CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 717

_id cf2011_p115
id cf2011_p115
authors Pohl, Ingrid; Hirschberg Urs
year 2011
title Sensitive Voxel - A reactive tangible surface
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 525-538.
summary Haptic and tactile sensations, the active or passive exploration of our built surroundings through our sense of touch, give us a direct feeling and detailed information of space, a sense of architecture (Pallasmaa 2005). This paper presents the prototype of a reactive surface system, which focuses its output on the sense of touch. It explains how touch sensations influence the perception of architecture and discusses potential applications that might arise from such systems in the future. A growing number of projects demonstrate the strong impact of interaction design on the human senses and perception. They offer new ways of sensing and experiencing architectural space. But the majority of these interaction concepts focus on visual and auditory output-effects. The sense of touch is typically used as an input generator, but neglected as as a potential receiver of stimuli. With all the possibilities of sensors and micro-devices available nowadays, there is no longer a technical reason for this. It is possible to explore a much wider range of sense responding projects, to broaden the horizon of sensitive interaction concepts (Bullivant 2006). What if the surfaces of our surroundings can actively change the way it feels to touch them? What if things like walls and furniture get the ability to interactively respond to our touch? What new dimensions of communication and esthetic experience will open up when we conceive of tangibility in this bi-directional way? This paper presents a prototype system aimed at exploring these very questions. The prototype consists of a grid of tangible embedded cells, each one combining three kinds of actuators to produce divergent touch stimuli. All cells can be individually controlled from an interactive computer program. By providing a layering of different combinations and impulse intensities, the grid structure enables altering patterns of actuation. Thus it can be employed to explore a sort of individual touch aesthetic, for which - in order to differentiate it from established types of aesthetic experiences - we have created the term 'Euhaptics' (from the Greek ευ = good and άπτω = touch, finger). The possibility to mix a wide range of actuators leads to blending options of touch stimuli. The sense of touch has an expanded perception- spectrum, which can be exploited by this technically embedded superposition. The juxtaposed arrangement of identical multilayered cell-units offers blending and pattern effects of different touch-stimuli. It reveals an augmented form of interaction with surfaces and interactive material structures. The combination of impulses does not need to be fixed a priori; it can be adjusted during the process of use. Thus the sensation of touch can be made personally unique in its qualities. The application on architectural shapes and surfaces allows the user to feel the sensations in a holistic manner – potentially on the entire body. Hence the various dimensions of touch phenomena on the skin can be explored through empirical investigations by the prototype construction. The prototype system presented in the paper is limited in size and resolution, but its functionality suggests various directions of further development. In architectural applications, this new form of overlay may lead to create augmented environments that let inhabitants experience multimodal touch sensations. By interactively controlling the sensual patterns, such environments could get a unique “touch” for every person that inhabit them. But there may be further applications that go beyond the interactive configuration of comfort, possibly opening up new forms of communication for handicapped people or applications in medical and therapeutic fields (Grunwald 2001). The well-known influence of touch- sensations on human psychological processes and moreover their bodily implications suggest that there is a wide scope of beneficial utilisations yet to be investigated.
keywords Sensitive Voxel- A reactive tangible surface
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ebd0
authors Eggink, Dustin
year 2001
title Smart Objects: Constraints and Behaviors in a Dimensional Design
source University of Washington, Design Machine Group
summary Each new design problem in architecture presents a new set of requirements .A designer must remain aware of these requirements and effectively communicate them to collaborators because the degree to which the requirements are met will determine the success of the solution. This thesis explores how design can be effectively presented in a medium that is both explorative of form and descriptive of the design problem’s requirements. To facilitate this, we present Smart Objects, a constraint-based three-dimensional(3D) computer program. In Smart Objects, design intentions of an architectural problem are embedded as constraints into the modeled objects that compose a formal solution. A model is presented through a 3DVirtual Reality Modeling Language (VRML) viewer and constrained by a software program we wrote in the Java language. Both the VRML viewer and the Java program are contained within a single web page. In Smart Objectsd. A designer meets or violates constraints, objects behave in a manner that reflects the requirements of the problem and intentions of the designer. SmartObjects communicates the design principles and guidelines that inform an architectural design to the collaborators involved in the project. It ensures that these principles and guidelines are maintained as the design progresses.
series thesis:MSc
email
more http://dmg.caup.washington.edu/xmlSiteEngine/browsers/stylin/publications.html
last changed 2004/06/02 19:12

_id 6a37
authors Fowler, Thomas and Muller, Brook
year 2002
title Physical and Digital Media Strategies For Exploring ‘Imagined’ Realities of Space, Skin and Light
source Thresholds - Design, Research, Education and Practice, in the Space Between the Physical and the Virtual [Proceedings of the 2002 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-11-X] Pomona (California) 24-27 October 2002, pp. 13-23
doi https://doi.org/10.52842/conf.acadia.2002.013
summary This paper will discuss an unconventional methodology for using physical and digital media strategies ina tightly structured framework for the integration of Environmental Control Systems (ECS) principles intoa third year design studio. An interchangeable use of digital media and physical material enabledarchitectural explorations of rich tactile and luminous engagement.The principles that provide the foundation for integrative strategies between a design studio and buildingtechnology course spring from the Bauhaus tradition where a systematic approach to craftsmanship andvisual perception is emphasized. Focusing particularly on color, light, texture and materials, Josef Albersexplored the assemblage of found objects, transforming these materials into unexpected dynamiccompositions. Moholy-Nagy developed a technique called the photogram or camera-less photograph torecord the temporal movements of light. Wassily Kandinsky developed a method of analytical drawingthat breaks a still life composition into diagrammatic forces to express tension and geometry. Theseschematic diagrams provide a method for students to examine and analyze the implications of elementplacements in space (Bermudez, Neiman 1997). Gyorgy Kepes's Language of Vision provides a primerfor learning basic design principles. Kepes argued that the perception of a visual image needs aprocess of organization. According to Kepes, the experience of an image is "a creative act ofintegration". All of these principles provide the framework for the studio investigation.The quarter started with a series of intense short workshops that used an interchangeable use of digitaland physical media to focus on ECS topics such as day lighting, electric lighting, and skin vocabulary tolead students to consider these components as part of their form-making inspiration.In integrating ECS components with the design studio, an nine-step methodology was established toprovide students with a compelling and tangible framework for design:Examples of student work will be presented for the two times this course was offered (2001/02) to showhow exercises were linked to allow for a clear design progression.
series ACADIA
email
last changed 2022/06/07 07:51

_id 9bee
authors Gerzso, J. Michael
year 2001
title Automatic Generation of Layouts of an Utzon Housing System via the Internet
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 202-211
doi https://doi.org/10.52842/conf.acadia.2001.202
summary The article describes how architectural layouts can be automatically generated over the Internet. Instead of using a standard web server sending out HTML pages to browser client, the system described here uses an approach that has become common since 1998, known as three tier client/server applications. The server part of the system contains a layout generator using SPR(s), which stands for “Spatial Production Rule System, String Version”, a standard context- free string grammar. Each sentences of this language represents one valid Utzon house layout. Despite the fact that the system represents rules for laying out Utzon houses grammatically, there are important differences between SPR(s) and shape grammars. The layout generator communicates with Autocad clients by means of an application server, which is analogous to a web server. The point of this project is to demonstrate the idea that many hundreds or thousands of clients can request the generation of all of the Utzon layouts simultaneously over the Internet by the SPR(s) server, but the server never has to keep track when each client requested the generation of all of the layouts, or how many layouts each client has received.
keywords Internet, Spatial-Production-Rules Grammars, Utzon
series ACADIA
email
last changed 2022/06/07 07:51

_id cf2011_p027
id cf2011_p027
authors Herssens, Jasmien; Heylighen Ann
year 2011
title A Framework of Haptic Design Parameters for Architects: Sensory Paradox Between Content and Representation
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 685-700.
summary Architects—like other designers—tend to think, know and work in a visual way. In design research, this way of knowing and working is highly valued as paramount to design expertise (Cross 1982, 2006). In case of architecture, however, it is not only a particular strength, but may as well be regarded as a serious weakness. The absence of non-visual features in traditional architectural spatial representations indicates how these are disregarded as important elements in conceiving space (Dischinger 2006). This bias towards vision, and the suppression of other senses—in the way architecture is conceived, taught and critiqued—results in a disappearance of sensory qualities (Pallasmaa 2005). Nevertheless, if architects design with more attention to non visual senses, they are able to contribute to more inclusive environments. Indeed if an environment offers a range of sensory triggers, people with different sensory capacities are able to navigate and enjoy it. Rather than implementing as many sensory triggers as possible, the intention is to make buildings and spaces accessible and enjoyable for more people, in line with the objective of inclusive design (Clarkson et al. 2007), also called Design for All or Universal Design (Ostroff 2001). Within this overall objective, the aim of our study is to develop haptic design parameters that support architects during design in paying more attention to the role of haptics, i.e. the sense of touch, in the built environment by informing them about the haptic implications of their design decisions. In the context of our study, haptic design parameters are defined as variables that can be decided upon by designers throughout the design process, and the value of which determines the haptic characteristics of the resulting design. These characteristics are based on the expertise of people who are congenitally blind, as they are more attentive to non visual information, and of professional caregivers working with them. The parameters do not intend to be prescriptive, nor to impose a particular method. Instead they seek to facilitate a more inclusive design attitude by informing designers and helping them to think differently. As the insights from the empirical studies with people born blind and caregivers have been reported elsewhere (Authors 2010), this paper starts by outlining the haptic design parameters resulting from them. Following the classification of haptics into active, dynamic and passive touch, the built environment unfolds into surfaces that can act as “movement”, “guiding” and/or “rest” plane. Furthermore design techniques are suggested to check the haptic qualities during the design process. Subsequently, the paper reports on a focus group interview/workshop with professional architects to assess the usability of the haptic design parameters for design practice. The architects were then asked to try out the parameters in the context of a concrete design project. The reactions suggest that the participating architects immediately picked up the underlying idea of the parameters, and recognized their relevance in relation to the design project at stake, but that their representation confronts us with a sensory paradox: although the parameters question the impact of the visual in architectural design, they are meant to be used by designers, who are used to think, know and work in a visual way.
keywords blindness, design parameters, haptics, inclusive design, vision
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 9de9
authors Laakso, Mikko
year 2001
title Practical Navigation in Virtual Architectural Environments
source Helsinki University of Technology, Espoo, Finland
summary The interest towards virtual reality (VR) and virtual environments (VE) is growing all the time. The applications being developed for VE run a wide spectrum, from games to business planning. This thesis concentrates on navigation in virtual architectural environments, movement in worlds that are very similar to our own. Navigation in a virtual world should be practical, intuitive and simple. Unfortunately, it is very often far from that - for some reason the usability issues in VEs have been usually left with little attention. Currently it is easy for a user to get lost and disoriented when traveling in a VE. This situation must change, navigating through virtual environments can no longer be considered a task reserved for the experts only. 3D-worlds and architectural applications for the common user require new, intuitive interface techniques. This thesis addresses issues related to both physical and cognitive aspects of navigation as well as theoretical models that bind them together. In the technology survey of this thesis, the virtual environment technology is presented. Different visual display systems, new input devices and some 3D user interface design aspects are described. The literature survey section discusses the main issues concerning navigation theory. The two parts of navigation, travel and wayfinding, are described in detail. The major challenges are discussed and some solutions and various research results are presented. A major part of the thesis consists of the description of HCNav, a new navigation system developed by the author. The system was constructed for use in the virtual room at Helsinki University of Technology. The purpose of HCNav is to provide a very intuitive and practical navigation interface. Three new experimental input devices, namely custom wand, data glove and speech recognition system, were tested. Another important part of the work is to evaluate the effectiveness of the HCNav system. A usability test was conducted to determine if the use of HCNav was actually improving navigation performance. Twelve subjects participated in a test where HCNav was compared with a traditional navigation software used previously in the virtual room. The experiment setup has been described and the results analyzed. The results are promising and show that the navigation methods adopted in HCNav are clearly better.
keywords Virtual Environments, Navigation, Usability
series thesis:MSc
last changed 2003/02/12 22:37

_id ecaade03_301_36_rafi
id ecaade03_301_36_rafi
authors Rafi, Ahmad M. E. and Jabar, Mohd. Fazidin
year 2003
title FCM: An Automated Flood Crisis Management System
source Digital Design [21th eCAADe Conference Proceedings / ISBN 0-9541183-1-6] Graz (Austria) 17-20 September 2003, pp. 301-304
doi https://doi.org/10.52842/conf.ecaade.2003.301
summary This research presents our progress of the second phase of City Administration System (CAS) (Rafi and Fazidin, 2001). It covers the terrain generation of Kuala Lumpur’s Central Business District about 30km x 30km at 1 meter resolution using the latest stereoscopic satellite data and survey data from Mapping Department of Malaysia’s Ministry of Science, Technology and Environment. CAS will be designed to have three main functions, namely: Flood Crisis Management (FCM), Architectural and Town Planning Management, and City Services and Administration. At a 1meter resolution, CAS will be able to predict, manage and visualise flash and major floods within the city with a very high degree of accuracy. It has been identified for CAS that there is a need to share information through collaborative environment in a more centralised manner that allows collective decisions, facilitates continuous updates, communicates effectively and permits the sharing of experiences and ideas.
keywords CAS; FCM; collaborative environment; sensor
series eCAADe
email
more http://www.mmu.edu.my
last changed 2022/06/07 08:00

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id avocaad_2001_07
id avocaad_2001_07
authors Stefan Wrona, Adam Gorczyca
year 2001
title Complexity in Architecture - How CAAD can be involved to Deal with it. - "Duality"
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary “Complexity “ is for us a very ambigous notion. It may be understood in two contexts.1.Thorough solution of a problem.Complexity means full recognition of design area, followed by appropriate work. That work must be thorough and interdisciplinary – if necessary, separated to different co-operatives. These trade designers reqiure a branch coordination and – the most important- all of them must have a „common denominator”. Such as a proper CAAD platform and office standards. That will reduce costs of changes, improve an interplay between designers and somtimes enable to face up a new challenge.Nowadays architects are no longer “solitary” individualists working alone – they must concern a team – they become a member, a part of a huge design machine. “Import/export”, compatibility, interplay – these words must appear and we have to put a stress on them. How to organize work for different trade-designers? How to join in common database architectural design ,engineering design, HVAC design, electricity design, technology design, computer network design and all other trades ?...A key to solve this range of problems is in good work organization. Universal prescription does not exist, but some evergreen rules can be observed. We are going to present a scheme of work in CAAD application ALLPLAN FT v.16 with a Group manager , which starts to conquest polish market and is widely spread in Germany. “Golden rules” of ALLPLAN FT There is one database – it is placed on server. It includes all projects. There is a well-developed office standard. It must be created at the beginning of collaboration, although it is possible to improve it later. It consist of hatches, fonts, symbols, macros, materials, pen-widths, and – the most important –layers . A layer set – predefined structure divided into functional groups – e.g. drafting, text, dimensioning, architecture, HVAC, engineering, urban design, etc.That stucture is a part of an office standard – all workers use a relevant part of it. No name duplicates, no misunderstandings... If however design extends, and a new group of layers is required, it can be easily added, e.g. computer networks, fireguard systems. Administrator of ALLPLAN network defines different users and gives them different permitions of access. For example – an electrician will be able to draft on layer “electricity”, but he won’t modify anything at layer “architecture – walls”, and he won’t even see a layer “engineering- slabs”, because he doesn’t need it..At the same time our electrician will be able to see , how architect moves some walls and how HVAC moved and started to cross with his wires. Every user is able to see relevant changes, after they are saved by author. Two different users can not access at the same time the same file. That excludes inconsistent or overlapping changes . All users operate on a 3D model. While putting some data into a model, they must remember about a “Z” coordinate at work-storey. But at the same time all create a fully-integrated, synchronous database, which can be used later for bills of quantities, specifications, and – of course – for visuaisation. That method can be described as “model-centric”. To simplify complex structure of architectural object -ALLPLAN offers files. Usually one file means one storey, but at special designs it might become a functional part of a storey, or whatever you wish. Files connected with layers easy enable to separate certain structural elements, e.g. if we want to glance only at concrete slabs and columns in the building – we will turn on all files with “layer filter” – “slabs” and “columns”. ALLPLAN is of course one of possible solutions. We described it , because we use it in our workshop. It seems to be stretchy enough to face up every demand and ever-increasing complexity of current projects. The essence of the matter, however, is not a name or version of application – it is a set of features, we mentioned above, which allows to deal with EVERY project. The number of solutions is infinite.2. Increasing difficulties during design process. It may be associated with more and more installations inside of new buildings, especially some “high-tech” examples. The number of these installations increases as well as their complexity. Now buildings are full of sensors, video-screens, computer networks, safety-guard systems... Difficulties are connected with some trends in contemporary architecture, for example an organic architecture, which conceives “morphed” shapes, “moving” surfaces, “soft” solids. This direction is specially supported by modelling or CAD applications. Sometimes it is good – they allow to realize all imaginations, but often they lead to produce “unbuildable” forms, which can exist only in virtual world.Obstacles appear, when we design huge cubatures with “dense” functional scheme. Multi-purposed objects, exhibition halls, olimpic stadium at Sydney – all of them have to be stretchy, even if it requires sliding thousands pound concrete blocks! Requirements were never so high.The last reason, why designs become so complex is obvious - intensifying changes due to specific requirements of clients/developers.We could say “ signum tempori” – everything gets more and more complicated , people have to become specialists, to face up new technology. But how CAAD can help us with it? How?! We have already answered that question. Sometimes CAAD is the only way to imagine and sketch something, to visualize something, to compute a construction , to prepare a simulation... So that human must “only” interprete ready solutions. Sometimes CAAD help us to notify a problem. It works exactly in the same way, as spy-glasses does. For example – without a real-time visualization we we would have never realised (until finished!) some strange interference of solids, which have occured in the upper roof part of our new appartment-house.ConclusionsTemporary CAAD is an integral part of design process – not only as a tool, but sometimes as an inspiration. It helps to organize our work, to define problems, to filter relevant elements and to render our visions. It becomes an integral part of our senses – and that will be a real complexity in architecture...
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 8d5c
authors Wall, S. and Harwin, W.
year 2001
title Interaction of Visual and Haptic Information in Simulated Environments: Texture Perception
source Brewster, S., Smith, R. (eds.) Haptic humancomputer interaction : First International Workshop, Glasgow, UK, August31 - September 1, 2000 : Proceedings. Hong Kong: Springer
summary This paper describes experiments relating to the perception of the roughness of simulated surfaces via the haptic and visual senses. Subjects used a magnitude estimation technique to judge the roughness of "virtual gratings" presented via a PHANToM haptic interface device, and a standard visual display unit. It was shown that under haptic perception, subjects tended to perceive roughness as decreasing with increased grating period, though this relationship was not always statistically significant. Under visual exploration, the exact relationship between spatial period and perceived roughness was less well defined, though linear regressions provided a reliable approximation to individual subjects' estimates.
series other
last changed 2003/04/23 15:50

_id ga0132
id ga0132
authors Abe, Yoshiyuki
year 2001
title Beyond the math visualization - Geometrica and Stochastica
source International Conference on Generative Art
summary Mathematically controlled imaging process provides attractive results because of its infinite scaling capabilities with some other elements that contribute to the visualization. Its global/local and precise manipulation of parameters holds potential for realizing an unpredictable horizon of imagery. When it meets the artist's taste, this method could be a strong enough system of creation, and I have been producing images using the surfaces of hyperbolic paraboloid. On the other hand, a method absolutely free from the geometric parameter manipulation is possible with a stochastic process [1]. Like the technique of pendulum in photography, while its production rate of acceptable result is very low, its potential of generating a strong visual message is also very attractive. It is possible to set stochastic elements at any stage of the process, and conditional probability on those elements, or the hierarchy of probability management characterizes the probability distribution. Math space has no light. No gravity. No color on the math surfaces. And the math equation providesonly the boundary in 3D or higher mathematical dimensions. The fact means that artists can keep artistic reality with their unique tastes in colors on the surface and light sources, and this is the most important element of the math based imaging. Being able to give artists' own choice of colors and that the artist may take only right ones from the results of a stochastic process guarantee the motif and aesthetics of artist could be reflected onto the work.
series other
email
more http://www.generativeart.com/
last changed 2003/11/21 15:15

_id 28b9
authors Achten, Henri
year 2001
title Future Scenario for a Collaborative Design Session
source Stellingwerff, Martijn and Verbeke, Johan (Eds.), ACCOLADE - Architecture, Collaboration, Design. Delft University Press (DUP Science) / ISBN 90-407-2216-1 / The Netherlands, pp. 163-168 [Book ordering info: m.c.stellingwerff@bk.tudelft.nl]
summary A collaborative design project consists of a team of design partners who are engaged during the period of the project in a particular design task. The group forms a short-lived community with the goal to create a design. The environment in which this is done today, consists of the participants office spaces, completed with equipment such as drawing tables, coffee machines, fax machines, CAD stations, etc. None of these elements reflect the existence of the (temporary) community that a design partner participates in. In this workshop paper we propose that the current two-dimensional desktop metaphor in a computer does not adequately support collaborative design. The typical 2D-desktop multiple open windows with different applications gives a fractured view of the design project in which by contrast the designer as a person conceives of himself as a whole. Moreover, the sense of place, or a consistent identity in which the design takes place is also lacking. The notion of _virtual environmentsÑ can assist in further developing design support for collaborative design in the future, as is sketched in the following outline.
series other
email
last changed 2001/09/14 21:30

_id 7e52
authors Achten, Henri
year 2001
title Normative Positions in Architectural Design - Deriving and Applying Design Methods
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 263-268
doi https://doi.org/10.52842/conf.ecaade.2001.263
summary This paper presents a recently finished course of eight weeks where CAAD skills, design methodology, and architectural theory are combined to discuss possible perspectives on the use of the computer in design, and its influence on architecture. In the course, three contemporary architects were studied; Peter Eisenman, Ben van Berkel, and Greg Lynn. Each was discussed on aspects of ontology (which are the elements of discourse), design method (design process and organization of the process), and the use of the computer (techniques and approaches). These were linked with design theory, architectural theory, and CAD-theory. The reflection on the work of the architects resulted in a number of design methods for each architect. The design methods were adapted to the available technologies in the university as well as to the scope of the exercise, since the period of eight weeks for an exercise cannot compete with design processes in practice that take many participants and much time. The students then applied the design methods to a design task: student housing and an exhibition pavilion on the campus area of the university. The task was so devised, that students could focus on either architectural or urban design level with one of the design methods. Also, the choice of architects and accompanying design methods was made in such a way that students with low, medium, and advanced computer skills could take part in the course and exercise. In a workshop held at the Czech Technical University (CVUT) in Prague, the same procedure was used in a one-week period for a different design task, but in an otherwise almost identical setting with respect to the CAAD software used. The methods and material were easily transferred to the other setting. The students were able to cope with the task and produced surprising results in the short time span available. The paper will provide an overview of the course, discuss the pedagogical implications of the work, and discuss how this particular work can be generalized to incorporate other architects and approaches.
keywords CAAD: Design Methods, Pedagogy
series eCAADe
email
last changed 2022/06/07 07:54

_id avocaad_2001_14
id avocaad_2001_14
authors Adam Jakimowicz
year 2001
title Non-Linear Postrationalisation: Architectural Values Emergence in a Teamwork Interpretation
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The paper presents the outcomes of the experiment being conducted at the Faculty of Architecture in Bialystok, which derives form three main sources: a new course of architectural composition by computer modelling, developed and conducted in Bialystok postrationalisation as a formulation platform for new architectural values and theories, applied by e.g. Bernard Tschumi the idea of new values emergence resulting form a teamwork, when placed in an appropriate environment; It is assumed that the work performed first intuitively, can be later seriously interpreted, and to some extent rationalised, verbalised, described. With no doubt we can state, that in creative parts of architectural activities, very often decision are taken intuitively (form design). So this ‘procedure’ of postrationalisation of intuitively undertaken efforts and results seems to be very important –when trying to explain ideas. This kind of activity is also very important during the first years of architectural education. In case of this experiment, the students’ works from the course of architectural composition are taken as a base and subjects for interpretation, and values research. However, when at first, individual works are being interpreted by their authors, at the latter stage, the teams are to be formed. The aim of the teamwork is to present individual works, analyse them, find common value(s), and represent it (them) in an appropriate, creative way. The ideal environment to perform this work is hypertext based internet, because the non-linearity of team interpretations is unavoidable. On the other hand, the digital input data (computer models) is a very appropriate initial material to be used for hypermedia development. The experiment is to analyse the specific of the following: the self-influence of the group on the individual work ‘qualification’, mutual influence of the team members on their own work interpretation, the influence of the digital non-linear environment on the final outcome definition. The added value of hypertext in architectural groupwork digital performance shall be examined and described. A new value of individualised, though group based, non-linearity of expression will be presented and concluded.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 9c0c
authors Af Klercker, Jonas and HenrichsÈn, Jan
year 2001
title Can simulations in VE support architects in solving complex design problems?
source Stellingwerff, Martijn and Verbeke, Johan (Eds.), ACCOLADE - Architecture, Collaboration, Design. Delft University Press (DUP Science) / ISBN 90-407-2216-1 / The Netherlands, pp. 77-82 [Book ordering info: m.c.stellingwerff@bk.tudelft.nl]
summary Building design is facing development of industrialization of the production on the one hand and more complex 'One of a Kind' products on the other. This will be for rebuilding of a large stock of existing buildings and what can be left to new production. In both cases the results of the design process have to be solid to guarantee a successful product. In both cases an integrated and careful design process is absolutely crucial. The demands on the built environment make the systems of buildings more and more complex and have to be handled by a lot of different expertise. To avoid the 'Relay Race' of today the design teams of tomorrow must work much more integrated. To make integrated solutions, which means simultaneous constrains on all systems, the experts of different fields have to understand more of how all engaged systems relate and influence each other. Communication then consists of complex situations and processes that have to be understood and related to reality. In this aspect a multidimensional Virtual Environment interface has advantages and has been successfully used in design processes in other industries. In this paper the problems that have to be studied are for example Methodical, Conceptual, Technical and Process economical.
series other
email
last changed 2001/09/14 21:30

_id bb5f
authors Ahmad Rafi, M.E. and Mohd Fazidin, J.
year 2001
title Creating a City Administration System (CAS) using Virtual Reality in an Immersive Collaborative Environment (ICE)
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 449-453
doi https://doi.org/10.52842/conf.ecaade.2001.449
summary Current problems in administration of a city are found to be decentralized and noninteractive for an effective city management. This usually will result in inconsistencies of decision-making, inefficient services and slow response to a particular action. City administration often spends more money, time and human resource because of these problems. This research demonstrates our research and development of creating a City Administration System (CAS) to solve the problems stated above. The task of the system is to use information, multimedia and graphical technologies to form a database in which the city administrators can monitor, understand and manage an entire city from a central location. The key technology behind the success of the overall system uses virtual reality and immersive collaborative environment (ICE). This system employs emerging computer based real-time interactive technologies that are expected to ensure effective decisionmaking process, improved communication, and collaboration, error reduction, (Rafi and Karboulonis, 2000) between multi disciplinary users and approaches. This multi perspective approach allows planners, engineers, urban designers, architects, local authorities, environmentalists and general public to search, understand, process and anticipate the impact of a particular situation in the new city. It is hoped that the CAS will benefit city administrators to give them a tool that gives them the ability to understand, plan, and manage the business of running the city.
keywords City Administration System (CAS), Virtual Reality, Immersive Collaborative Environment (ICE), Database
series eCAADe
email
last changed 2022/06/07 07:54

_id 12e3
authors Ahmad Rafi, M.E., Che Zulkhairi, A. and Karboulonis, P.
year 2002
title Interactive Storytelling and Its Role in the Design Process
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 151-158
doi https://doi.org/10.52842/conf.caadria.2002.151
summary Projects of ever increasing complexity and size have incited the need for new and robust design methodologies and tools in an effort to manage complexity, lower costs, ascertain quality and reduce risk. Technology convergence through the growing availability of networked computers, rapid progress in Computer Aided Design (CAD) and information management have encouraged the undertaking of even more complex designs that demand high degrees of interaction, collaboration and the efficient sharing and dissemination of information. It is suggested that interactive storytelling and interactive design (Rafi and Karboulonis, 2001) techniques that use non-linear information mapping systems can be deployed to assist users as they navigate information that is structured to address localized needs as they arise. The design process is a collaborative effort that encompasses diverse knowledge disciplines and demands the management and utilization of available resources to satisfy the needs of a single or set of goals. It is thought that building industry specialists should work close together in an organised manner to solve design problems as they emerge and find alternatives when designs fall short. The design process involves the processing of dynamic and complex information, that can be anything from the amount of soil required to level lands - to the needs of specific lightings systems in operation theatres. Other important factors that affect the design process are related to costs and deadlines. This paper will demonstrate some of our early findings in several experiments to establish nonlinear storytelling. It will conclude with a recommendation for a plausible design of such a system based on experimental work that is currently being conducted and is reaching its final stages. The paper will lay the foundations of a possible path to implementation based on the concept of multi-path animation that is appropriate for structuring the design process as used in the building industry.
series CAADRIA
email
last changed 2022/06/07 07:54

_id avocaad_2001_18
id avocaad_2001_18
authors Aleksander Asanowicz
year 2001
title The End of Methodology - Towards New Integration
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The present paper is devoted to the deliberation on the genesis and development of designing from the point of view of the potential use of computers in the process. Moreover, it also presents the great hopes which were connected with the use of the systematic designing methods in the 1960’s, as well as the great disappointment resulting from the lack of concrete results. At this time a great deal of attention was paid to the process of design as a branch of a wider process of problem-solving. Many people believed that the intuitive methods of design traditionally used by architects were incapable of dealing with the complexity of the problems to be solved. Therefore, the basic problem was the definition of a vertical structure of the designing process, which would make it possible to optimise each process of architectural design. The studies of design methodology directed at the codification of the norms of actions have not brought about any solutions which could be commonly accepted, as the efforts to present the designing process as a formally logical one and one that is not internally “uncontrary” from the mathematical point of view, were doomed to fail. Moreover, the difficulties connected with the use of the computer in designing were caused by the lack of a graphic interface, which is so very characteristic of an architect’s workshop. In result, the methodology ceased to be the main area of the architect’s interest and efforts were focused on facilitating the method of the designer’s communication with the computer. New tools were created, which enabled both the automatic generation of diversity and the creation of forms on the basis of genetic algorithms, as well as the presentation of the obtained results in the form of rendering, animation and VRML. This was the end of the general methodology of designing and the beginning of a number of methods solving the partial problems of computer-supported design. The present situation can be described with the words of Ian Stewart as a “chaotic run in all directions”. An immediate need for new integration is felt. Cyber-real space could be a solution to the problem. C-R-S is not a virtual reality understood as an unreal world. Whilst VR could be indeed treated as a sort of an illusion, C-R-S is a much more realistic being, defining the area in which the creative activities are taking place. The architect gains the possibility of having a direct contact with the form he or she is creating. Direct design enables one to creatively use the computer technology in the designing process. The intelligent system of recognising speech, integrated with the system of virtual reality, will allow to create an environment for the designer – computer communication which will be most natural to the person. The elimination of this obstacle will facilitate the integration of the new methods into one designing environment. The theoretical assumptions of such an environment are described in the present paper.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id avocaad_2001_13
id avocaad_2001_13
authors Alexander Koutamanis
year 2001
title Modeling irregular and complex forms
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Computational technologies provide arguably the first real opportunity architectural design has had for a comprehensive description of built form. With the advent of affordable computer-aided design systems (including drafting, modeling, visualization and simulation tools), architects believe they can be in full control of geometric aspects and, through these, of a wide spectrum of other aspects that are implicit or explicit in the geometric representation. This belief is based primarily on the efficiency and effectiveness of computer systems, ranging from the richness and adaptability of geometric primitives to the utility of geometric representations in simulations of climatic aspects. Such capabilities support attempts to design and construct more irregular or otherwise complex forms. These fall under two main categories: (1) parsing of irregularity into elementary components, and (2) correlation of the form of a building with complex geometric structures.The first category takes advantage of the compactness and flexibility of computational representations in order to analyse the form of a design into basic elements, usually elementary geometric primitives. These are either arranged into simple, unconstrained configurations or related to each other by relationships that define e.g. parametric relative positioning or Boolean combinations. In both cases the result is a reduction of local complexity and an increase of implicit or explicit relationships, including the possibility of hierarchical structures.The second category attempts to correlate built form with constraints that derive usually from construction but can also be morphological. The correlation determines the applicability of complex geometric structures (minimally ruled surfaces) to the description of a design. The product of this application is generally variable in quality, depending upon the designer's grounding in geometry and his ability to integrate constraints from different aspects in the definition of the design's geometry.Both categories represent a potential leap forward but are also equally hampered by the rigidity of the implementation mechanisms upon which they rely heavily. The paper proposes an approach to making these mechanisms subordinate to the cognitive and technical aspects of architectural thinking through fuzzy modeling. This way of modeling involves a combination of (a) canonical forms, (b) tolerances around canonical forms and positions, (c) minimal and maximal values, (d) fuzzy boundaries, and (e) plastic interaction between elements based on the dual principles of local intelligence and autonomy. Fuzzy models come therefore closer to the intuitive manners of sketching, while facilitating transition to precise and complex forms. The paper presents two applications of fuzzy modeling. The first concerns the generation of schematic building layouts, including adaptive control of programmatic requirements. The second is a system for designing stairs that can adapt themselves to changes in their immediate environment through a fuzzy definition of geometric and topological parametrization.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id avocaad_2001_05
id avocaad_2001_05
authors Alexander Koutamanis
year 2001
title Analysis and the descriptive approach
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The rise of consciousness concerning the quality of working and living conditions has been a permanent though frequently underplayed theme in architecture and building since the reconstruction period. It has led to an explosive growth of programmatic requirements on building behaviour and performance, thus also stimulating the development of design analysis. The first stage of development was characterized by the evolution of prescriptive systems. These reversed the structure of pre-existing proscriptive systems into sequences of known steps that should be taken in order to achieve adequate results. Prescriptive systems complemented rather than replaced proscriptive ones, thereby creating an uncertain mixture of orthodoxy and orthopraxy that failed to provide design guidance for improving design performance and quality.The second stage in the development of design analysis focuses on descriptive methods and techniques for analyzing and supporting evaluation. Technologies such as simulation and scientific visualization are employed so as to produce detailed, accurate and reliable projections of building behaviour and performance. These projections can be correlated into a comprehensive and coherent description of a building using representations of form as information carriers. In these representations feedback and interaction assume a visual character that fits both design attitudes and lay perception of the built environment, but on the basis of a quantitative background that justifies, verifies and refines design actions. Descriptive analysis is currently the most promising direction for confronting and resolving design complexity. It provides the designer with useful insights into the causes and effects of various design problems but frequently comes short of providing clear design guidance for two main reasons: (1) it adds substantial amounts of information to the already unmanageable loads the designer must handle, and (2) it may provide incoherent cues for the further development of a design. Consequently the descriptive approach to analysis is always in danger of been supplanted by abstract decision making.One way of providing the desired design guidance is to complement the connection of descriptive analyses to representations of form (and from there to synthesis) with two interface components. The first is a memory component, implemented as case-bases of precedent designs. These designs encapsulate integrated design information that can be matched to the design in hand in terms of form, function and performance. Comparison between precedents with a known performance and a new design facilitate identification of design aspects that need be improved, as well as of wider formal and functional consequences. The second component is an adaptive generative system capable of guiding exploration of these aspects, both in the precedents and the new design. The aim of this system is to provide feedback from analysis to synthesis. By exploring the scope of the analysis and the applicability of the conclusions to more designs, the designer generates a coherent and consistent collection of partial solutions that explore a relevant solution space. Development of the first component, the design case-bases, is no trivial task. Transformability in the representation of cases and flexible classification in a database are critical to the identification and treatment of a design aspect. Nevertheless, the state of the art in case-based reasoning and the extensive corpus of analysed designs provide the essential building blocks. The second component, the adaptive generative system, poses more questions. Existing generative techniques do not possess the necessary richness or multidimensionality. Moreover, it is imperative that the designer plays a more active role in the control of the process than merely tweaking local variables. At the same time, the system should prevent that redesigning degenerates into a blind trial-and-error enumeration of possibilities. Guided empirical design research arguably provides the means for the evolutionary development of the second component.
series AVOCAAD
email
last changed 2005/09/09 10:48

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_957037 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002