CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 693

_id avocaad_2001_05
id avocaad_2001_05
authors Alexander Koutamanis
year 2001
title Analysis and the descriptive approach
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The rise of consciousness concerning the quality of working and living conditions has been a permanent though frequently underplayed theme in architecture and building since the reconstruction period. It has led to an explosive growth of programmatic requirements on building behaviour and performance, thus also stimulating the development of design analysis. The first stage of development was characterized by the evolution of prescriptive systems. These reversed the structure of pre-existing proscriptive systems into sequences of known steps that should be taken in order to achieve adequate results. Prescriptive systems complemented rather than replaced proscriptive ones, thereby creating an uncertain mixture of orthodoxy and orthopraxy that failed to provide design guidance for improving design performance and quality.The second stage in the development of design analysis focuses on descriptive methods and techniques for analyzing and supporting evaluation. Technologies such as simulation and scientific visualization are employed so as to produce detailed, accurate and reliable projections of building behaviour and performance. These projections can be correlated into a comprehensive and coherent description of a building using representations of form as information carriers. In these representations feedback and interaction assume a visual character that fits both design attitudes and lay perception of the built environment, but on the basis of a quantitative background that justifies, verifies and refines design actions. Descriptive analysis is currently the most promising direction for confronting and resolving design complexity. It provides the designer with useful insights into the causes and effects of various design problems but frequently comes short of providing clear design guidance for two main reasons: (1) it adds substantial amounts of information to the already unmanageable loads the designer must handle, and (2) it may provide incoherent cues for the further development of a design. Consequently the descriptive approach to analysis is always in danger of been supplanted by abstract decision making.One way of providing the desired design guidance is to complement the connection of descriptive analyses to representations of form (and from there to synthesis) with two interface components. The first is a memory component, implemented as case-bases of precedent designs. These designs encapsulate integrated design information that can be matched to the design in hand in terms of form, function and performance. Comparison between precedents with a known performance and a new design facilitate identification of design aspects that need be improved, as well as of wider formal and functional consequences. The second component is an adaptive generative system capable of guiding exploration of these aspects, both in the precedents and the new design. The aim of this system is to provide feedback from analysis to synthesis. By exploring the scope of the analysis and the applicability of the conclusions to more designs, the designer generates a coherent and consistent collection of partial solutions that explore a relevant solution space. Development of the first component, the design case-bases, is no trivial task. Transformability in the representation of cases and flexible classification in a database are critical to the identification and treatment of a design aspect. Nevertheless, the state of the art in case-based reasoning and the extensive corpus of analysed designs provide the essential building blocks. The second component, the adaptive generative system, poses more questions. Existing generative techniques do not possess the necessary richness or multidimensionality. Moreover, it is imperative that the designer plays a more active role in the control of the process than merely tweaking local variables. At the same time, the system should prevent that redesigning degenerates into a blind trial-and-error enumeration of possibilities. Guided empirical design research arguably provides the means for the evolutionary development of the second component.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 8a8c
authors Choi, J.W., Kwon, D.-Y. and Lee, H.-S.
year 2001
title DesignBUF: Exploring and Extending 2D Boolean Set Operations with Multiple Modes in the Early Design Phase
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 589-602
summary Boolean set operations have been a powerful design function set for any CAD systems including 2D and 3D domains. Their capacity to provide even more powerful design tools have not, however, been fully explored in the 2D system. The purpose of this study is to further explore 2D Boolean set operations with multiple modes, which include a pick mode, a wait mode, a drag-and-drop mode, and a draw-and-action mode. We develop a prototype design tool, called DesignBUF. It introduces a new concept of “design object buffer,” an intermediate design zone in which a designer freely sketches his/her design with design objects in a brainstorming fashion since valuable design ideas are ephemeral? and the designer needs to generate design schemes rapidly before the ideas disappear or are forgotten. After finishing such fast brainstorming processes, especially in the early design phase, the designer gets a stable and refined form of a floor plan, which in turn becomes a well structured form to maintain building and design information systematically. Therefore, the designer keeps switching back and forth between the “design object buffer” and structured floor plans. We believe that this dual working memory will not only increase system flexibility, but also reduce computation with unnecessarily complex design objects. This study also develops a robust algorithm to transform the intermediate design objects into a well-structured floor plan. In fact, the algorithm is also used for the extended Boolean set operations described above. A structured floor plan can also be transformed into non-structured forms. Research issues for future development are also identified at the end of the paper.
keywords Design Buffer, Extended Boolean Set Operations, Structured Floor Plan.
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 270d
authors Elezkurtaj, Tomor and Franck, Georg
year 2001
title Evolutionary Algorithms in Urban Planning
source CORP 2001, Vienna, pp. 269-272
summary The functions supported by commercial CAD software are drawing, construction and presentation. Until now, no programssupporting the creative part of architectural and urban problem solving are on the market. The grand hopes of symbolic AI ofprogramming creative architectural and urban design have been disappointed. In the meantime, methods called New AI are available.Among these methods, evolutionary algorithms are particularly promising for solving design problems. The paper presents anapproach to town panning and architectural problem solving that combines an evolutionary strategy (ES), a genetic algorithm (GA)and a Particle System. The problem that remains incapable of being solved algorithmically has to do with the fact that in architectureand urbanizm form as well as function count. Because function relates to comfort, easiness of use, and aesthetics as well, it ishopeless to fully specify the fitness function of architecture. The approach presented circumvents a full specification through dividinglabor between the software and its user. The fitness function of town plans is defined in terms only of proportions of the shapes, areasand buildings to be accommodated and topological relations between them. The rest is left to the human designer who interactivelyintervenes in the evolution game as displayed on the screen.
series other
email
more www.corp.at
last changed 2002/12/19 12:17

_id 5225
authors Gomez de Silva Garza, Andres and Maher, Mary Lou
year 2001
title Using Evolutionary Methods for Design Case Adaptation
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 180-191
doi https://doi.org/10.52842/conf.acadia.2001.180
summary Case-based reasoning (CBR) provides a methodology for directly using previous designs in the development of a new design. An aspect of CBR that is not well developed for designing is the combination and adaptation of previous designs. The difficulty with this aspect of case-based design is partly due to the extensive amounts of specialised knowledge needed to select the appropriate features of a previous design to include in the new design and the adaptation of these features to fit the context of a new design problem. In this paper we present a design process model that combines ideas from CBR and genetic algorithms (GA’s). The CBR paradigm provides a method for the overall process of case selection and adaptation. The GA paradigm provides a method for adapting design cases by combining and mutating their features until a set of new design requirements and constraints are satisfied. We have implemented the process model and illustrate the model for residential floor plan layout. We use a set of Frank Lloyd Wright prairie house layouts as the case base. The constraints used to determine whether new designs proposed by the process model are acceptable are taken from feng shui, the Chinese art of placement. This illustration not only clarifies how our process model for design through the evolutionary adaptation of cases works, but it also shows how knowledge sources with distinct origins can be used within the same design framework.
keywords Evolutionary Design, Case-Based Reasoning, Floor Plan Layout
series ACADIA
email
last changed 2022/06/07 07:51

_id ecaade2009_014
id ecaade2009_014
authors Haeusler, Matthias Hank
year 2009
title Media-Augmented Surfaces: Embedding Media Technology into Architectural Surface to Allow a Constant Shift between Static Architectural Surface and Dynamic Digital Display
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 483-490
doi https://doi.org/10.52842/conf.ecaade.2009.483
wos WOS:000334282200058
summary The way screens are attached to architecture at present limits architectural surfaces to carriers of signs. The research presented in this paper offers a possible solution that allows architectural surfaces to be both a space-defining element that has certain architectural material qualities and at the same time allows media technology to be embedded. These surfaces can alter their state from static material to dynamic image in an instance. The paper presents a prototype capable of fulfilling this requirement. It also positions the research within the architectural discussion by comparing it to works of others and confirming its research value by reference to work in a similar direction. Finally, the paper evaluates the research and concludes that it could offer a ‘fabric’ to be used as a sort of media clothing for architecture in the electronic age (Ito, 2001).
keywords Media facade technology, media-augmented spaces, architectural screen design, media architecture, digital displays
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia11_372
id acadia11_372
authors James, Anne; Nagasaka, Dai
year 2011
title Integrative Design Strategies for Multimedia in Architecture
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 372-379
doi https://doi.org/10.52842/conf.acadia.2011.372
summary Multidisciplinary efforts that have shaped the current integration of multimedia into architectural spaces have primarily been conducted by collaborative efforts among art, engineering, interaction design, informatics and software programming. These collaborations have focused on the complexities of designing for applications of multimedia in specific real world contexts. Outside a small but growing number of researchers and practitioners, architects have been largely absent from these efforts. This has resulted in projects that deal primarily with developing technologies augmenting existing architectural environments. (Greenfield and Shepard 2007)This paper examines the potential of multimedia and architecture integration to create new possibilities for architectural space. Established practices of constructing architecture suggest creating space by conventional architectural means. On the other hand, multimedia influences and their effect on the tectonics, topos and typos (Frampton 2001) of an architectural space (‘multimedia effects matrix’) suggest new modes of shaping space. It is proposed that correlations exist between those two that could inform unified design strategies. Case study analyses were conducted examining five works of interactive spaces and multimedia installation artworks, selected from an initial larger study of 25 works. Each case study investigated the means of shaping space employed, according to both conventional architectural practices and the principles of multimedia influence (in reference to the ‘multimedia effects matrix’) (James and Nagasaka 2010, 278-285). Findings from the case studies suggest strong correlations between the two approaches to spatial construction. To indicate these correlations, this paper presents five speculative integrative design strategies derived from the case studies, intended to inform future architectural design practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id b044
authors Martin, Rodrigo Q.
year 2001
title LA INTEGRACIÓN DE LA COMPUTACIÓN EN LA ENSEÑANZA DE LA ARQUITECTURA (The Integration of the Computation in the Teaching of Architecture)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 229-232
summary Which are the questions to ask about integration of computer science and teaching Architecture? The use of a new tool may enhance the production of the different representations of the architectural object. But the insertion of a tool demands questioning about his real possibilities of use. The traditional language of space is composed with the constructive language : plans, sections, perspective ,etc. ; but the computer software that is used to design gives the possibility to represent space in several forms : inmersion, dynamic process, parametric deformations. Here appears the question, what is the new language? Which is the way to get to the center of architectural thought, the space. The computer representations and the modification processes of models are new dynamics of design, this has to be considered in the teaching of Architecture.
series SIGRADI
email
last changed 2016/03/10 09:55

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
doi https://doi.org/10.52842/conf.acadia.2016.140
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id d3d4
authors Sato, Tomoya and Hagiwara, Masafumi
year 2001
title IDSET: Interactive Design System using Evolutionary Techniques
source Computer-Aided Design, Vol. 33 (5) (2001) pp. 367-377
summary In this paper, we propose a tool-creating support system named IDSET (Interactive Design System using Evolutionary Techniques). Two kinds of Stages are used in theproposed IDSET: Stages where fundamental shapes are generated and Stages where they are combined. At each Stage, new shapes are generated by the system usingevolutionary techniques, and they are shown to the user. The user's creativity is stimulated by this process. Since the system begins with creating parts instead of usingparts that are prepared in advance, various novel tools can be formed. The user only has to evaluate the displayed tools, not to have to make them. A system to create toolsthat are composed of two fundamental parts has been implemented as an example of the proposed system. Computer experiments have been carried out, and various toolsand artistic shapes have been created. Some shapes which human beings could not easily envisage were included in the created shapes. This underlines the effectiveness ofthe proposed IDSET.
keywords Interactive Design, Evolutionary Techniques, Tool-Creating Support System
series journal paper
last changed 2003/05/15 21:33

_id avocaad_2001_07
id avocaad_2001_07
authors Stefan Wrona, Adam Gorczyca
year 2001
title Complexity in Architecture - How CAAD can be involved to Deal with it. - "Duality"
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary “Complexity “ is for us a very ambigous notion. It may be understood in two contexts.1.Thorough solution of a problem.Complexity means full recognition of design area, followed by appropriate work. That work must be thorough and interdisciplinary – if necessary, separated to different co-operatives. These trade designers reqiure a branch coordination and – the most important- all of them must have a „common denominator”. Such as a proper CAAD platform and office standards. That will reduce costs of changes, improve an interplay between designers and somtimes enable to face up a new challenge.Nowadays architects are no longer “solitary” individualists working alone – they must concern a team – they become a member, a part of a huge design machine. “Import/export”, compatibility, interplay – these words must appear and we have to put a stress on them. How to organize work for different trade-designers? How to join in common database architectural design ,engineering design, HVAC design, electricity design, technology design, computer network design and all other trades ?...A key to solve this range of problems is in good work organization. Universal prescription does not exist, but some evergreen rules can be observed. We are going to present a scheme of work in CAAD application ALLPLAN FT v.16 with a Group manager , which starts to conquest polish market and is widely spread in Germany. “Golden rules” of ALLPLAN FT There is one database – it is placed on server. It includes all projects. There is a well-developed office standard. It must be created at the beginning of collaboration, although it is possible to improve it later. It consist of hatches, fonts, symbols, macros, materials, pen-widths, and – the most important –layers . A layer set – predefined structure divided into functional groups – e.g. drafting, text, dimensioning, architecture, HVAC, engineering, urban design, etc.That stucture is a part of an office standard – all workers use a relevant part of it. No name duplicates, no misunderstandings... If however design extends, and a new group of layers is required, it can be easily added, e.g. computer networks, fireguard systems. Administrator of ALLPLAN network defines different users and gives them different permitions of access. For example – an electrician will be able to draft on layer “electricity”, but he won’t modify anything at layer “architecture – walls”, and he won’t even see a layer “engineering- slabs”, because he doesn’t need it..At the same time our electrician will be able to see , how architect moves some walls and how HVAC moved and started to cross with his wires. Every user is able to see relevant changes, after they are saved by author. Two different users can not access at the same time the same file. That excludes inconsistent or overlapping changes . All users operate on a 3D model. While putting some data into a model, they must remember about a “Z” coordinate at work-storey. But at the same time all create a fully-integrated, synchronous database, which can be used later for bills of quantities, specifications, and – of course – for visuaisation. That method can be described as “model-centric”. To simplify complex structure of architectural object -ALLPLAN offers files. Usually one file means one storey, but at special designs it might become a functional part of a storey, or whatever you wish. Files connected with layers easy enable to separate certain structural elements, e.g. if we want to glance only at concrete slabs and columns in the building – we will turn on all files with “layer filter” – “slabs” and “columns”. ALLPLAN is of course one of possible solutions. We described it , because we use it in our workshop. It seems to be stretchy enough to face up every demand and ever-increasing complexity of current projects. The essence of the matter, however, is not a name or version of application – it is a set of features, we mentioned above, which allows to deal with EVERY project. The number of solutions is infinite.2. Increasing difficulties during design process. It may be associated with more and more installations inside of new buildings, especially some “high-tech” examples. The number of these installations increases as well as their complexity. Now buildings are full of sensors, video-screens, computer networks, safety-guard systems... Difficulties are connected with some trends in contemporary architecture, for example an organic architecture, which conceives “morphed” shapes, “moving” surfaces, “soft” solids. This direction is specially supported by modelling or CAD applications. Sometimes it is good – they allow to realize all imaginations, but often they lead to produce “unbuildable” forms, which can exist only in virtual world.Obstacles appear, when we design huge cubatures with “dense” functional scheme. Multi-purposed objects, exhibition halls, olimpic stadium at Sydney – all of them have to be stretchy, even if it requires sliding thousands pound concrete blocks! Requirements were never so high.The last reason, why designs become so complex is obvious - intensifying changes due to specific requirements of clients/developers.We could say “ signum tempori” – everything gets more and more complicated , people have to become specialists, to face up new technology. But how CAAD can help us with it? How?! We have already answered that question. Sometimes CAAD is the only way to imagine and sketch something, to visualize something, to compute a construction , to prepare a simulation... So that human must “only” interprete ready solutions. Sometimes CAAD help us to notify a problem. It works exactly in the same way, as spy-glasses does. For example – without a real-time visualization we we would have never realised (until finished!) some strange interference of solids, which have occured in the upper roof part of our new appartment-house.ConclusionsTemporary CAAD is an integral part of design process – not only as a tool, but sometimes as an inspiration. It helps to organize our work, to define problems, to filter relevant elements and to render our visions. It becomes an integral part of our senses – and that will be a real complexity in architecture...
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2005_787
id 2005_787
authors Veikos, Cathrine
year 2005
title The Post-Medium Condition
source Digital Design: The Quest for New Paradigms [23nd eCAADe Conference Proceedings / ISBN 0-9541183-3-2] Lisbon (Portugal) 21-24 September 2005, pp. 787-794
doi https://doi.org/10.52842/conf.ecaade.2005.787
summary Theorists in art, architecture and visual media have described the digital world as a world of mediumlessness and proclaimed that the medium of a work, once the ontological determinant for the classification of the arts, is rendered meaningless by recent technological and cultural developments (Krauss, 2000; Negroponte, 1995; Manovich, 2001). Although indebted to specific media-based techniques and their attendant ideologies, software removes the material reality of techniques to an immaterial condition where the effects of material operations are reproduced abstractly. This paper asserts that a productive approach for digital design can be found in the acknowledgement that the importance of the digital format is not that it de-materializes media, but that it allows for the maximum intermingling of media. A re-conceptualization of media follows from this, defined now as, a set of conventions derived from the material conditions of a given technical support, conventions out of which to develop a form of expressiveness that can be both projective and mnemonic (Krauss, 2000). The paper will focus on the identification of these conventions towards the development of new forms of expressiveness in architecture. Further demonstration of the intermingling of materially-based conventions is carried out in the paper through a comparative analysis of contemporary works of art and architecture, taking installation art as a particular example. A new design approach based on the maximum intermingling of media takes account of integrative strategies towards the digital and the material and sees them as inextricably linked. In the digital “medium” different sets of conventions derived from different material conditions transfer their informational assets producing fully formed, material-digital ingenuity.
keywords Expanded Architecture, Art Practice, Material, Information, ParametricTechniques, Evolutionary Logics
series eCAADe
email
last changed 2022/06/07 07:58

_id ga0208
id ga0208
authors Wang, Xu and Lau, Siu Yu
year 2002
title Pursuing New Urban Living Environment In The New Millennium: Projecting The Future Of High-Rise And High Density Living In Hong Kong
source International Conference on Generative Art
summary High-rise and high density living is a way of life for most of the 6.7 Million population of Hong Kong. The merits and demerits affiliated with Hong Kong’s compact urban form continues to attract academic deliberations and debates over the acceptability of such urban form as an alternative to urban sprawl for future city and urban life-style. This paper traces the development and causes for Hong Kong’s high-rise and high-density urban form over the past fifty years or so, and focuses its discussions on the pros and cons of high-rise living based on subjective user survey in late 2001 and early 2002. Because of an articulated land shortage, acute topography, escalating population growth, and shortage of time, Hong Kong government and planners have little options left but to adopt vertical development, resulted in a densely and mixed use urban habitat packed with closely built high-rise residences and commercial buildings. From the survey, it is clear that mixed and intensive land use, high quality of living and recreation infrastructure, efficient public transportation network, and segregation of pedestrian and traffic can facilitate the performance of compact urban form. In addition, most of Hong Kong families have been accustomed to high-rise living pattern and the disadvantages such living pattern might cause on its resident’s social communication and children education are readily ignored by most of the people. Based on the analysis of current living situation and development trends in Hong Kong, new pattern of future city form is conceived to be a likely applicable development way in a coastal city with such high density as Hong Kong in the next 50 years. Design countermeasures are presented in this paper to suggest ways of alleviating the pressure of the forever-increasing house requirements in Hong Kong. high-density, high-rise, compact city, social acceptance, life-style.
keywords high-density, high-rise, compact city, social acceptance, life-style
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id avocaad_2001_09
id avocaad_2001_09
authors Yu-Tung Liu, Yung-Ching Yeh, Sheng-Cheng Shih
year 2001
title Digital Architecture in CAD studio and Internet-based competition
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Architectural design has been changing because of the vast and creative use of computer in different ways. From the viewpoint of designing itself, computer has been used as drawing tools in the latter phase of design (Mitchell 1977; Coyne et al. 1990), presentation and simulation tools in the middle phase (Liu and Bai 2000), and even critical media which triggers creative thinking in the very early phase (Maher et al. 2000; Liu 1999; Won 1999). All the various roles that computer can play have been adopted in a number of professional design corporations and so-called computer-aided design (CAD) studio in schools worldwide (Kvan 1997, 2000; Cheng 1998). The processes and outcomes of design have been continuously developing to capture the movement of the computer age. However, from the viewpoint of social-cultural theories of architecture, the evolvement of design cannot be achieved solely by designers or design processes. Any new idea of design can be accepted socially, culturally and historically only under one condition: The design outcomes could be reviewed and appreciated by critics in the field at the time of its production (Csikszentmihalyi 1986, 1988; Schon and Wiggins 1992; Liu 2000). In other words, aspects of design production (by designers in different design processes) are as critical as those of design appreciation (by critics in different review processes) in the observation of the future trends of architecture.Nevertheless, in the field of architectural design with computer and Internet, that is, so-called computer-aided design computer-mediated design, or internet-based design, most existing studies pay more attentions to producing design in design processes as mentioned above. Relatively few studies focus on how critics act and how they interact with designers in the review processes. Therefore, this study intends to investigate some evolving phenomena of the interaction between design production and appreciation in the environment of computer and Internet.This paper takes a CAD studio and an Internet-based competition as examples. The CAD studio includes 7 master's students and 2 critics, all from the same countries. The Internet-based competition, held in year 2000, includes 206 designers from 43 counties and 26 critics from 11 countries. 3 students and the 2 critics in the CAD studio are the competition participating designers and critics respectively. The methodological steps are as follows: 1. A qualitative analysis: observation and interview of the 3 participants and 2 reviewers who join both the CAD studio and the competition. The 4 analytical criteria are the kinds of presenting media, the kinds of supportive media (such as verbal and gesture/facial data), stages of the review processes, and interaction between the designer and critics. The behavioral data are acquired by recording the design presentation and dialogue within 3 months. 2. A quantitative analysis: statistical analysis of the detailed reviewing data in the CAD studio and the competition. The four 4 analytical factors are the reviewing time, the number of reviewing of the same project, the comparison between different projects, and grades/comments. 3. Both the qualitative and quantitative data are cross analyzed and discussed, based on the theories of design thinking, design production/appreciation, and the appreciative system (Goodman 1978, 1984).The result of this study indicates that the interaction between design production and appreciation during the review processes could differ significantly. The review processes could be either linear or cyclic due to the influences from the kinds of media, the environmental discrepancies between studio and Internet, as well as cognitive thinking/memory capacity. The design production and appreciation seem to be more linear in CAD studio whereas more cyclic in the Internet environment. This distinction coincides with the complementary observations of designing as a linear process (Jones 1970; Simon 1981) or a cyclic movement (Schon and Wiggins 1992). Some phenomena during the two processes are also illustrated in detail in this paper.This study is merely a starting point of the research in design production and appreciation in the computer and network age. The future direction of investigation is to establish a theoretical model for the interaction between design production and appreciation based on current findings. The model is expected to conduct using revised protocol analysis and interviews. The other future research is to explore how design computing creativity emerge from the process of producing and appreciating.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 9ab2
authors Yun, Yong Gib
year 2001
title Structural Composite Members in Architecture Fabricated by CAD/CAE/CAM Technology
source Harvard University
summary The doctoral research in this dissertation is aimed at exploring new materials and innovative methods for fabricating complex-shaped buildings, which have surfaced as a prevailing trend in architecture today. Over the past few years, the field of architecture has witnessed revolutionary changes in design. The recent completion of Frank O. Gehry's new Guggenheim Museum in Bilbao, Spain, brought unprecedented attention to complex-shaped, non-conventional designs and its influence on the global architectural trend has been immense. In following these latest trends, the author was drawn to the issues concerning construction materials and methods that are being currently adopted in realizing these complicated designs. It is perhaps inevitable that the traditional steel construction methods, suitable for use in the conventional linear shapes, face tremendous challenges and limitations in building such complex-shaped designs. In the author's opinion, the next step to go from here is to seek joint efforts between the architectural field and the engineering field to search for a new methodology which will best serve the contemporary design style. This research first focused on examining the problems that traditional methods pose for the new complex-shaped buildings. Paying attention to Gehry's recent projects, the author was able to identify major difficulties in association with representing and constructing these complicated shapes, mainly in terms of the relationship between the primary structure and the envelope surface. The second part of the research moved on to proposing a new alternative to the traditional methods, by utilizing polymer composite materials (PCM) as construction material and employing advanced Computer-Aided Design (CAD)/Computer Aided Engineering (CAE)/Computer-Aided Manufacturing (CAM) technologies. More specifically, the author has attempted to present effective theories in support of the two following ideas: (1) circular tubes made of PCM are the most promising alternative to regular steel members, especially steel tubes, to follow the envelope surface of the complex shaped building. (2) state-of-the-art CAD/CAE/CAM technologies are the most essential tools to achieve the geometrical and functional quality of the proposed new material. In the second phase, the primary focus of the quantitative approach was on fabricating an experimental model (1:1 scale prototype) called “ a unit of boundary structures”, the basic unit of structure system that wraps a complex-shaped building's entire territory . (Abstract shortened by UMI.)
series thesis:PhD
last changed 2003/02/12 22:37

_id 90b5
authors Zhou, Qi and Krawczyk, Robert J.
year 2001
title From CAD to iAD: A survey of Internet application in the AEC industry
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 392-397
doi https://doi.org/10.52842/conf.acadia.2001.392
summary The internet is becoming increasingly more valuable in the field of architectural design that what we conventionally called CAD might soon be changed to iAD (internet Aided Design) (Zhou and Krawczyk 2000). In order to have a clear vision of what iAD will be or could be, we should first examine what is currently available. This research focuses on an investigation of selected web vendors, which are typical and most influential in providing internet related services for the AEC industry. Our purpose for doing this survey is: to understand the progress and development of internet application in the AEC industry, identify the technology used in this area, determine the advantages and deficiencies of current practice and develop a base for future research in proposing a evolutionary model of internet Aided Design for architecture.
keywords Internet Aided Design, Web-Based Application, On-Line Collaboration
series ACADIA
email
last changed 2022/06/07 07:57

_id avocaad_2001_14
id avocaad_2001_14
authors Adam Jakimowicz
year 2001
title Non-Linear Postrationalisation: Architectural Values Emergence in a Teamwork Interpretation
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The paper presents the outcomes of the experiment being conducted at the Faculty of Architecture in Bialystok, which derives form three main sources: a new course of architectural composition by computer modelling, developed and conducted in Bialystok postrationalisation as a formulation platform for new architectural values and theories, applied by e.g. Bernard Tschumi the idea of new values emergence resulting form a teamwork, when placed in an appropriate environment; It is assumed that the work performed first intuitively, can be later seriously interpreted, and to some extent rationalised, verbalised, described. With no doubt we can state, that in creative parts of architectural activities, very often decision are taken intuitively (form design). So this ‘procedure’ of postrationalisation of intuitively undertaken efforts and results seems to be very important –when trying to explain ideas. This kind of activity is also very important during the first years of architectural education. In case of this experiment, the students’ works from the course of architectural composition are taken as a base and subjects for interpretation, and values research. However, when at first, individual works are being interpreted by their authors, at the latter stage, the teams are to be formed. The aim of the teamwork is to present individual works, analyse them, find common value(s), and represent it (them) in an appropriate, creative way. The ideal environment to perform this work is hypertext based internet, because the non-linearity of team interpretations is unavoidable. On the other hand, the digital input data (computer models) is a very appropriate initial material to be used for hypermedia development. The experiment is to analyse the specific of the following: the self-influence of the group on the individual work ‘qualification’, mutual influence of the team members on their own work interpretation, the influence of the digital non-linear environment on the final outcome definition. The added value of hypertext in architectural groupwork digital performance shall be examined and described. A new value of individualised, though group based, non-linearity of expression will be presented and concluded.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 9c0c
authors Af Klercker, Jonas and HenrichsÈn, Jan
year 2001
title Can simulations in VE support architects in solving complex design problems?
source Stellingwerff, Martijn and Verbeke, Johan (Eds.), ACCOLADE - Architecture, Collaboration, Design. Delft University Press (DUP Science) / ISBN 90-407-2216-1 / The Netherlands, pp. 77-82 [Book ordering info: m.c.stellingwerff@bk.tudelft.nl]
summary Building design is facing development of industrialization of the production on the one hand and more complex 'One of a Kind' products on the other. This will be for rebuilding of a large stock of existing buildings and what can be left to new production. In both cases the results of the design process have to be solid to guarantee a successful product. In both cases an integrated and careful design process is absolutely crucial. The demands on the built environment make the systems of buildings more and more complex and have to be handled by a lot of different expertise. To avoid the 'Relay Race' of today the design teams of tomorrow must work much more integrated. To make integrated solutions, which means simultaneous constrains on all systems, the experts of different fields have to understand more of how all engaged systems relate and influence each other. Communication then consists of complex situations and processes that have to be understood and related to reality. In this aspect a multidimensional Virtual Environment interface has advantages and has been successfully used in design processes in other industries. In this paper the problems that have to be studied are for example Methodical, Conceptual, Technical and Process economical.
series other
email
last changed 2001/09/14 21:30

_id bb5f
authors Ahmad Rafi, M.E. and Mohd Fazidin, J.
year 2001
title Creating a City Administration System (CAS) using Virtual Reality in an Immersive Collaborative Environment (ICE)
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 449-453
doi https://doi.org/10.52842/conf.ecaade.2001.449
summary Current problems in administration of a city are found to be decentralized and noninteractive for an effective city management. This usually will result in inconsistencies of decision-making, inefficient services and slow response to a particular action. City administration often spends more money, time and human resource because of these problems. This research demonstrates our research and development of creating a City Administration System (CAS) to solve the problems stated above. The task of the system is to use information, multimedia and graphical technologies to form a database in which the city administrators can monitor, understand and manage an entire city from a central location. The key technology behind the success of the overall system uses virtual reality and immersive collaborative environment (ICE). This system employs emerging computer based real-time interactive technologies that are expected to ensure effective decisionmaking process, improved communication, and collaboration, error reduction, (Rafi and Karboulonis, 2000) between multi disciplinary users and approaches. This multi perspective approach allows planners, engineers, urban designers, architects, local authorities, environmentalists and general public to search, understand, process and anticipate the impact of a particular situation in the new city. It is hoped that the CAS will benefit city administrators to give them a tool that gives them the ability to understand, plan, and manage the business of running the city.
keywords City Administration System (CAS), Virtual Reality, Immersive Collaborative Environment (ICE), Database
series eCAADe
email
last changed 2022/06/07 07:54

_id 12e3
authors Ahmad Rafi, M.E., Che Zulkhairi, A. and Karboulonis, P.
year 2002
title Interactive Storytelling and Its Role in the Design Process
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 151-158
doi https://doi.org/10.52842/conf.caadria.2002.151
summary Projects of ever increasing complexity and size have incited the need for new and robust design methodologies and tools in an effort to manage complexity, lower costs, ascertain quality and reduce risk. Technology convergence through the growing availability of networked computers, rapid progress in Computer Aided Design (CAD) and information management have encouraged the undertaking of even more complex designs that demand high degrees of interaction, collaboration and the efficient sharing and dissemination of information. It is suggested that interactive storytelling and interactive design (Rafi and Karboulonis, 2001) techniques that use non-linear information mapping systems can be deployed to assist users as they navigate information that is structured to address localized needs as they arise. The design process is a collaborative effort that encompasses diverse knowledge disciplines and demands the management and utilization of available resources to satisfy the needs of a single or set of goals. It is thought that building industry specialists should work close together in an organised manner to solve design problems as they emerge and find alternatives when designs fall short. The design process involves the processing of dynamic and complex information, that can be anything from the amount of soil required to level lands - to the needs of specific lightings systems in operation theatres. Other important factors that affect the design process are related to costs and deadlines. This paper will demonstrate some of our early findings in several experiments to establish nonlinear storytelling. It will conclude with a recommendation for a plausible design of such a system based on experimental work that is currently being conducted and is reaching its final stages. The paper will lay the foundations of a possible path to implementation based on the concept of multi-path animation that is appropriate for structuring the design process as used in the building industry.
series CAADRIA
email
last changed 2022/06/07 07:54

_id af65
authors Akleman, E., Chen, J. and Sirinivasan, V.
year 2001
title An Interactive Shape Modeling System for Robust Design of Functional 3D Shapes
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 248-257
doi https://doi.org/10.52842/conf.acadia.2001.248
summary In Architecture, it is essential to design functional and topologically complicated 3D shapes (i.e. shapes with many holes, columns and handles). In this paper, we present a robust and interactive system for the design of functional and topologically complicated 3D shapes. Users of our system can easily change topology (i.e. they can create and delete holes and handles, connect and disconnect surfaces). Our system also provide smoothing operations (subdivision schemes) to create smooth surfaces. Moreover, the system provides automatic texture mapping during topology and smoothing operations. We also present new design approaches with the new modeling system. The new design approaches include blending surfaces, construction of crusts and opening holes on these crusts.
keywords Modeling, Shape Design, Sculpting, Computer Aided Geometric Design
series ACADIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 34HOMELOGIN (you are user _anon_116541 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002