CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 295

_id 22ec
authors Bechthold, Martin
year 2001
title Complex shapes in wood: Computer-aided design and manufacture of wood-sandwich roof shells
source Harvard University
summary Computer-Aided-Design, Engineering and Manufacturing (CAD/CAE/CAM) technology has changed the way consumer products, automobiles or airplanes are designed and made. The emerging applications for CAD/CAE/CAM technology in architecture, and the way this technology impacts how we design and construct the built environment, are yet unclear. This thesis investigates the relation between advanced digital design tools and the making of physical objects by focusing on an exemplary architectural element—wooden roof shells. The research objective is to expand the scope of architectural design through the application of CAD/CAE/CAM technology rather than to use this technology to streamline existing processes. The thesis develops a specific technical solution that allows the design and manufacture of new types of wooden roof shells. These are complexly shaped multifunctional construction elements that are manufactured off-site. Based on the close connection between digital design tools and the new Computer-Numerically-Controlled manufacturing process the author proposes a theoretical model of shared digital environments for collaborative design in architecture. The proposed manufacturing process treats wood as a modern composite material. Thin wood strips and foams combine into structural sandwich panels that can then be joined into a roof shell. The geometrically complex panels are generated by a combination of subtractive Computer-Numerically-Controlled machining processes and manual work. Infrastructure elements can be embedded into the sandwich build-up in order to enhance the functionality of the roof as a building envelope. Numerical tools are proposed that allow the determination of manufacturing-related parameters in the digital design environment. These inform the architectural and structural design in the early design phases. The digital collaborative design environment is based on a shared parametric solid model and an associated database. This collectively owned, feature-based design model is employed throughout the design and manufacturing process and constitutes the means of concurrent design coordination of all participants. The new manufacturing process for wood/foam sandwich shells is verified by designing and manufacturing prototypes. Design guidelines and a cost estimation are presented as the practical basis for architects and engineers to incorporate new types of roof shells into architectural projects.
keywords Architecture; Agriculture; Wood Technology; Design and Decorative Arts
series thesis:PhD
last changed 2003/02/12 22:37

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id bfc8
authors Fukai, Dennis and Srinivasan, Ravi
year 2001
title PCIS Revisited: A Visual Database for Design and Construction
doi https://doi.org/10.52842/conf.acadia.2001.372
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 372-379
summary This paper presents research on a piece-based construction information system called PCIS(pronounced “pieces”) first published as a visual information concept at ACADIA’96, Tucson. After more than five years of development it has evolved into a multidimensional visual information system for design and construction. It includes a piece-based anatomical construction model layered according to a work breakdown structure; a dataTheater that surrounds the model as an index to plans, elevations, sections, and details; and a dataWorld with cameras fixed to the intersections of its latitudes and longitudes to add context and perspective. A standard services matrix (SSM) controls layer visibility and camera settings. PCIS can be “played” to access archived resources; support design development, analyze and resolve preconstruction conflicts, and coordinate construction activities. Current research will be used to demonstrate how PCIS might be valuable to increase the potential for technical cooperation, collaboration, and communication by literally aligning the points of view of architectural, engineering, and construction methodology.
keywords Construction, Pictorial, 3D/4D, Modeling, Database
series ACADIA
email
last changed 2022/06/07 07:50

_id d90f
authors Hanser, D., Halin, G. and Bignon, J.-C.
year 2001
title Relation-Based Groupware For Heterogeneous Design Teams
doi https://doi.org/10.52842/conf.ecaade.2001.086
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 86-91
summary This paper describes a work about coordination of concurrent engineering in the building construction and design. More particularly it describes the coordination of project teams which are heterogeneous and short-lived. The French context of the building trade is at present characterized by an increase of the quality requirements and by a reduction of the conception and realization delays. This induces the building sector to look for new modes of cooperation as they already exist in industry and services. With a few exceptions, the concurrent engineering tools taken from these sectors are not used in building projects. We make the assumption that the lack of use of these tools is due to the non-fitting of the common existing tools to the specificities of our sector. The solution we propose give a relational vision of the cooperation and the interactions existing during the processes of conception-construction in architectural works. Our first interest point concerns the representation of the actors, the documents and the assignments as a relational network and not as a hierarchical tree, mostly used in the groupware tools. In a second point, we use this relational network to produce a graphic and dynamic representation of the projects. The goal of this method is to reinforce the co-operation and the group awareness by supplying to the actors a good vision of the project evolution in order to increase the conception quality.
keywords Concurrent Engineering, Groupware, Project Management, Relational Model, Awareness
series eCAADe
last changed 2022/06/07 07:50

_id f037
authors Jaeger, Stephanie
year 2001
title Lotus Pond Bridge: A Case Study in Collaboration Using Parametric Modeling
doi https://doi.org/10.52842/conf.acadia.2001.008
source ACADIA Quarterly, vol. 20, pp. 8-9
summary One of my tasks while working for Arup in Los Angeles was to teach engineers how to design and communicate using the same tools as architects. As increasing numbers of clients provided us with virtual massing and conceptual models to work from, my colleagues began to acknowledge the need to develop engineering solutions within these same virtual environments. So, my challenge was to not only utilize 3D modeling for visualization but also for design, analysis and production.
series ACADIA
email
last changed 2022/06/07 07:52

_id acadia11_372
id acadia11_372
authors James, Anne; Nagasaka, Dai
year 2011
title Integrative Design Strategies for Multimedia in Architecture
doi https://doi.org/10.52842/conf.acadia.2011.372
source ACADIA 11: Integration through Computation [Proceedings of the 31st Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA)] [ISBN 978-1-6136-4595-6] Banff (Alberta) 13-16 October, 2011, pp. 372-379
summary Multidisciplinary efforts that have shaped the current integration of multimedia into architectural spaces have primarily been conducted by collaborative efforts among art, engineering, interaction design, informatics and software programming. These collaborations have focused on the complexities of designing for applications of multimedia in specific real world contexts. Outside a small but growing number of researchers and practitioners, architects have been largely absent from these efforts. This has resulted in projects that deal primarily with developing technologies augmenting existing architectural environments. (Greenfield and Shepard 2007)This paper examines the potential of multimedia and architecture integration to create new possibilities for architectural space. Established practices of constructing architecture suggest creating space by conventional architectural means. On the other hand, multimedia influences and their effect on the tectonics, topos and typos (Frampton 2001) of an architectural space (‘multimedia effects matrix’) suggest new modes of shaping space. It is proposed that correlations exist between those two that could inform unified design strategies. Case study analyses were conducted examining five works of interactive spaces and multimedia installation artworks, selected from an initial larger study of 25 works. Each case study investigated the means of shaping space employed, according to both conventional architectural practices and the principles of multimedia influence (in reference to the ‘multimedia effects matrix’) (James and Nagasaka 2010, 278-285). Findings from the case studies suggest strong correlations between the two approaches to spatial construction. To indicate these correlations, this paper presents five speculative integrative design strategies derived from the case studies, intended to inform future architectural design practice.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id 6a70
authors Liapi, Katherine
year 2001
title Transformable Structures: Design Features and Preliminary Investigation
source Journal of Architectural Engineering -- March 2001 -- Volume 7, Issue 1, pp. 13-17
summary Innovative building conceptions, that allow for the change of the building's shape and form, can offer advantages for certain types of applications compared to conventional structures. The conception, design,and realization of transformable building structures require the use of innovative building technologies, and the development of new analytical methods and procedures. Geometric complexity is usually acharacteristic of the architectural expression of transformable structures, and their initial geometric configuration and representation is one of the earliest and most challenging phases in their design. A preliminaryinvestigation with computer simulation and animation studies can help identify problems in their initial geometric conception.
series journal paper
last changed 2003/05/15 21:45

_id 0b8e
authors Martini, Kirk
year 2001
title Non-linear Structural Analysis as Real-Time Animation Borrowing from the Arcade
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 643-656
summary The paper describes a computational method commonly used in interactive computer graphics and games, and demonstrates its application to structural engineering problems, using a prototype program called Arcade. The method enables a new model of interaction in structural analysis, where the simulated structure responds to user input in real time, in the same way that computer games respond. The method shows good engineering accuracy in simple verification problems involving the non-linear phenomena of buckling and beam yielding. The method offers the potential to make non-linear, timehistory analysis a much more common method in engineering practice, and to bring a greater emphasis on non-linear, dynamic structural behaviour in structural education.
keywords Structural Analysis, Interactive Design, Animation
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 4b5f
authors Pang, King Wah
year 2001
title A Process planning and Optimization System for Laminated Object Manufacturing Application
source Hong Kong University of Schience and Technology (People’s Republic of China)
summary Rapid Prototyping (RP) technologies have emerged as a powerful set of manufacturing technologies in recent years. While these technologies invariably provide tremendous time-savings over traditional methods of manufacture of design prototypes, many are still quite inefficient. This thesis examines two ideas; first, that these processes can be optimized greatly by using better process planning; second, that several of these RP technologies use similar core planning technologies for optimization. The first hypothesis is verified in this thesis by presenting an improved process planning system for one RP technology, Laminated Object Manufacturing (LOM). The framework proposes the use of computational geometry and optimization tools at two levels to reduce process time and material wastage. Geometric techniques are used for process planning at the 3D part level. A genetic algorithm (GA) based path optimization technique is used for path planning optimization at the layer level. The second observation led to the development of an open architecture planning system for a host of RP technologies. A test-bed software system is described in this thesis. Evaluation on the performance of the new methodology is also provided. The methodologies developed can work equally well with the current industry standard STL format for storing object CAD data as well as direct slice data computed from the exact solid model of a part.
keywords Industrial Engineering; Mechanical Engineering
series thesis:PhD
last changed 2003/02/12 22:37

_id cd47
authors Park, Hyeonsoo
year 2001
title Distributed Representation of an Architectural Model
source Harvard University
summary This thesis proposes a new strategy for design representation that uses dynamically decentralized design objects, distributed over the web and instantiated just-in-time, instead of the traditional centralized, static and local CAD model. It addresses the problem of coping with dynamic information changes that architects face when designing with increasingly time-sensitive product information from multiple suppliers. The dissertation describes the new distributed architecture for design representation, and outlines a corresponding new process model to address the needs of AEC (Architectural, Engineering and Construction) industries' architectural designers during design and procurement phases. The feasibility of the process was tested in a prototype system that combines existing state-of-the-art technologies. The prototype integrates the direct manipulation functionality of Autodesk's i-Drop technology with the Internet communication protocols HTTP and TCP/IP, and a VBA macro running from within AutoCAD 2000i. In the proposed model, libraries of AEC objects, representing suppliers' products, are located in multiple suppliers' databases and are made available to CAD designers remotely over the Web. Suppliers using the system are expected to produce product information as XML documents. This standardizes the interface with the remote designers.
keywords Architecture; Design and Decorative Arts; Agriculture; Wood Technology
series thesis:PhD
last changed 2003/02/12 22:37

_id 0651
authors Petzold, F., Thurow, T., Richter, K. and Donath, D.
year 2001
title Planning-oriented building surveying - Modules in the computer aided architectural planning process of existing buildings
doi https://doi.org/10.52842/conf.ecaade.2001.144
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 144-149
summary Activities in the building industry in Germany concentrate increasingly on a combination of renovation and new-build. A prerequisite for computer-aided planning in the context of existing buildings is both the use of on-site computer aided surveying techniques and the integration of all professional disciplines in an integrated information and communication system. Current approaches to these issues are unsatisfactory. Methods and techniques in renovation work are being investigated as part of ongoing research at the Bauhaus- Universität Weimar (SFB524 - “Collaborative research center 524 „Materials and Structure in Revitalization of Buildings”). A sub-group (SFB524 - D2 „Planning-Relevant Digital Building Surveying and Information System”) is currently investigating the possibilities of computer-aided building surveying and of joint communcation platforms for engineering disciplines (www.uni-weimar.de/sfb: May 2001). The objective is the development of a general approach for the renovation of buildings. The paper discusses concepts and requirements for a computer-aided system supporting the entire surveying process from the initial site visit to its use in a CAD system.
keywords Surveying, CAAD Systems, Computer Aided Planning Process, Building Model
series eCAADe
email
last changed 2022/06/07 08:00

_id 8c32
authors Pittioni, Gernot
year 2001
title Past, present and future issues with co-operating, seen from the engineering practice
source Stellingwerff, Martijn and Verbeke, Johan (Eds.), ACCOLADE - Architecture, Collaboration, Design. Delft University Press (DUP Science) / ISBN 90-407-2216-1 / The Netherlands, pp. 83-94 [Book ordering info: m.c.stellingwerff@bk.tudelft.nl]
summary Co-operation and/or collaboration is a vital aspect in planning. Many partners have to share information and have to react - if possible - without delay. In order to get support by computers combined with modern and recently immensely improved means of communication we have to explore, how we (should) communicate and what would be necessary to support this - may be in a different or modified process - by new media. It is obvious that this investigation will be a different one, whether done by research-institutions or by highly active practitioners, who cannot afford a test-phase with non-reliable performance. This contribution tries to supply some aspects of an engineering partner within a number of project-teams.
series other
last changed 2001/09/14 21:30

_id avocaad_2001_07
id avocaad_2001_07
authors Stefan Wrona, Adam Gorczyca
year 2001
title Complexity in Architecture - How CAAD can be involved to Deal with it. - "Duality"
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary “Complexity “ is for us a very ambigous notion. It may be understood in two contexts.1.Thorough solution of a problem.Complexity means full recognition of design area, followed by appropriate work. That work must be thorough and interdisciplinary – if necessary, separated to different co-operatives. These trade designers reqiure a branch coordination and – the most important- all of them must have a „common denominator”. Such as a proper CAAD platform and office standards. That will reduce costs of changes, improve an interplay between designers and somtimes enable to face up a new challenge.Nowadays architects are no longer “solitary” individualists working alone – they must concern a team – they become a member, a part of a huge design machine. “Import/export”, compatibility, interplay – these words must appear and we have to put a stress on them. How to organize work for different trade-designers? How to join in common database architectural design ,engineering design, HVAC design, electricity design, technology design, computer network design and all other trades ?...A key to solve this range of problems is in good work organization. Universal prescription does not exist, but some evergreen rules can be observed. We are going to present a scheme of work in CAAD application ALLPLAN FT v.16 with a Group manager , which starts to conquest polish market and is widely spread in Germany. “Golden rules” of ALLPLAN FT There is one database – it is placed on server. It includes all projects. There is a well-developed office standard. It must be created at the beginning of collaboration, although it is possible to improve it later. It consist of hatches, fonts, symbols, macros, materials, pen-widths, and – the most important –layers . A layer set – predefined structure divided into functional groups – e.g. drafting, text, dimensioning, architecture, HVAC, engineering, urban design, etc.That stucture is a part of an office standard – all workers use a relevant part of it. No name duplicates, no misunderstandings... If however design extends, and a new group of layers is required, it can be easily added, e.g. computer networks, fireguard systems. Administrator of ALLPLAN network defines different users and gives them different permitions of access. For example – an electrician will be able to draft on layer “electricity”, but he won’t modify anything at layer “architecture – walls”, and he won’t even see a layer “engineering- slabs”, because he doesn’t need it..At the same time our electrician will be able to see , how architect moves some walls and how HVAC moved and started to cross with his wires. Every user is able to see relevant changes, after they are saved by author. Two different users can not access at the same time the same file. That excludes inconsistent or overlapping changes . All users operate on a 3D model. While putting some data into a model, they must remember about a “Z” coordinate at work-storey. But at the same time all create a fully-integrated, synchronous database, which can be used later for bills of quantities, specifications, and – of course – for visuaisation. That method can be described as “model-centric”. To simplify complex structure of architectural object -ALLPLAN offers files. Usually one file means one storey, but at special designs it might become a functional part of a storey, or whatever you wish. Files connected with layers easy enable to separate certain structural elements, e.g. if we want to glance only at concrete slabs and columns in the building – we will turn on all files with “layer filter” – “slabs” and “columns”. ALLPLAN is of course one of possible solutions. We described it , because we use it in our workshop. It seems to be stretchy enough to face up every demand and ever-increasing complexity of current projects. The essence of the matter, however, is not a name or version of application – it is a set of features, we mentioned above, which allows to deal with EVERY project. The number of solutions is infinite.2. Increasing difficulties during design process. It may be associated with more and more installations inside of new buildings, especially some “high-tech” examples. The number of these installations increases as well as their complexity. Now buildings are full of sensors, video-screens, computer networks, safety-guard systems... Difficulties are connected with some trends in contemporary architecture, for example an organic architecture, which conceives “morphed” shapes, “moving” surfaces, “soft” solids. This direction is specially supported by modelling or CAD applications. Sometimes it is good – they allow to realize all imaginations, but often they lead to produce “unbuildable” forms, which can exist only in virtual world.Obstacles appear, when we design huge cubatures with “dense” functional scheme. Multi-purposed objects, exhibition halls, olimpic stadium at Sydney – all of them have to be stretchy, even if it requires sliding thousands pound concrete blocks! Requirements were never so high.The last reason, why designs become so complex is obvious - intensifying changes due to specific requirements of clients/developers.We could say “ signum tempori” – everything gets more and more complicated , people have to become specialists, to face up new technology. But how CAAD can help us with it? How?! We have already answered that question. Sometimes CAAD is the only way to imagine and sketch something, to visualize something, to compute a construction , to prepare a simulation... So that human must “only” interprete ready solutions. Sometimes CAAD help us to notify a problem. It works exactly in the same way, as spy-glasses does. For example – without a real-time visualization we we would have never realised (until finished!) some strange interference of solids, which have occured in the upper roof part of our new appartment-house.ConclusionsTemporary CAAD is an integral part of design process – not only as a tool, but sometimes as an inspiration. It helps to organize our work, to define problems, to filter relevant elements and to render our visions. It becomes an integral part of our senses – and that will be a real complexity in architecture...
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 793a
authors Turk, Ziga
year 2001
title Multimedia: providing students with real world experiences
source Automation in Construction 10 (2) (2001) pp. 247-255
summary Multimedia has been quickly accepted by the engineering community. In the first part of the paper, the author provides a theoretical explanation why multimedia is popular in engineering: because it tries to provide an artificial "being-in-the-world" experience. This explanation is backed-up by Heidegger's philosophy and Winogard's critique of artificial intelligence (AI). Heidegger believed that humans basically act pre-reflectively, depending on the situation into which they are thrown. Such decisions are based on common sense and intuitive knowledge accumulated while "being-in-the-world", and particularly during breakdowns. Engineering students have few opportunities to observe breakdowns, however, information technology, particularly virtual reality and multimedia provide them. In the second part of the paper, a system to teach earthquake engineering is presented, based on the principles of breakdown-oriented learning. The system is built around a multimedia database that contains digitised photographs of damages caused by some of the recent major earthquakes. To a large extent, such multimedia tools can replace the learning from real breakdowns and complements theoretical knowledge that can be passed on using traditional means.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id 9ab2
authors Yun, Yong Gib
year 2001
title Structural Composite Members in Architecture Fabricated by CAD/CAE/CAM Technology
source Harvard University
summary The doctoral research in this dissertation is aimed at exploring new materials and innovative methods for fabricating complex-shaped buildings, which have surfaced as a prevailing trend in architecture today. Over the past few years, the field of architecture has witnessed revolutionary changes in design. The recent completion of Frank O. Gehry's new Guggenheim Museum in Bilbao, Spain, brought unprecedented attention to complex-shaped, non-conventional designs and its influence on the global architectural trend has been immense. In following these latest trends, the author was drawn to the issues concerning construction materials and methods that are being currently adopted in realizing these complicated designs. It is perhaps inevitable that the traditional steel construction methods, suitable for use in the conventional linear shapes, face tremendous challenges and limitations in building such complex-shaped designs. In the author's opinion, the next step to go from here is to seek joint efforts between the architectural field and the engineering field to search for a new methodology which will best serve the contemporary design style. This research first focused on examining the problems that traditional methods pose for the new complex-shaped buildings. Paying attention to Gehry's recent projects, the author was able to identify major difficulties in association with representing and constructing these complicated shapes, mainly in terms of the relationship between the primary structure and the envelope surface. The second part of the research moved on to proposing a new alternative to the traditional methods, by utilizing polymer composite materials (PCM) as construction material and employing advanced Computer-Aided Design (CAD)/Computer Aided Engineering (CAE)/Computer-Aided Manufacturing (CAM) technologies. More specifically, the author has attempted to present effective theories in support of the two following ideas: (1) circular tubes made of PCM are the most promising alternative to regular steel members, especially steel tubes, to follow the envelope surface of the complex shaped building. (2) state-of-the-art CAD/CAE/CAM technologies are the most essential tools to achieve the geometrical and functional quality of the proposed new material. In the second phase, the primary focus of the quantitative approach was on fabricating an experimental model (1:1 scale prototype) called “ a unit of boundary structures”, the basic unit of structure system that wraps a complex-shaped building's entire territory . (Abstract shortened by UMI.)
series thesis:PhD
last changed 2003/02/12 22:37

_id 174f
authors Bakker, N.H.
year 2001
title Spatial Orientation in Virtual Environments
source Delft University of Technology
summary Recently, a growing interest can be detected in the application of Virtual Environment (VE) technology as an operator interface. VEs are three-dimensional computer-generated images that can be shown on a conventional monitor, on a large screen display, or on a head-mounted display. In order to use these three-dimensional interfaces for finding and retrieving information, the user must be able to spatially orient themselves. Different types of VE technology are available for navigating in these VEs, and different types of navigation can be enabled. A choice has to be made between the different options to enable good spatial orientation of the user. There are two main types of VE interfaces: an immersive interface that provides rich sensory feedback to the user when moving around in the VE, and a non-immersive interface that provides only visual feedback to the user when moving around in the VE. Furthermore, navigation through the VE can either be continuous providing fluent motion, or can be discontinuous which means that the viewpoint is displaced instantaneously over a large distance. To provide insight into the possible effects of these options a series of nine experiments was carried out. In the experiments the quality of spatial orientation behaviour of test subjects is measured while using the different types of interface and the different types of navigation. The results of the experiments indicate that immersive navigation improves the perception of displacement through the VE, which in turn aids the acquisition of spatial knowledge. However, as soon as the spatial layout of the VE is learned the two types of navigation interface do not lead to differences in spatial orientation performance. A discontinuous displacement leads to temporary disorientation, which will hinder the acquisition of spatial knowledge. The type of discontinuous displacements has an effect on the time needed for anticipation. The disorienting effects of a discontinuous displacement can be compensated for by enabling cognitive anticipation to the destination of the displacement. These results suggest that immersive navigation might only be beneficial for application domains in which new spatial layouts have to be learned every time or in domains where the primary users are novices. For instance, in training firemen to teach them the layout of new buildings with VE, or in using architectural walkthroughs in VE to show new building designs to potential buyers. Discontinuous movement should not be allowed when exploring a new environment. Once the environment is learned and if fast displacement is essential then discontinuous displacement should be preferred. In this case, the interface designer must make sure that information is provided about the destination of a discontinuous displacement.
series thesis:PhD
last changed 2003/11/21 15:16

_id ec4d
authors Croser, J.
year 2001
title GDL Object
source The Architect’s Journal, 14 June 2001, pp. 49-50
summary It is all too common for technology companies to seek a new route to solving the same problem but for the most part the solutions address the effect and not the cause. The good old-fashioned pencil is the perfect example where inventors have sought to design-out the effect of the inherent brittleness of lead. Traditionally different methods of sharpening were suggested and more recently the propelling pencil has reigned king, the lead being supported by the dispensing sleeve thus reducing the likelihood of breakage. Developers convinced by the Single Building Model approach to design development have each embarked on a difficult journey to create an easy to use feature packed application. Unfortunately it seems that the two are not mutually compatible if we are to believe what we see emanating from Technology giants Autodesk in the guise of Architectural Desktop 3. The effect of their development is a feature rich environment but the cost and in this case the cause is a tool which is far from easy to use. However, this is only a small part of a much bigger problem, Interoperability. You see when one designer develops a model with one tool the information is typically locked in that environment. Of course the geometry can be distributed and shared amongst the team for use with their tools but the properties, or as often misquoted, the intelligence is lost along the way. The effect is the technological version of rubble; the cause is the low quality of data-translation available to us. Fortunately there is one company, which is making rapid advancements on the whole issue of collaboration, and data sharing. An old timer (Graphisoft - famous for ArchiCAD) has just donned a smart new suit, set up a new company called GDL Technology and stepped into the ring to do battle, with a difference. The difference is that GDL Technology does not rely on conquering the competition, quite the opposite in fact their success relies upon the continued success of all the major CAD platforms including AutoCAD, MicroStation and ArchiCAD (of course). GDL Technology have created a standard data format for manufacturers called GDL Objects. Product manufacturers such as Velux are now able to develop product libraries using GDL Objects, which can then be placed in a CAD model, or drawing using almost any CAD tool. The product libraries can be stored on the web or on CD giving easy download access to any building industry professional. These objects are created using scripts which makes them tiny for downloading from the web. Each object contains 3 important types of information: · Parametric scale dependant 2d plan symbols · Full 3d geometric data · Manufacturers information such as material, colour and price Whilst manufacturers are racing to GDL Technologies door to sign up, developers and clients are quick to see the benefit too. Porsche are using GDL Objects to manage their brand identity as they build over 300 new showrooms worldwide. Having defined the building style and interior Porsche, in conjunction with the product suppliers, have produced a CD-ROM with all of the selected building components such as cladding, doors, furniture, and finishes. Designing and detailing the various schemes will therefore be as straightforward as using Lego. To ease the process of accessing, sizing and placing the product libraries GDL Technology have developed a product called GDL Object Explorer, a free-standing application which can be placed on the CD with the product libraries. Furthermore, whilst the Object Explorer gives access to the GDL Objects it also enables the user to save the object in one of many file formats including DWG, DGN, DXF, 3DS and even the IAI's IFC. However, if you are an AutoCAD user there is another tool, which has been designed especially for you, it is called the Object Adapter and it works inside of AutoCAD 14 and 2000. The Object Adapter will dynamically convert all GDL Objects to AutoCAD Blocks during placement, which means that they can be controlled with standard AutoCAD commands. Furthermore, each object can be linked to an online document from the manufacturer web site, which is ideal for more extensive product information. Other tools, which have been developed to make the most of the objects, are the Web Plug-in and SalesCAD. The Plug-in enables objects to be dynamically modified and displayed on web pages and Sales CAD is an easy to learn and use design tool for sales teams to explore, develop and cost designs on a Notebook PC whilst sitting in the architects office. All sales quotations are directly extracted from the model and presented in HTML format as a mixture of product images, product descriptions and tables identifying quantities and costs. With full lifecycle information stored in each GDL Object it is no surprise that GDL Technology see their objects as the future for building design. Indeed they are not alone, the IAI have already said that they are going to explore the possibility of associating GDL Objects with their own data sharing format the IFC. So down to the dirty stuff, money and how much it costs? Well, at the risk of sounding like a market trader in Petticoat Lane, "To you guv? Nuffin". That's right as a user of this technology it will cost you nothing! Not a penny, it is gratis, free. The product manufacturer pays for the license to host their libraries on the web or on CD and even then their costs are small costing from as little as 50p for each CD filled with objects. GDL Technology has come up trumps with their GDL Objects. They have developed a new way to solve old problems. If CAD were a pencil then GDL Objects would be ballistic lead, which would never break or loose its point. A much better alternative to the strategy used by many of their competitors who seek to avoid breaking the pencil by persuading the artist not to press down so hard. If you are still reading and you have not already dropped the magazine and run off to find out if your favorite product supplier has already signed up then I suggest you check out the following web sites www.gdlcentral.com and www.gdltechnology.com. If you do not see them there, pick up the phone and ask them why.
series journal paper
email
last changed 2003/04/23 15:14

_id ga0112
id ga0112
authors Dehlinger, H. E.
year 2001
title Hitchhiking through a Maze of Transformations and Filters with a Bag of Data
source International Conference on Generative Art
summary The disappearance of plotters as peripheral devices makes it necessary to explore alternative output devices like printers for the generation of art work, based on lines and HPGL-code. The findings are frustrating and the conclusion drawn is somewhat devastating: abandon all hope,write new programs to fully take advantage of the printing age. Plot as long as the old hard- and software is still working.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 14HOMELOGIN (you are user _anon_19317 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002