching commands. The results show that efficient and general strategies can in fact be taught to students of diverse backgrounds in a limited time without harming command knowledge. The experiment also pinpointed those strategies that can be automatically learned just from learning commands, and those that require more practice than we provided. These results are important to universities and companies that wish to foster more efficient use of complex computer applications.
keywords Strategies; Training; Instruction; GOMS
series other
email
last changed 2003/11/21 15:16

_id ec4d
authors Croser, J.
year 2001
title GDL Object
source The Architect’s Journal, 14 June 2001, pp. 49-50
summary It is all too common for technology companies to seek a new route to solving the same problem but for the most part the solutions address the effect and not the cause. The good old-fashioned pencil is the perfect example where inventors have sought to design-out the effect of the inherent brittleness of lead. Traditionally different methods of sharpening were suggested and more recently the propelling pencil has reigned king, the lead being supported by the dispensing sleeve thus reducing the likelihood of breakage. Developers convinced by the Single Building Model approach to design development have each embarked on a difficult journey to create an easy to use feature packed application. Unfortunately it seems that the two are not mutually compatible if we are to believe what we see emanating from Technology giants Autodesk in the guise of Architectural Desktop 3. The effect of their development is a feature rich environment but the cost and in this case the cause is a tool which is far from easy to use. However, this is only a small part of a much bigger problem, Interoperability. You see when one designer develops a model with one tool the information is typically locked in that environment. Of course the geometry can be distributed and shared amongst the team for use with their tools but the properties, or as often misquoted, the intelligence is lost along the way. The effect is the technological version of rubble; the cause is the low quality of data-translation available to us. Fortunately there is one company, which is making rapid advancements on the whole issue of collaboration, and data sharing. An old timer (Graphisoft - famous for ArchiCAD) has just donned a smart new suit, set up a new company called GDL Technology and stepped into the ring to do battle, with a difference. The difference is that GDL Technology does not rely on conquering the competition, quite the opposite in fact their success relies upon the continued success of all the major CAD platforms including AutoCAD, MicroStation and ArchiCAD (of course). GDL Technology have created a standard data format for manufacturers called GDL Objects. Product manufacturers such as Velux are now able to develop product libraries using GDL Objects, which can then be placed in a CAD model, or drawing using almost any CAD tool. The product libraries can be stored on the web or on CD giving easy download access to any building industry professional. These objects are created using scripts which makes them tiny for downloading from the web. Each object contains 3 important types of information: · Parametric scale dependant 2d plan symbols · Full 3d geometric data · Manufacturers information such as material, colour and price Whilst manufacturers are racing to GDL Technologies door to sign up, developers and clients are quick to see the benefit too. Porsche are using GDL Objects to manage their brand identity as they build over 300 new showrooms worldwide. Having defined the building style and interior Porsche, in conjunction with the product suppliers, have produced a CD-ROM with all of the selected building components such as cladding, doors, furniture, and finishes. Designing and detailing the various schemes will therefore be as straightforward as using Lego. To ease the process of accessing, sizing and placing the product libraries GDL Technology have developed a product called GDL Object Explorer, a free-standing application which can be placed on the CD with the product libraries. Furthermore, whilst the Object Explorer gives access to the GDL Objects it also enables the user to save the object in one of many file formats including DWG, DGN, DXF, 3DS and even the IAI's IFC. However, if you are an AutoCAD user there is another tool, which has been designed especially for you, it is called the Object Adapter and it works inside of AutoCAD 14 and 2000. The Object Adapter will dynamically convert all GDL Objects to AutoCAD Blocks during placement, which means that they can be controlled with standard AutoCAD commands. Furthermore, each object can be linked to an online document from the manufacturer web site, which is ideal for more extensive product information. Other tools, which have been developed to make the most of the objects, are the Web Plug-in and SalesCAD. The Plug-in enables objects to be dynamically modified and displayed on web pages and Sales CAD is an easy to learn and use design tool for sales teams to explore, develop and cost designs on a Notebook PC whilst sitting in the architects office. All sales quotations are directly extracted from the model and presented in HTML format as a mixture of product images, product descriptions and tables identifying quantities and costs. With full lifecycle information stored in each GDL Object it is no surprise that GDL Technology see their objects as the future for building design. Indeed they are not alone, the IAI have already said that they are going to explore the possibility of associating GDL Objects with their own data sharing format the IFC. So down to the dirty stuff, money and how much it costs? Well, at the risk of sounding like a market trader in Petticoat Lane, "To you guv? Nuffin". That's right as a user of this technology it will cost you nothing! Not a penny, it is gratis, free. The product manufacturer pays for the license to host their libraries on the web or on CD and even then their costs are small costing from as little as 50p for each CD filled with objects. GDL Technology has come up trumps with their GDL Objects. They have developed a new way to solve old problems. If CAD were a pencil then GDL Objects would be ballistic lead, which would never break or loose its point. A much better alternative to the strategy used by many of their competitors who seek to avoid breaking the pencil by persuading the artist not to press down so hard. If you are still reading and you have not already dropped the magazine and run off to find out if your favorite product supplier has already signed up then I suggest you check out the following web sites www.gdlcentral.com and www.gdltechnology.com. If you do not see them there, pick up the phone and ask them why.
series journal paper
email
last changed 2003/04/23 15:14

_id 7134
id 7134
authors Penttilä, Hannu (Ed.)
year 2001
title Architectural Information Management [Conference Proceedings]
doi https://doi.org/10.52842/conf.ecaade.2001
source 19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1 / Helsinki (Finland) 29-31 August 2001, 578 p.
summary Several common phrases, such as “information society” or “virtual reality” point out the fact that information technology, digital tools and numerous different services via various communication networks have become crucially important factors of our western lifestyle and living environment. The trends of the society reflects naturally the working environments of the construction field, architectural discipline being amongst them. It is almost inconceivable to even imagine an architect without computer-based tools anymore. This evolutional development process has, from historical perspective, only recently started. The process is constantly evolving and rapidly increasing our possibilities to use and enjoy these modern digital fruits. The sometimes unpredictable and rapid changes in our working environment should make architects nervous about the impacts of the changes. All those delicate methods and collective traditions of the several thousand year architectural discipline(!), just simply cannot be transferred into the digital realm in a few decades. Researchers and teachers should very carefully, but still open mindedly, critically explore, analyse and adjust the so-called “modern technology” into the world of architecture, construction, design, planning – and education. We are not just “endusers”, It is we, in fact, who should define what, where and how are we willing to use it(IT). The value of information is constantly growing in our society, and in the future it will evidently be even more so. The value of information is quite hard to define with measurable or agreed concepts, but information evidently contains value-factors. The information which the architects are creating, modifying and manipulating, contains essential and valuable core data concerning the whole built environment of our society. It affects the physical surroundings of our society, in which we will be living for decades – hence, the information has a historical basis. The architectural core information also very strongly affects the quality of life of our fellow citizens – consequently, it has deep social meaning. The essentials of architectural information relies on the tradition of centuries – hence, it clearly has acknowledged cultural values, which are also extremely difficult to quantify. So how could architectural information be described? The information covers a wide range of heterogeneous concepts, items, values, methods, tools, materials, true facts, rumours, intuition and knowledge, plus a multitude of yet undefined or unpredictable factors, which still have to be watched and prepared for. Since the information deals with common and general subjects, it should also be described with common and general concepts. On the other hand as the information is also concerned with the minutiae of specific projects, the architectural information should also be described with well identified and unique entities. With our digital tools we handle all information – including architectural – more and more digitally. We have to handle and manipulate information currently as digital data, which could be understood the ”raw material” of architectural information. Digital data becomes valuable information, when some kind of meaning or purpose to somebody can be attributed to it. In the early gloomy days of ”digital architecture” in the 1960’s and 1970’s, researchers tried to describe architectural artefacts and even design process mathematically. The details of architectural information were quite difficult to describe with binary alphanumeric information of main-frame machines. The architects’ tools development then led to a trend where architects could better represent and visualize the design objects digitally. The widespread and common use of 2D-drawing and 3D-modelling tools is still a very strong trend within our discipline. In fact it is “the way” the majority of architectural information is managed today. During the last 15–20 years, so-called conceptual modelling or product data modelling, done in various technical and construction field research units worldwide, has from one viewpoint clarified the basis and essence of architectural information. Hence, it’s not only CAD-software application development, but also elementary and theoretical research that gives us valuable help to survive among the ever growing seas of terabits of data in the future to come. Architectural information is something that simply cannot be described just with DWG-drawings or dummy scanned photographs any more. Although drawings and photos may contain very important bits of architectural documentation, we need ntimes more “complexity layers”, concepts and tools to manage and understand the essence of architectural information today. A proper way to manage the data we are working with, has to cover the whole architectural discipline. The methods and tools also have to be valid and flexible for several decades in the future.
keywords Information Management & Data Structuring, Education & Curricula, Modeling & City Planning
series eCAADe
email
more http://www.hut.fi/events/ecaade/
last changed 2022/06/07 07:49

_id 802d
authors Tweed, Christopher
year 2001
title The social context of CAAD in practice
source Automation in Construction 10 (5) (2001) pp. 617-629
summary The term 'application domain' crops up in many CAAD research papers and yet seldom is the domain described in any detail. In the absence of a detailed understanding of the application domain, CAAD research often substitutes a typical `designer' or `architect' as the end-user of developed systems. The end-user's beliefs, norms, values, history and other concrete characteristics are rarely fleshed out beyond a stereotypical, totalising view, which serves as an `ideal-type' that offers a psychological economy, avoiding the need for us to think too deeply about individual CAAD users. But, as anyone who has taught architecture or worked in practice will be aware, despite many shared interests and attitudes among a given group of designers, there is considerable variation across individuals, not just in skills but in general disposition or `styles' of comportment, which shape how individuals go about designing. Design research has mostly been blind to such variations. The purpose of this paper, therefore, is to begin to fashion a set of questions that will enrich our knowledge and to suggest a framework that can be used to answer them.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id avocaad_2001_18
id avocaad_2001_18
authors Aleksander Asanowicz
year 2001
title The End of Methodology - Towards New Integration
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The present paper is devoted to the deliberation on the genesis and development of designing from the point of view of the potential use of computers in the process. Moreover, it also presents the great hopes which were connected with the use of the systematic designing methods in the 1960’s, as well as the great disappointment resulting from the lack of concrete results. At this time a great deal of attention was paid to the process of design as a branch of a wider process of problem-solving. Many people believed that the intuitive methods of design traditionally used by architects were incapable of dealing with the complexity of the problems to be solved. Therefore, the basic problem was the definition of a vertical structure of the designing process, which would make it possible to optimise each process of architectural design. The studies of design methodology directed at the codification of the norms of actions have not brought about any solutions which could be commonly accepted, as the efforts to present the designing process as a formally logical one and one that is not internally “uncontrary” from the mathematical point of view, were doomed to fail. Moreover, the difficulties connected with the use of the computer in designing were caused by the lack of a graphic interface, which is so very characteristic of an architect’s workshop. In result, the methodology ceased to be the main area of the architect’s interest and efforts were focused on facilitating the method of the designer’s communication with the computer. New tools were created, which enabled both the automatic generation of diversity and the creation of forms on the basis of genetic algorithms, as well as the presentation of the obtained results in the form of rendering, animation and VRML. This was the end of the general methodology of designing and the beginning of a number of methods solving the partial problems of computer-supported design. The present situation can be described with the words of Ian Stewart as a “chaotic run in all directions”. An immediate need for new integration is felt. Cyber-real space could be a solution to the problem. C-R-S is not a virtual reality understood as an unreal world. Whilst VR could be indeed treated as a sort of an illusion, C-R-S is a much more realistic being, defining the area in which the creative activities are taking place. The architect gains the possibility of having a direct contact with the form he or she is creating. Direct design enables one to creatively use the computer technology in the designing process. The intelligent system of recognising speech, integrated with the system of virtual reality, will allow to create an environment for the designer – computer communication which will be most natural to the person. The elimination of this obstacle will facilitate the integration of the new methods into one designing environment. The theoretical assumptions of such an environment are described in the present paper.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id f95f
authors Angulo, A.H., Davidson, R.J. and Vásquez de Velasco, G.P.
year 2001
title Digital Visualization in the Teaching of Cognitive Visualization
doi https://doi.org/10.52842/conf.acadia.2001.292
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 292-301
summary Professional design offices claim that our graduates have difficulties with their free-hand perspective drawing skills. This fact, which has become obvious over the last 5 years, is parallel to a clear tendency towards the use of 3-dimensional digital imagery in the projects of our students. Frequently, faculty tends to blame the computer for the shortcomings of our students in the use of traditional media, yet there is no clear evidence on the source of the blame. At a more fundamental level, the visualization skills of our students are questioned. This paper will explain how faculty teaching design communication techniques, with traditional and digital media, are working together in the development of a teaching methodology that makes use of computers in support of our student’s training on cognitive visualization skills, namely; “The Third-Eye Method”. The paper describes the Third-Eye Method as an alternative to traditional methods. As evidence of the benefits offered by the Third-Eye Method, the paper presents the results of testing it against traditional methods among freshman students. At the end, the paper draws as conclusion that computers are not the main source of the problem but a potential solution.
keywords Pedagogy, Visualization, Media
series ACADIA
email
last changed 2022/06/07 07:54

_id f227
authors Argumedo, C., Guerri, C., Rainero, C., Carmena, S., Del Rio, A. and Lomónaco, H.
year 2001
title GESTIÓN DIGITAL URBANA ROSARIO (Digital Management of Urban Rosario)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 307-310
summary This project is aimed at developing an instrument to reach the city-net multidimensionality (flux /real-space) of Rosario city in Argentina. Both, an integral view and the view of the different information layers of the urban net are required. We decided the used of computers to determine a digital dynamic model. The tool proposed has to be useful not only in search and urban survey but also as a design instrument, to pre-view the urban interventions. Simultaneously this tool is needed to evaluate the urban project’s impact in the city through the passing time as well as to communicate future projects to government and to community all.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 5d0f
authors Balmaceda, María Isabel and Deiana, María Elena
year 2001
title DIDÁCTICA MULTIMEDIAL PARA LA FORMACION EN LA PREVENCIÓN SÍSMICA (Multimedia Didactics for training in Seismic Prevention)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 107-109
summary Today the multimedia technology offers us an undeveloped world of resources. But these resources are not didactic themselves; they depend on the way they are used. The management of new variables, such as interactivity, redundancy, will allow to reach a superior level in relation to that of the attraction/fascination, characteristic of the digital means. Under this conceptual base, an investigation project is developed with the objective of constructing a didactic multimedia, strongly determined by the characteristics of the topic SEISMIC PREVENTION, and guided specifically to the construction of preventive BEHAVIORS, before, during and after the occurrence of an earthquake.
series SIGRADI
email
last changed 2016/03/10 09:47

_id 1b10
id 1b10
authors Bay, Joo-Hwa
year 2001
title Cognitive Biases - The case of tropical architecture
source Delft University of Technology
summary This dissertation investigates, i) How cognitive biases (or illusions) may lead to errors in design thinking, ii) Why architects use architectural precedents as heuristics despite such possible errors, and iii) Develops a design tool that can overcome this type of errors through the introduction of a rebuttal mechanism. The mechanism controls biases and improves accuracy in architectural thinking. // The research method applied is interdisciplinary. It employs knowledge from cognitive science, environmental engineering, and architectural theory. The case study approach is also used. The investigation is made in the case of tropical architecture. The investigation of architectural biases draws from work by A. Tversky and D. Kahneman in 1982 on “Heuristics and biases”. According to Tversky and Kahneman, the use of heuristics of representativeness (based on similarity) and availability (based on ease of recall and imaginability) for judgement of probability can result in cognitive biases of illusions of validity and biases due to imaginability respectively. This theory can be used analogically to understand how errors arise in the judgement of environmental behaviour anticipated from various spatial configurations, leading to designs with dysfunctional performances when built. Incomplete information, limited time, and human mental resources make design thinking in practice difficult and impossible to solve. It is not possible to analyse all possible alternative solutions, multiple contingencies, and multiple conflicting demands, as doing so will lead to combinatorial explosion. One of the ways to cope with the difficult design problem is to use precedents as heuristic devices, as shortcuts in design thinking, and at the risk of errors. This is done with analogical, pre-parametric, and qualitative means of thinking, without quantitative calculations. Heuristics can be efficient and reasonably effective, but may not always be good enough or even correct, because they can have associated cognitive biases that lead to errors. Several debiasing strategies are discussed, and one possibility is to introduce a rebuttal mechanism to refocus the designer’s thinking on the negative and opposite outcomes in his judgements, in order to debias these illusions. The research is carried out within the framework of design theory developed by the Design Knowledge System Research Centre, TUDelft. This strategy is tested with an experiment. The results show that the introduction of a rebuttal mechanism can debias and improve design judgements substantially in environmental control. The tool developed has possible applications in design practice and education, and in particular, in the designing of sustainable environments.
keywords Design bias; Design knowledge; Design rebuttal; Design Precedent; Pre-parametric design; Tropical architecture; Sustainability
series thesis:PhD
type normal paper
email
last changed 2006/05/28 07:42

_id 2006_000
id 2006_000
authors Bourdakis, Vassilis and Charitos, Dimitris (eds.)
year 2006
title Communicating Space(s)
doi https://doi.org/10.52842/conf.ecaade.2006
source 24th eCAADe Conference Proceedings [ISBN 0-9541183-5-9], Volos (Greece) 6-9 September 2006, 914 p.
summary The theme of this conference builds on and investigates the pre-existing and endlessly unfolding relationship between two domains of scientific inquiry: Architecture, urban design and planning, environmental design, geography and Social theory, media and communication studies, political science, cultural studies and social anthropology. Architectural design involves communication and could thus be partly considered a communicational activity. Designers (or not) see architectural designs, implicitly, as carriers of information and symbolic content; similarly buildings and urban environments have been “read” and interpreted by many (usu- ally not architects) as cultural texts. At the same time, social and cultural studies have studied buildings and cities, as contexts for social and cultural activities and life in general, from their mundane expression of “everyday life” (Highmore, 2001) to elite expressions of artistic creativity and performance. Information and communication technologies (ICTs) support both of these levels of scientific inquiry in many ways. Most importantly however, ICTs need design studies, architectural and visual design, social and cultural studies in their quest to create aesthetically pleasing, ergonomically efficient and functional ICT sys- tems; this need for interdisciplinarity is best articulated by the low quality of most on-line content and applica- tions published on the web.
series eCAADe
type normal paper
email
more http://www.ecaade.org
last changed 2022/06/07 07:49

_id 2006_182
id 2006_182
authors Bridges, Alan
year 2006
title A Critical Review of Problem Based Learning in Architectural Education
doi https://doi.org/10.52842/conf.ecaade.2006.182
source Communicating Space(s) [24th eCAADe Conference Proceedings / ISBN 0-9541183-5-9] Volos (Greece) 6-9 September 2006, pp. 182-189
summary There is limited research and discussion on pedagogical approaches in architectural education, simply because it is considered as one of the “unimportant” areas that researchers “do not bother studying” (Teymur, 2001). Problem Based Learning has been known to provide competent graduates in other professional disciplines, and, consequently, there have been attempts to utilise the same pedagogical approach in architectural education where PBL is seen as a potential solution to the problems encountered in architectural education. This paper critically reviews PBL implementations at TU Delft Netherlands and Newcastle University, N.S.W. Australia and draws conclusions with particular respect to the teaching of architectural computing
keywords PBL; architecture; computing
series eCAADe
email
last changed 2022/06/07 07:54

_id 0277
authors Brusilovsky, P.
year 2001
title Adaptive hypermedia
source User modelling and User-Adapted Interaction, volume 11, pp. 87-110, Kluwer
summary Hypertext/hypermedia systems and user-model-based adaptive systems in the areas of learning and information retrieval have for a long time been considered as two mutually exclusive approaches to information access. Adaptive systems tailor information to the user and may guide the user in the information space to present the most relevant material, taking into account a model of the user's goals, interests and preferences. Hypermedia systems, on the other hand, are `user neutral': they provide the user with the tools and the freedom to explore an information space by browsing through a complex network of information nodes. Adaptive hypertext and hypermedia systems attempt to bridge the gap between these two approaches. Adaptation of hypermedia systems to each individual user is increasingly needed. With the growing size, complexity and heterogeneity of current hypermedia systems, such as the World Wide Web, it becomes virtually impossible to impose guidelines on authors concerning the overall organization of hypermedia information. The networks therefore become so complex and unstructured that the existing navigational tools are no longer powerful enough to provide orientation on where to search for the needed information. It is also not possible to identify appropriate pre-defined paths or subnets for users with certain goals and knowledge backgrounds since the user community of hypermedia systems is usually quite inhomogeneous. This is particularly true for Web-based applications which are expected to be used by a much greater variety of users than any earlier standalone application. A possible remedy for the negative effects of the traditional `one-size-fits-all' approach in the development of hypermedia systems is to equip them with the ability to adapt to the needs of their individual users. A possible way of achieving adaptivity is by modeling the users and tailoring the system's interactions to their goals, tasks and interests. In this sense, the notion of adaptive hypertext/hypermedia comes naturally to denote a hypertext or hypermedia system which reflects some features of the user and/or characteristics of his system usage in a user model, and utilizes this model in order to adapt various behavioral aspects of the system to the user. This book is the first comprehensive publication on adaptive hypertext and hypermedia. It is oriented towards researchers and practitioners in the fields of hypertext and hypermedia, information systems, andpersonalized systems. It is also an important resource for the numerous developers of Web-based applications. The design decisions, adaptation methods, and experience presented in this book are a unique source of ideas and techniques for developing more usable and more intelligent Web-based systems suitable for a great variety of users. The practitioners will find it important that many of the adaptation techniques presented in this book have proved to be efficient and are ready to be used in various applications.
series other
email
last changed 2003/04/23 15:14

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 7ff9
authors Choi, J.-W., Lee, H.-S., Hwang, J.-E. and Kim, M.-J.
year 2001
title The Wooden Construction data modeling of korean traditional architecture - Focused on the structure of Gongpo in Buseoksa MuRyangsujun
doi https://doi.org/10.52842/conf.caadria.2001.265
source CAADRIA 2001 [Proceedings of the Sixth Conference on Computer Aided Architectural Design Research in Asia / ISBN 1-86487-096-6] Sydney 19-21 April 2001, pp. 265-274
summary Finding national identities from its traditional heritages might be an important research issue especially for Asian architects and researchers. Nevertheless, it is noticed that the structure of Korean traditional architecture has not been fully explored in a systematical or computational manner and its information is not shared efficiently. This study thus explores a computational way of structuring construction knowledge and building information of Korean traditional architecture.Ý To do this, we select a well-known old temple building, Buseoksa Muryangsujun, one of the oldest Buddhist temple in Korea, as a prototype. We first build an accurateÝ three-dimensional model of the building with an aid of a traditional building expert, categorize its building components, and then analyze their connectivity and the connectivity patterns and rules by especially focusing on the capital order system, called Gongpo. The result of the study shows several schema diagrams representing the wooden construction data model carefully designed for an intelligent building simulation and generative system that will be developed in the near future.Ý The paper also demonstrates a way of computationally describing some shape grammars that explain the components' connectivity.
series CAADRIA
email
last changed 2022/06/07 07:56

_id 8a8c
authors Choi, J.W., Kwon, D.-Y. and Lee, H.-S.
year 2001
title DesignBUF: Exploring and Extending 2D Boolean Set Operations with Multiple Modes in the Early Design Phase
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 589-602
summary Boolean set operations have been a powerful design function set for any CAD systems including 2D and 3D domains. Their capacity to provide even more powerful design tools have not, however, been fully explored in the 2D system. The purpose of this study is to further explore 2D Boolean set operations with multiple modes, which include a pick mode, a wait mode, a drag-and-drop mode, and a draw-and-action mode. We develop a prototype design tool, called DesignBUF. It introduces a new concept of “design object buffer,” an intermediate design zone in which a designer freely sketches his/her design with design objects in a brainstorming fashion since valuable design ideas are ephemeral? and the designer needs to generate design schemes rapidly before the ideas disappear or are forgotten. After finishing such fast brainstorming processes, especially in the early design phase, the designer gets a stable and refined form of a floor plan, which in turn becomes a well structured form to maintain building and design information systematically. Therefore, the designer keeps switching back and forth between the “design object buffer” and structured floor plans. We believe that this dual working memory will not only increase system flexibility, but also reduce computation with unnecessarily complex design objects. This study also develops a robust algorithm to transform the intermediate design objects into a well-structured floor plan. In fact, the algorithm is also used for the extended Boolean set operations described above. A structured floor plan can also be transformed into non-structured forms. Research issues for future development are also identified at the end of the paper.
keywords Design Buffer, Extended Boolean Set Operations, Structured Floor Plan.
series CAAD Futures
email
last changed 2006/11/07 07:22

_id ea46
authors Colajanni B., Concialdi, S. and Pellitteri, G.
year 2001
title Construction or Deconstruction: Which is the Best Way to Learn Architecture?
doi https://doi.org/10.52842/conf.ecaade.2001.299
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 299-304
summary The actual shift of the teaching methods from teacher-centred expository methods, to learner-centred exploratory ones. The educational goals are no more the construction of a solid theory knowledge from which the behaviour is driven. It is the acquisition of capabilities and skills directly related to the professional activity. The consequence is that the teacher has the task of endowing the student not only with a large amount of documentation but also with at least suggestions of the way to use it. One of these suggestions is the deconstruction (in a literal and not philosophical sense) as a way of investigating the structure of buildings. In a first phase in order to acquire, through generalisation a systematic knowledge of the way the parts of a building (their subsystems) contribute to the global architectural organism. In a second phase in order to explore buildings of special interest aiming at mastering their peculiar solutions. An example of this method is presented, limited to the spatial analysis only both for brevity sake and for particular difficulties presented.
keywords Deconstruction, Learn Architecture, Learning By Experience
series eCAADe
email
last changed 2022/06/07 07:56

_id 5c22
authors Durmisevic, S., Ciftcioglu, Ö. and Sariyildiz, S.
year 2001
title Quantifying the Qualitative Design Aspects
doi https://doi.org/10.52842/conf.ecaade.2001.111
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 111-116
summary Architecture is a mixture of art and technique. This implies that the architect deals not only with engineering aspects that can be easily quantified and thereafter processed, but deals with aesthetics as well which is in first place qualitative and therefore rather difficult to estimate and numerically represent. As an example, in such cases, these ‘qualitative quantities’ are expressed in linguistic form which should be somehow expressed in numerical form in order to treat such data by powerful and conclusive numerical analysis methods. Expressions such as: bright colour, light room, large space are some of these examples. These expressions are fuzzy concepts whose actual interpretation is hidden and all of them together attach a qualitative value to a certain space. To deal with such information the emerging technologies of the last decade can provide an important aid. One of them is the soft computing technology that can deal with such soft data. In this paper, based on the case studies, we explain the potential of using soft computing techniques.
keywords Qualitative Design Data, Information Processing, Soft Computing, Knowledge Modeling, Neuro-Fuzzy Network
series eCAADe
email
last changed 2022/06/07 07:55

_id 7e02
authors Elger, Dietrich and Russell, Peter
year 2002
title The Virtual Campus: A new place for (lifelong) learning?
doi https://doi.org/10.52842/conf.ecaade.2002.472
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 472-477
summary 472 eCAADe 20 [design e-ducation] Modeling Real and Virtual Worlds Session 13 In the early spring of 2001 a collection of German universities founded a virtual faculty of architecture, which was named „Liquid Campus“. Current thinking about future forms of education in the field of architecture combined with over 4 years of experience with net-based design studios, led to questions about the future of existing universities, their buildings and their use. This problem was put to 43 students in the form of a design exercise to create a place for a virtual university. In the current situation, in which the administration of knowledge is more and more located on the internet, and even the so-called meeting places themselves can be virtualised through the help of video-conference-software, the exercise was to design a virtual campus in the framework and to carry out this design work in a simulation of distributed practice. Initial criticism of the project came from the students in that exemplary working methods were not described, but left for the students to discover on their own. The creation of a concept for the Liquid Campus meant that the participants had to imagine working in a world without the face to face contacts that form the basis (at present) of personal interaction. Additionally, the assignment to create or design possible links between the real and the virtual was not an easy task for students who normally design and plan real physical buildings. Even the tutors had difficulties in producing focused constructive criticism about a virtual campus; in effect the virtualisation of the university leads to a distinctive blurring of its boundaries. The project was conducted using the pedagogical framework of the netzentwurf.de; a relatively well established Internet based communication platform. This means that the studio was organised in the „traditional“ structure consisting of an initial 3 day workshop, a face to face midterm review, and a collective final review, held 3,5 months later in the Museum of Communication in Frankfurt am Main, Germany. In teams of 3 (with each student from a different university and a tutor located at a fourth) the students worked over the Internet to produce collaborative design solutions. The groups ended up with designs that spanned a range of solutions between real and virtual architecture. Examples of the student’s work (which is all available online) as well as their working methods are described. It must be said that the energy invested in the studio by the organisers of the virtual campus (as well as the students who took part) was considerably higher than in normal design studios and the paper seeks to look critically at the effort in relation to the outcomes achieved. The range and depth of the student’s work was surprising to many in the project, especially considering the initial hurdles (both social and technological) that had to overcome. The self-referential nature of the theme, the method and the working environment encouraged the students to take a more philosophical approach to the design problem. The paper explores the implications of the student’s conclusions on the nature of the university in general and draws conclusions specific to architectural education and the role of architecture in this process.
series eCAADe
email
last changed 2022/06/07 07:55

_id a58e
authors Evans, S. and Hudson-Smith, A.
year 2001
title Information Rich 3D Computer Modeling of Urban Environments
source Working Paper 35, Centre for Advanced Spatial Analysis Working Papers; London, August 2001
summary We are living in an increasingly information rich society. Geographical Information Systems now allow us to precisely tag information to specific features, objects and locations. The Internet is enabling much of this information to be accessed by a whole spectrum of users. At CASA we are attempting to push this technology towards a three-dimensional GIS, that works across the Internet and can represent significant chunks of a large city. We believe that the range of possible uses for such technology is diverse, although we feel that urban planning is an area that can benefit greatly. An opportunity to push this ìplanning technologyî arose when CASA won a tender from Hackney Council to develop a dynamic website for community participation in the process of regenerating the Woodberry Down Estate. This is a run down part of northeast London that is undergoing a major redevelopment. CASA has developed a system that not only informs the local residents about the redevelopment process but it also enables them to use dynamic visualisations of the ìbefore and after effectsî of different plans, and then to discuss and vote on the variety of options.
series other
last changed 2003/04/23 15:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_77443 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002