CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 716

_id bfc8
authors Fukai, Dennis and Srinivasan, Ravi
year 2001
title PCIS Revisited: A Visual Database for Design and Construction
doi https://doi.org/10.52842/conf.acadia.2001.372
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 372-379
summary This paper presents research on a piece-based construction information system called PCIS(pronounced “pieces”) first published as a visual information concept at ACADIA’96, Tucson. After more than five years of development it has evolved into a multidimensional visual information system for design and construction. It includes a piece-based anatomical construction model layered according to a work breakdown structure; a dataTheater that surrounds the model as an index to plans, elevations, sections, and details; and a dataWorld with cameras fixed to the intersections of its latitudes and longitudes to add context and perspective. A standard services matrix (SSM) controls layer visibility and camera settings. PCIS can be “played” to access archived resources; support design development, analyze and resolve preconstruction conflicts, and coordinate construction activities. Current research will be used to demonstrate how PCIS might be valuable to increase the potential for technical cooperation, collaboration, and communication by literally aligning the points of view of architectural, engineering, and construction methodology.
keywords Construction, Pictorial, 3D/4D, Modeling, Database
series ACADIA
email
last changed 2022/06/07 07:50

_id avocaad_2001_19
id avocaad_2001_19
authors Shen-Kai Tang, Yu-Tung Liu, Yu-Sheng Chung, Chi-Seng Chung
year 2001
title The visual harmony between new and old materials in the restoration of historical architecture: A study of computer simulation
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the research of historical architecture restoration, scholars respectively focus on the field of architectural context and architectural archeology (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000) or on architecture construction and the procedure of restoration (Shi, 1988, 1989; Chiu, 1990). How to choose materials and cope with their durability becomes an important issue in the restoration of historical architecture (Dasser, 1990; Wang, 1998).In the related research of the usage and durability of materials, some scholars deem that, instead of continuing the traditional ways that last for hundreds of years (that is to replace new materials with old ones), it might be better to keep the original materials (Dasser, 1990). However, unavoidably, some of the originals are much worn. Thus we have to first establish the standard of eliminating components, and secondly to replace identical or similar materials with the old components (Lee, 1990). After accomplishing the restoration, we often unexpectedly find out that the renewed historical building is too new that the sense of history is eliminated (Dasser, 1990; Fu, 1997). Actually this is the important factor that determines the accomplishment of restoration. In the past, some scholars find out that the contrast and conflict between new and old materials are contributed to the different time of manufacture and different coating, such as antiseptic, pattern, etc., which result in the discrepancy of the sense of visual perception (Lee, 1990; Fu, 1997; Dasser, 1990).In recent years, a number of researches and practice of computer technology have been done in the field of architectural design. We are able to proceed design communication more exactly by the application of some systematic softwares, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and so on (Lawson, 1995; Liu, 1996). The application of computer technology to the research of the preservation of historical architecture is comparatively late. Continually some researchers explore the procedure of restoration by computer simulation technology (Potier, 2000), or establish digital database of the investigation of historical architecture (Sasada, 2000; Wang, 1998). How to choose materials by the technology of computer simulation influences the sense of visual perception. Liu (2000) has a more complete result on visual impact analysis and assessment (VIAA) about the research of urban design projection. The main subjects of this research paper focuses on whether the technology of computer simulation can extenuate the conflict between new and old materials that imposed on visual perception.The objective of this paper is to propose a standard method of visual harmony effects for materials in historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example).There are five steps in this research: 1.Categorize the materials of historical architecture and establish the information in digital database. 2.Get new materials of historical architecture and establish the information in digital database. 3.According to the mixing amount of new and old materials, determinate their proportion of the building; mixing new and old materials in a certain way. 4.Assign the mixed materials to the computer model and proceed the simulation of lighting. 5.Make experts and the citizens to evaluate the accomplished computer model in order to propose the expected standard method.According to the experiment mentioned above, we first address a procedure of material simulation of the historical architecture restoration and then offer some suggestions of how to mix new and old materials.By this procedure of simulation, we offer a better view to control the restoration of historical architecture. And, the discrepancy and discordance by new and old materials can be released. Moreover, we thus avoid to reconstructing ¡§too new¡¨ historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id avocaad_2001_05
id avocaad_2001_05
authors Alexander Koutamanis
year 2001
title Analysis and the descriptive approach
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The rise of consciousness concerning the quality of working and living conditions has been a permanent though frequently underplayed theme in architecture and building since the reconstruction period. It has led to an explosive growth of programmatic requirements on building behaviour and performance, thus also stimulating the development of design analysis. The first stage of development was characterized by the evolution of prescriptive systems. These reversed the structure of pre-existing proscriptive systems into sequences of known steps that should be taken in order to achieve adequate results. Prescriptive systems complemented rather than replaced proscriptive ones, thereby creating an uncertain mixture of orthodoxy and orthopraxy that failed to provide design guidance for improving design performance and quality.The second stage in the development of design analysis focuses on descriptive methods and techniques for analyzing and supporting evaluation. Technologies such as simulation and scientific visualization are employed so as to produce detailed, accurate and reliable projections of building behaviour and performance. These projections can be correlated into a comprehensive and coherent description of a building using representations of form as information carriers. In these representations feedback and interaction assume a visual character that fits both design attitudes and lay perception of the built environment, but on the basis of a quantitative background that justifies, verifies and refines design actions. Descriptive analysis is currently the most promising direction for confronting and resolving design complexity. It provides the designer with useful insights into the causes and effects of various design problems but frequently comes short of providing clear design guidance for two main reasons: (1) it adds substantial amounts of information to the already unmanageable loads the designer must handle, and (2) it may provide incoherent cues for the further development of a design. Consequently the descriptive approach to analysis is always in danger of been supplanted by abstract decision making.One way of providing the desired design guidance is to complement the connection of descriptive analyses to representations of form (and from there to synthesis) with two interface components. The first is a memory component, implemented as case-bases of precedent designs. These designs encapsulate integrated design information that can be matched to the design in hand in terms of form, function and performance. Comparison between precedents with a known performance and a new design facilitate identification of design aspects that need be improved, as well as of wider formal and functional consequences. The second component is an adaptive generative system capable of guiding exploration of these aspects, both in the precedents and the new design. The aim of this system is to provide feedback from analysis to synthesis. By exploring the scope of the analysis and the applicability of the conclusions to more designs, the designer generates a coherent and consistent collection of partial solutions that explore a relevant solution space. Development of the first component, the design case-bases, is no trivial task. Transformability in the representation of cases and flexible classification in a database are critical to the identification and treatment of a design aspect. Nevertheless, the state of the art in case-based reasoning and the extensive corpus of analysed designs provide the essential building blocks. The second component, the adaptive generative system, poses more questions. Existing generative techniques do not possess the necessary richness or multidimensionality. Moreover, it is imperative that the designer plays a more active role in the control of the process than merely tweaking local variables. At the same time, the system should prevent that redesigning degenerates into a blind trial-and-error enumeration of possibilities. Guided empirical design research arguably provides the means for the evolutionary development of the second component.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 22ec
authors Bechthold, Martin
year 2001
title Complex shapes in wood: Computer-aided design and manufacture of wood-sandwich roof shells
source Harvard University
summary Computer-Aided-Design, Engineering and Manufacturing (CAD/CAE/CAM) technology has changed the way consumer products, automobiles or airplanes are designed and made. The emerging applications for CAD/CAE/CAM technology in architecture, and the way this technology impacts how we design and construct the built environment, are yet unclear. This thesis investigates the relation between advanced digital design tools and the making of physical objects by focusing on an exemplary architectural element—wooden roof shells. The research objective is to expand the scope of architectural design through the application of CAD/CAE/CAM technology rather than to use this technology to streamline existing processes. The thesis develops a specific technical solution that allows the design and manufacture of new types of wooden roof shells. These are complexly shaped multifunctional construction elements that are manufactured off-site. Based on the close connection between digital design tools and the new Computer-Numerically-Controlled manufacturing process the author proposes a theoretical model of shared digital environments for collaborative design in architecture. The proposed manufacturing process treats wood as a modern composite material. Thin wood strips and foams combine into structural sandwich panels that can then be joined into a roof shell. The geometrically complex panels are generated by a combination of subtractive Computer-Numerically-Controlled machining processes and manual work. Infrastructure elements can be embedded into the sandwich build-up in order to enhance the functionality of the roof as a building envelope. Numerical tools are proposed that allow the determination of manufacturing-related parameters in the digital design environment. These inform the architectural and structural design in the early design phases. The digital collaborative design environment is based on a shared parametric solid model and an associated database. This collectively owned, feature-based design model is employed throughout the design and manufacturing process and constitutes the means of concurrent design coordination of all participants. The new manufacturing process for wood/foam sandwich shells is verified by designing and manufacturing prototypes. Design guidelines and a cost estimation are presented as the practical basis for architects and engineers to incorporate new types of roof shells into architectural projects.
keywords Architecture; Agriculture; Wood Technology; Design and Decorative Arts
series thesis:PhD
last changed 2003/02/12 22:37

_id 7b69
authors Borkowski, A., Branki, C., Grabska, E. and Palacz, W.
year 2001
title Towards collaborative creative design
source Automation in Construction 10 (5) (2001) pp. 607-616
summary The paper presents a design support system for collaborative work based upon the composite knowledge representation. It addresses the main challenges of distributed environment: ensuring a convenient access to the common data by multiple users and maintaining consistency of such data. The main idea is to couple the design support system implemented in C/C++ with the knowledge database using the ODBC library developed by the Microsoft. The ability of the proposed system is demonstrated on several examples.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 0f49
authors Burry, M., Coulson, J., Preston, J. and Rutherford, E.
year 2001
title Computer-aided design decision support: interfacing knowledge and information
source Automation in Construction 10 (2) (2001) pp. 203-215
summary Computer-aided design decision support has proved to be an elusive and intangible project for many researchers as they seek to encapsulate information and knowledge-based systems as useful multifunctional data structures. Definitions of `knowledge', `information', `facts', and `data' become semantic footballs in the struggle to identify what designers actually do, and what level of support would suit them best, and how that support might be offered. The Construction Primer is a database-drivable interactive multimedia environment that provides readily updated access to many levels of information aimed to suit students and practitioners alike. This is hardly a novelty in itself. The innovative interface and metadata structures, however, combine with the willingness of national building control legislators, standards authorities, materials producers, building research organisations, and specification services to make the Construction Primer a versatile design decision support vehicle. It is both compatible with most working methodologies while remaining reasonably future-proof. This paper describes the structure of the project and highlights the importance of sound planning and strict adhesion to library-standard metadata protocols as a means to avoid the support becoming too specific or too paradigmatic.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 0761
authors Cheng, Min-Yuan and Chang, Guey-Lin
year 2001
title Automating utility route design and planning through GIS
source Automation in Construction 10 (4) (2001) pp. 507-516
summary In trench construction, one of the tasks for engineers is to select a suitable route to minimize construction cost and obstructions. This paper discusses the development of a Geographic Information Systems (GIS)-based system to automate the process of routing and design of an underground power supply system. In the system, surface and underground utilities are represented in several coverages. Using network analysis, the system determines the optimal paths for routing the utilities. Through database queries and spatial operations, the construction conflict points between the basic coverages and the selected route are not only identified, but a reallocation schedule is also determined.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 100d
authors Hadikusumo, B.H.W. and Rowlinson, S.
year 2001
title Development of a virtually real construction site - design for safety
source CIDAC, Volume 3 Issue 2 May 2001
summary Interpreting two-dimensional drawings presents problems for builders since they are required to transfer these into three-dimensional mental images. Virtual Reality (VR) technology has several advantages. One is that it can be used to solve the problem of image transfer since VR supports a What-You-See-Is-What-You-Get object together with a binocular effect, improving users' visual sense. Another advantage of VR is the capability to present a real time dynamic simulation, which can be used to represent construction processes. By representing virtually real construction components and processes, users can walk through the virtual project. Using his/her safety knowledge, he/she can identify safety hazards inherent within the virtually real construction components and processes and determine the appropriate safety precautions to employ to make the virtual construction site safe.

This hazard identification process can be better achieved if a guideline is provided. Therefore, a Design-For-Safety-Process (DFSP) guideline is developed to assist users to identify safety hazards as well as to recommend remedial safety measures. This paper discusses how virtual reality benefits the construction industry in terms of a design representation. In addition, important issues in developing virtually real construction components and processes as well as functions of virtual reality which are needed to support the DFSP are discussed.

series journal paper
last changed 2003/05/15 20:36

_id d146
authors He, Jie
year 2001
title CAD Study in Visual Analysis of the Visual Sustainability for China Urban Natural Landscape Planning
source Chinese University of Hong Kong
summary In this thesis a GIS-based CAD system prototype of evaluating visual quality of urban natural landscape environment is presented. This prototype is an indispensable component of the integrative Visual Sustainability research, and offers a calculable and visualizable technique to urban visual natural landscape assessment. This scientific method provides precise data to estimate the visibility of natural landscape in urban construction actuality. Furthermore, it can also work out supporting information for maintaining and protecting valuable visual landscape resources in further planning. Introduction of this methodology intends to improve the natural landscape cooperation in China urban planning through visual protection. Combining with popular CAD software such as AutoCAD and Microstation, the research team uses ArcView GIS software and its 3D Analyst extension to accomplish a set of research procedure, which includes data modification, model making, viewshed and view sensibility analysis. In addition, this system can create simultaneous 3D scenes or hire other information media as reference tools for professional analysis, design consultation and intercommunication. The core technologies of this proposed system are viewshed calculation and overlay analysis. In viewshed analysis, human visual characteristics are simulated by a series of ergonomics parameters of viewpoints. Viewshed of each viewpoint can be calculated into vector data and mapped by polygons identifying which region is visible and which is not. Overlay function of the proposed system is used in visual sensibility analysis to achieve the division of higher visual sensible area which indicates the common visible area from different viewpoints. Additionally, viewshed maps and visual sensibility results can add more information to mark out the areas that can satisfy certain visual parameters such as appropriate visual angle or visual distance. These overlaying results can visualized the visible areas into hierarchical visual perception quality categories in order to define the visual landscape significance of particular planning regions. A case study was operated to evaluate this system. The case is in Zhongshan city, Guangdong Province of China. Jinzishan hill region is the study site that picked by collaborating discussion of research team and the local government. It is located on the edge of urban built-up area. Jinzishan massif is the prominent landscape element of the surrounding environment. There are three topics in Jinzishan visual perception in this paper. The first topic is the visual quality evaluation of the intersections of its surrounding road system. The second is the integrated visual perception of two main roads called Qiwandao and Bo’ailu. Finally is the analysis of the hill skyline visual quality in surrounding area. The analysis results in GIS vector data can be converted into popular data format and combined with other spatial information for practical application. And comments for future urban planning are collected and analyzed by professional responses to the computer-generated information investigation.
keywords Natural Landscaping; Computer-Aided Design; Landscape Architecture; City Planning; Geographic Information Systems
series thesis:MSc
email
last changed 2003/02/12 22:37

_id avocaad_2001_22
id avocaad_2001_22
authors Jos van Leeuwen, Joran Jessurun
year 2001
title XML for Flexibility an Extensibility of Design Information Models
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The VR-DIS research programme aims at the development of a Virtual Reality – Design Information System. This is a design and decision support system for collaborative design that provides a VR interface for the interaction with both the geometric representation of a design and the non-geometric information concerning the design throughout the design process. The major part of the research programme focuses on early stages of design. The programme is carried out by a large number of researchers from a variety of disciplines in the domain of construction and architecture, including architectural design, building physics, structural design, construction management, etc.Management of design information is at the core of this design and decision support system. Much effort in the development of the system has been and still is dedicated to the underlying theory for information management and its implementation in an Application Programming Interface (API) that the various modules of the system use. The theory is based on a so-called Feature-based modelling approach and is described in the PhD thesis by [first author, 1999] and in [first author et al., 2000a]. This information modelling approach provides three major capabilities: (1) it allows for extensibility of conceptual schemas, which is used to enable a designer to define new typologies to model with; (2) it supports sharing of conceptual schemas, called type-libraries; and (3) it provides a high level of flexibility that offers the designer the opportunity to easily reuse design information and to model information constructs that are not foreseen in any existing typologies. The latter aspect involves the capability to expand information entities in a model with relationships and properties that are not typologically defined but applicable to a particular design situation only; this helps the designer to represent the actual design concepts more accurately.The functional design of the information modelling system is based on a three-layered framework. In the bottom layer, the actual design data is stored in so-called Feature Instances. The middle layer defines the typologies of these instances in so-called Feature Types. The top layer is called the meta-layer because it provides the class definitions for both the Types layer and the Instances layer; both Feature Types and Feature Instances are objects of the classes defined in the top layer. This top layer ensures that types can be defined on the fly and that instances can be created from these types, as well as expanded with non-typological properties and relationships while still conforming to the information structures laid out in the meta-layer.The VR-DIS system consists of a growing number of modules for different kinds of functionality in relation with the design task. These modules access the design information through the API that implements the meta-layer of the framework. This API has previously been implemented using an Object-Oriented Database (OODB), but this implementation had a number of disadvantages. The dependency of the OODB, a commercial software library, was considered the most problematic. Not only are licenses of the OODB library rather expensive, also the fact that this library is not common technology that can easily be shared among a wide range of applications, including existing applications, reduces its suitability for a system with the aforementioned specifications. In addition, the OODB approach required a relatively large effort to implement the desired functionality. It lacked adequate support to generate unique identifications for worldwide information sources that were understandable for human interpretation. This strongly limited the capabilities of the system to share conceptual schemas.The approach that is currently being implemented for the core of the VR-DIS system is based on eXtensible Markup Language (XML). Rather than implementing the meta-layer of the framework into classes of Feature Types and Feature Instances, this level of meta-definitions is provided in a document type definition (DTD). The DTD is complemented with a set of rules that are implemented into a parser API, based on the Document Object Model (DOM). The advantages of the XML approach for the modelling framework are immediate. Type-libraries distributed through Internet are now supported through the mechanisms of namespaces and XLink. The implementation of the API is no longer dependent of a particular database system. This provides much more flexibility in the implementation of the various modules of the VR-DIS system. Being based on the (supposed to become) standard of XML the implementation is much more versatile in its future usage, specifically in a distributed, Internet-based environment.These immediate advantages of the XML approach opened the door to a wide range of applications that are and will be developed on top of the VR-DIS core. Examples of these are the VR-based 3D sketching module [VR-DIS ref., 2000]; the VR-based information-modelling tool that allows the management and manipulation of information models for design in a VR environment [VR-DIS ref., 2000]; and a design-knowledge capturing module that is now under development [first author et al., 2000a and 2000b]. The latter module aims to assist the designer in the recognition and utilisation of existing and new typologies in a design situation. The replacement of the OODB implementation of the API by the XML implementation enables these modules to use distributed Feature databases through Internet, without many changes to their own code, and without the loss of the flexibility and extensibility of conceptual schemas that are implemented as part of the API. Research in the near future will result in Internet-based applications that support designers in the utilisation of distributed libraries of product-information, design-knowledge, case-bases, etc.The paper roughly follows the outline of the abstract, starting with an introduction to the VR-DIS project, its objectives, and the developed theory of the Feature-modelling framework that forms the core of it. It briefly discusses the necessity of schema evolution, flexibility and extensibility of conceptual schemas, and how these capabilities have been addressed in the framework. The major part of the paper describes how the previously mentioned aspects of the framework are implemented in the XML-based approach, providing details on the so-called meta-layer, its definition in the DTD, and the parser rules that complement it. The impact of the XML approach on the functionality of the VR-DIS modules and the system as a whole is demonstrated by a discussion of these modules and scenarios of their usage for design tasks. The paper is concluded with an overview of future work on the sharing of Internet-based design information and design knowledge.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 3c96
authors Kang, H., Anderson, S.D. and Clayton, M.J.
year 2001
title Web4D: Challenges and Practices for Construction Scheduling
doi https://doi.org/10.52842/conf.acadia.2001.132
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 132-141
summary Research has demonstrated that four-dimensional computer aided design (4D CAD), in which a three-dimensional (3D) CAD model is animated through time, is useful in helping professionals understand the construction schedule. However, cumbersome processes to update a 4D CAD model, which involve changing geometry representations, changing schedules and bar charts, linking the geometry to the scheduling information, and generating animations, may discourage professionals from using 4D CAD in actual construction projects. A software prototype implementing 4D CAD in a Web environment overcomes limitations of current 4D CAD tools. This software permits editing of the construction schedule over the Internet and shows the revised construction sequence visually on a Web browser using 3D computer graphics. This software is composed of a database on a server, Active Server Pages (ASP) scripts, and a Java applet that was developed using Java 3D Application Programming Interface (API) and Java JDBC. The Java applet retrieves the 4D model at the appropriate level of completion over the Internet and allows users to navigate around the model on the Web browser. Web4D visualization software can help professionals to expedite the schedule updating process by involving designers and constructors in collaborative decision- making.
keywords Web4D, 4D CAD, 4D Visualization, Construction Schedule, Internet
series ACADIA
email
last changed 2022/06/07 07:52

_id 6006
authors Liu, Yu-Tung and Bai, Rui-Yuan
year 2001
title The Hsinchu experience: a computerized procedure for visual impact analysis and assessment
source Automation in Construction 10 (3) (2001) pp. 337-343
summary This paper examines the procedure of visual impact analysis and assessment (VIAA) proposed by Rahman and reviews the use of computer-aided design (CAD) applications in urban projects in the real world. A preliminary computerized procedure for VIAA is proposed. An experiment was conducted in our laboratory to verify the preliminary procedure. In order to further study the revised procedure in real urban projects, it was also applied into the renew project of The Eastern Gate Plaza located in the center of Hsinchu, Taiwan from 1996 to 1998. Based on the face-to-face discussions with Hsinchu habitants, government officials, and professional designers, a final computerized procedure for VIAA is concluded.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id avocaad_2001_03
id avocaad_2001_03
authors M.K.D. Coomans, J.P. van Leeuwen, H.J.P. Timmermans
year 2001
title Abstract but Tangible, Complex but Manageable
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the VR-DIS research program, an innovative design-information modelling technique has been proposed that is based on features. In this modelling technique, the designer is invited not only to model the form and spatial aspects of his or her design, but also to model the structure of the data behind the design. The designer is offered a way to control how abstract design data is structured and stored. In this way, the designer is given the power to model concepts like conformity, contrast, and scale on the formal data level, and this for both graphical and non-graphical design characteristics. Further, the designer is invited to input formal descriptions of own design concepts, and use these personal concepts during the design process. With this new information modelling technique, we expect that the designers will be better capable to handle the complexity of linking diverse kinds of information involved in a design process. This new way of computer aided design offers a unique design freedom: any design concept becomes addressable. On the other hand, this technique also puts the responsibility for the content of the CAD database entirely in the hands of the designer. In order to be able to enjoy the design freedom fully and at the same time handle the responsibility over the design database, a computer tool is needed that shows the precise content of the database, and that is easy and quick to interact with. Only with such a tool, the designer will be capable of keeping the complex data model in pace with his or her design reasoning. To realise this requirement, a “feature browser” has been developed with a 3D graphical user interface. It shows the data objects as 3D blocks, mutually linked by rubber-band arrows that closely reflect the database structure. The whole forms an interactive 3D graph. The intuitiveness and user friendliness of the interface was improved by adding features like the visualisation of the browsing history, the visualisation of link-semantics, and animated visual feedback effects. The hardware part of the interface is worked out as a Fish Tank VR set-up. This hardware configuration improves the experienced realism of the displayed 3D objects up to a feeling of physical presence. The interface as a whole therefore provides a highly attractive display of the abstract design data; abstract but tangible. It is a tool in which complex data structures can be explored and controlled: complex but manageable.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id cf2011_p115
id cf2011_p115
authors Pohl, Ingrid; Hirschberg Urs
year 2011
title Sensitive Voxel - A reactive tangible surface
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 525-538.
summary Haptic and tactile sensations, the active or passive exploration of our built surroundings through our sense of touch, give us a direct feeling and detailed information of space, a sense of architecture (Pallasmaa 2005). This paper presents the prototype of a reactive surface system, which focuses its output on the sense of touch. It explains how touch sensations influence the perception of architecture and discusses potential applications that might arise from such systems in the future. A growing number of projects demonstrate the strong impact of interaction design on the human senses and perception. They offer new ways of sensing and experiencing architectural space. But the majority of these interaction concepts focus on visual and auditory output-effects. The sense of touch is typically used as an input generator, but neglected as as a potential receiver of stimuli. With all the possibilities of sensors and micro-devices available nowadays, there is no longer a technical reason for this. It is possible to explore a much wider range of sense responding projects, to broaden the horizon of sensitive interaction concepts (Bullivant 2006). What if the surfaces of our surroundings can actively change the way it feels to touch them? What if things like walls and furniture get the ability to interactively respond to our touch? What new dimensions of communication and esthetic experience will open up when we conceive of tangibility in this bi-directional way? This paper presents a prototype system aimed at exploring these very questions. The prototype consists of a grid of tangible embedded cells, each one combining three kinds of actuators to produce divergent touch stimuli. All cells can be individually controlled from an interactive computer program. By providing a layering of different combinations and impulse intensities, the grid structure enables altering patterns of actuation. Thus it can be employed to explore a sort of individual touch aesthetic, for which - in order to differentiate it from established types of aesthetic experiences - we have created the term 'Euhaptics' (from the Greek ευ = good and άπτω = touch, finger). The possibility to mix a wide range of actuators leads to blending options of touch stimuli. The sense of touch has an expanded perception- spectrum, which can be exploited by this technically embedded superposition. The juxtaposed arrangement of identical multilayered cell-units offers blending and pattern effects of different touch-stimuli. It reveals an augmented form of interaction with surfaces and interactive material structures. The combination of impulses does not need to be fixed a priori; it can be adjusted during the process of use. Thus the sensation of touch can be made personally unique in its qualities. The application on architectural shapes and surfaces allows the user to feel the sensations in a holistic manner – potentially on the entire body. Hence the various dimensions of touch phenomena on the skin can be explored through empirical investigations by the prototype construction. The prototype system presented in the paper is limited in size and resolution, but its functionality suggests various directions of further development. In architectural applications, this new form of overlay may lead to create augmented environments that let inhabitants experience multimodal touch sensations. By interactively controlling the sensual patterns, such environments could get a unique “touch” for every person that inhabit them. But there may be further applications that go beyond the interactive configuration of comfort, possibly opening up new forms of communication for handicapped people or applications in medical and therapeutic fields (Grunwald 2001). The well-known influence of touch- sensations on human psychological processes and moreover their bodily implications suggest that there is a wide scope of beneficial utilisations yet to be investigated.
keywords Sensitive Voxel- A reactive tangible surface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id avocaad_2001_07
id avocaad_2001_07
authors Stefan Wrona, Adam Gorczyca
year 2001
title Complexity in Architecture - How CAAD can be involved to Deal with it. - "Duality"
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary “Complexity “ is for us a very ambigous notion. It may be understood in two contexts.1.Thorough solution of a problem.Complexity means full recognition of design area, followed by appropriate work. That work must be thorough and interdisciplinary – if necessary, separated to different co-operatives. These trade designers reqiure a branch coordination and – the most important- all of them must have a „common denominator”. Such as a proper CAAD platform and office standards. That will reduce costs of changes, improve an interplay between designers and somtimes enable to face up a new challenge.Nowadays architects are no longer “solitary” individualists working alone – they must concern a team – they become a member, a part of a huge design machine. “Import/export”, compatibility, interplay – these words must appear and we have to put a stress on them. How to organize work for different trade-designers? How to join in common database architectural design ,engineering design, HVAC design, electricity design, technology design, computer network design and all other trades ?...A key to solve this range of problems is in good work organization. Universal prescription does not exist, but some evergreen rules can be observed. We are going to present a scheme of work in CAAD application ALLPLAN FT v.16 with a Group manager , which starts to conquest polish market and is widely spread in Germany. “Golden rules” of ALLPLAN FT There is one database – it is placed on server. It includes all projects. There is a well-developed office standard. It must be created at the beginning of collaboration, although it is possible to improve it later. It consist of hatches, fonts, symbols, macros, materials, pen-widths, and – the most important –layers . A layer set – predefined structure divided into functional groups – e.g. drafting, text, dimensioning, architecture, HVAC, engineering, urban design, etc.That stucture is a part of an office standard – all workers use a relevant part of it. No name duplicates, no misunderstandings... If however design extends, and a new group of layers is required, it can be easily added, e.g. computer networks, fireguard systems. Administrator of ALLPLAN network defines different users and gives them different permitions of access. For example – an electrician will be able to draft on layer “electricity”, but he won’t modify anything at layer “architecture – walls”, and he won’t even see a layer “engineering- slabs”, because he doesn’t need it..At the same time our electrician will be able to see , how architect moves some walls and how HVAC moved and started to cross with his wires. Every user is able to see relevant changes, after they are saved by author. Two different users can not access at the same time the same file. That excludes inconsistent or overlapping changes . All users operate on a 3D model. While putting some data into a model, they must remember about a “Z” coordinate at work-storey. But at the same time all create a fully-integrated, synchronous database, which can be used later for bills of quantities, specifications, and – of course – for visuaisation. That method can be described as “model-centric”. To simplify complex structure of architectural object -ALLPLAN offers files. Usually one file means one storey, but at special designs it might become a functional part of a storey, or whatever you wish. Files connected with layers easy enable to separate certain structural elements, e.g. if we want to glance only at concrete slabs and columns in the building – we will turn on all files with “layer filter” – “slabs” and “columns”. ALLPLAN is of course one of possible solutions. We described it , because we use it in our workshop. It seems to be stretchy enough to face up every demand and ever-increasing complexity of current projects. The essence of the matter, however, is not a name or version of application – it is a set of features, we mentioned above, which allows to deal with EVERY project. The number of solutions is infinite.2. Increasing difficulties during design process. It may be associated with more and more installations inside of new buildings, especially some “high-tech” examples. The number of these installations increases as well as their complexity. Now buildings are full of sensors, video-screens, computer networks, safety-guard systems... Difficulties are connected with some trends in contemporary architecture, for example an organic architecture, which conceives “morphed” shapes, “moving” surfaces, “soft” solids. This direction is specially supported by modelling or CAD applications. Sometimes it is good – they allow to realize all imaginations, but often they lead to produce “unbuildable” forms, which can exist only in virtual world.Obstacles appear, when we design huge cubatures with “dense” functional scheme. Multi-purposed objects, exhibition halls, olimpic stadium at Sydney – all of them have to be stretchy, even if it requires sliding thousands pound concrete blocks! Requirements were never so high.The last reason, why designs become so complex is obvious - intensifying changes due to specific requirements of clients/developers.We could say “ signum tempori” – everything gets more and more complicated , people have to become specialists, to face up new technology. But how CAAD can help us with it? How?! We have already answered that question. Sometimes CAAD is the only way to imagine and sketch something, to visualize something, to compute a construction , to prepare a simulation... So that human must “only” interprete ready solutions. Sometimes CAAD help us to notify a problem. It works exactly in the same way, as spy-glasses does. For example – without a real-time visualization we we would have never realised (until finished!) some strange interference of solids, which have occured in the upper roof part of our new appartment-house.ConclusionsTemporary CAAD is an integral part of design process – not only as a tool, but sometimes as an inspiration. It helps to organize our work, to define problems, to filter relevant elements and to render our visions. It becomes an integral part of our senses – and that will be a real complexity in architecture...
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 7c64
authors Tang, S.-K., Liu, Y.-T., Lin, C.-Y., Shih, S.-C., Chang, C.-H. and Chiu, Y.-C.
year 2001
title The visual harmony between new and old materials in the restoration of historical architecture: A study of computer simulation
doi https://doi.org/10.52842/conf.caadria.2001.205
source CAADRIA 2001 [Proceedings of the Sixth Conference on Computer Aided Architectural Design Research in Asia / ISBN 1-86487-096-6] Sydney 19-21 April 2001, pp. 205-210
summary This research is based on a historical architecture restoration project (the Taiwan 921-earthquake damaged Chi-chi train station). The objective of this research is to construct a computerized procedure for allocating roof tiles. We attempt to simulate different combinations of new and existing roof tile layout through the application of computer simulation prior to the actual construction. This computer simulation process assists the professional and non-professionalís analysis and evaluation to achieve a visually harmonious and ready for construction solution.
series CAADRIA
email
last changed 2022/06/07 07:56

_id 3645
authors Tsou, Jin-Yeu
year 2001
title Strategy on applying computational fluid dynamic for building performance evaluation
source Automation in Construction 10 (3) (2001) pp. 327-335
summary Predicting and evaluating building performance plays an important role in the training of responsible architects. Building performance includes issues such as: structural stability, acoustic quality, natural lighting, thermal comfort, and ventilation and indoor air quality. These types of analyses are often laborious, non-intuitive, and non-graphical. As a result, these important issues do not arouse the enthusiasm of architecture students or building professionals. The Chinese University of Hong Kong (CUHK) research team proposes to explore and develop a long-term strategy to apply scientific visualization on teaching and research in environmental technology and building performance. This paper presents the development process and results of research projects for applying computational fluid dynamics (CFD) on building performance evaluation. CFD On-line Teaching project's aim is to develop a web-based training course for architecture students to apply CFD simulation on design problem solving. Each lesson not only illustrates basic principles regarding airflow in the building design, it also contains CFD sample files with predefined flow cells for students to test different concepts. GiLin Temple project's aim is to apply CFD simulation on investigating the wind resistance of Tong Dynasty heavy timber structure. Airflow information generated in the project includes the visual representation of the pressure distribution and velocity field on all slices through the temple, and the tracking of particles as they flow around or through a building. The China housing residential airduct study focuses on simulating the indoor airflow regarding the airduct design of China Experimental Urban Housing Scheme. The visual representation of the pressure distribution and velocity field in the airducts provides vital information for helping China Housing Research Center improve the current design.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id avocaad_2001_16
id avocaad_2001_16
authors Yu-Ying Chang, Yu-Tung Liu, Chien-Hui Wong
year 2001
title Some Phenomena of Spatial Characteristics of Cyberspace
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary "Space," which has long been an important concept in architecture (Bloomer & Moore, 1977; Mitchell, 1995, 1999), has attracted interest of researchers from various academic disciplines in recent years (Agnew, 1993; Benko & Strohmayer, 1996; Chang, 1999; Foucault, 1982; Gould, 1998). Researchers from disciplines such as anthropology, geography, sociology, philosophy, and linguistics regard it as the basis of the discussion of various theories in social sciences and humanities (Chen, 1999). On the other hand, since the invention of Internet, Internet users have been experiencing a new and magic "world." According to the definitions in traditional architecture theories, "space" is generated whenever people define a finite void by some physical elements (Zevi, 1985). However, although Internet is a virtual, immense, invisible and intangible world, navigating in it, we can still sense the very presence of ourselves and others in a wonderland. This sense could be testified by our naming of Internet as Cyberspace -- an exotic kind of space. Therefore, as people nowadays rely more and more on the Internet in their daily life, and as more and more architectural scholars and designers begin to invest their efforts in the design of virtual places online (e.g., Maher, 1999; Li & Maher, 2000), we cannot help but ask whether there are indeed sensible spaces in Internet. And if yes, these spaces exist in terms of what forms and created by what ways?To join the current interdisciplinary discussion on the issue of space, and to obtain new definition as well as insightful understanding of "space", this study explores the spatial phenomena in Internet. We hope that our findings would ultimately be also useful for contemporary architectural designers and scholars in their designs in the real world.As a preliminary exploration, the main objective of this study is to discover the elements involved in the creation/construction of Internet spaces and to examine the relationship between human participants and Internet spaces. In addition, this study also attempts to investigate whether participants from different academic disciplines define or experience Internet spaces in different ways, and to find what spatial elements of Internet they emphasize the most.In order to achieve a more comprehensive understanding of the spatial phenomena in Internet and to overcome the subjectivity of the members of the research team, the research design of this study was divided into two stages. At the first stage, we conducted literature review to study existing theories of space (which are based on observations and investigations of the physical world). At the second stage of this study, we recruited 8 Internet regular users to approach this topic from different point of views, and to see whether people with different academic training would define and experience Internet spaces differently.The results of this study reveal that the relationship between human participants and Internet spaces is different from that between human participants and physical spaces. In the physical world, physical elements of space must be established first; it then begins to be regarded as a place after interaction between/among human participants or interaction between human participants and the physical environment. In contrast, in Internet, a sense of place is first created through human interactions (or activities), Internet participants then begin to sense the existence of a space. Therefore, it seems that, among the many spatial elements of Internet we found, "interaction/reciprocity" Ñ either between/among human participants or between human participants and the computer interface Ð seems to be the most crucial element.In addition, another interesting result of this study is that verbal (linguistic) elements could provoke a sense of space in a degree higher than 2D visual representation and no less than 3D visual simulations. Nevertheless, verbal and 3D visual elements seem to work in different ways in terms of cognitive behaviors: Verbal elements provoke visual imagery and other sensory perceptions by "imagining" and then excite personal experiences of space; visual elements, on the other hand, provoke and excite visual experiences of space directly by "mapping".Finally, it was found that participants with different academic training did experience and define space differently. For example, when experiencing and analyzing Internet spaces, architecture designers, the creators of the physical world, emphasize the design of circulation and orientation, while participants with linguistics training focus more on subtle language usage. Visual designers tend to analyze the graphical elements of virtual spaces based on traditional painting theories; industrial designers, on the other hand, tend to treat these spaces as industrial products, emphasizing concept of user-center and the control of the computer interface.The findings of this study seem to add new information to our understanding of virtual space. It would be interesting for future studies to investigate how this information influences architectural designers in their real-world practices in this digital age. In addition, to obtain a fuller picture of Internet space, further research is needed to study the same issue by examining more Internet participants who have no formal linguistics and graphical training.
series AVOCAAD
email
last changed 2005/09/09 10:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_55249 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002