CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 701

_id avocaad_2001_13
id avocaad_2001_13
authors Alexander Koutamanis
year 2001
title Modeling irregular and complex forms
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary Computational technologies provide arguably the first real opportunity architectural design has had for a comprehensive description of built form. With the advent of affordable computer-aided design systems (including drafting, modeling, visualization and simulation tools), architects believe they can be in full control of geometric aspects and, through these, of a wide spectrum of other aspects that are implicit or explicit in the geometric representation. This belief is based primarily on the efficiency and effectiveness of computer systems, ranging from the richness and adaptability of geometric primitives to the utility of geometric representations in simulations of climatic aspects. Such capabilities support attempts to design and construct more irregular or otherwise complex forms. These fall under two main categories: (1) parsing of irregularity into elementary components, and (2) correlation of the form of a building with complex geometric structures.The first category takes advantage of the compactness and flexibility of computational representations in order to analyse the form of a design into basic elements, usually elementary geometric primitives. These are either arranged into simple, unconstrained configurations or related to each other by relationships that define e.g. parametric relative positioning or Boolean combinations. In both cases the result is a reduction of local complexity and an increase of implicit or explicit relationships, including the possibility of hierarchical structures.The second category attempts to correlate built form with constraints that derive usually from construction but can also be morphological. The correlation determines the applicability of complex geometric structures (minimally ruled surfaces) to the description of a design. The product of this application is generally variable in quality, depending upon the designer's grounding in geometry and his ability to integrate constraints from different aspects in the definition of the design's geometry.Both categories represent a potential leap forward but are also equally hampered by the rigidity of the implementation mechanisms upon which they rely heavily. The paper proposes an approach to making these mechanisms subordinate to the cognitive and technical aspects of architectural thinking through fuzzy modeling. This way of modeling involves a combination of (a) canonical forms, (b) tolerances around canonical forms and positions, (c) minimal and maximal values, (d) fuzzy boundaries, and (e) plastic interaction between elements based on the dual principles of local intelligence and autonomy. Fuzzy models come therefore closer to the intuitive manners of sketching, while facilitating transition to precise and complex forms. The paper presents two applications of fuzzy modeling. The first concerns the generation of schematic building layouts, including adaptive control of programmatic requirements. The second is a system for designing stairs that can adapt themselves to changes in their immediate environment through a fuzzy definition of geometric and topological parametrization.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 7c0e
authors Koutamanis, Alexander and Den Hartog, Peter
year 2001
title Simulation and representation. Learning from airflow analyses in buildings
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 657-666
summary The simulation of environmental aspects is a current priority in design research and practice. The availability of relatively efficient and reliable simulation systems and the emphasis on environmental aspects throughout a building’s lifecycle combine to stimulate exploration of aspects such as lighting and air quality by computational means. Nevertheless, a frequent complaint is that the addition of such simulations makes design information processing timeconsuming and cumbersome, thereby increasing uncertainty and indecision. Therefore, it is imperative that simulation is integrated in the strategies and tools normally used by the digitally-minded architect. In this respect a central issue is the relations between the simulation and the design representation used as connecting tissue for the whole design environment. Input of design information in the simulation means identification of relevant objects, aspects, parts and properties of these objects, as well as relationships between objects. The explicit description of objects such as spaces, doors and windows in the design representation allows for ready extraction of relevant information, including automatic recognition of relationships such as adjacency between a window and a space. The addition of information specific to the airflow analysis was resolved by the extension of the representation to cover front-end service components such as inlets and outlets and general properties (annotations) such as activities accommodated in a space and the primary choice of cooling and heating subsystems. The design representation is also the obvious target for the output of the simulation (feedback). Visualization of airflow in terms of the resulting voxels makes effortless and enjoyable viewing but merely allowing the visualization to coexist with the representation of spaces and building elements does not provide design guidance. One way of achieving that is by treating spaces not as integral entities but as containers of relevant surfaces. These surfaces determine the adaptive subdivision of the space and function as attractors for voxel clustering.
keywords Simulation, Representation, Visualization
series CAAD Futures
email
last changed 2006/11/07 07:22

_id 728a
authors Mantere, Markku
year 2001
title Visualization of Flow Data in Photo-realistic Virtual Environment
source Helsinki University of Technology, Espoo, Finland
summary Virtual reality technology has been adopted in many different fields and new application areas are searched continuously. At the moment virtual reality has been applied separately for instance to scientific visualization and illustration of architectural spaces. In this work, a photo-realistic room model and a visualization of an air flow inside the room has been combined. The integrated illustrative three-dimensional model is presented within an immersive virtual environment. The first part of the work covers scientific visualization and virtual reality implementation techniques. The visualization review begins with a discussion about human percepion of visual information and proceeds with an introduction to three-dimensional visualization. The focus is on illustration of a flow data produced as a result of a computational simulation. The flow visualization techniques utilizing all three dimensions are discussed and many examples of different graphical elements are presented. Virtual reality is examined from technical solutions point of view. The features having effect on the quality of a virtual experience are discussed and three different commonly used display techniques are introduced. The hardware of Experimental Virtual Environment -facility at Helsinki University of Technology is given as a detailed example. The implementation of a visualization software is described in the applied part of this thesis. Discussion covers the evaluation of different software tools, the tool selection process, and a detailed description of the design principles and implementation of the software. The different visualization solutions are also justified in this part. In the implementation, the real-time system requirements and utilization of all three dimensions have been taken into account. Finally, the results and their meaning are discussed and the performance of the implementation is evaluated. The applied part successfully integrated the room model and the flow visualization in an interactive virtual environment.
keywords Virtual Environments, Virtual Reality, Flow Visualization, CFD, 3D, Computer Graphics
series thesis:MSc
last changed 2003/02/12 22:37

_id 12e3
authors Ahmad Rafi, M.E., Che Zulkhairi, A. and Karboulonis, P.
year 2002
title Interactive Storytelling and Its Role in the Design Process
doi https://doi.org/10.52842/conf.caadria.2002.151
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 151-158
summary Projects of ever increasing complexity and size have incited the need for new and robust design methodologies and tools in an effort to manage complexity, lower costs, ascertain quality and reduce risk. Technology convergence through the growing availability of networked computers, rapid progress in Computer Aided Design (CAD) and information management have encouraged the undertaking of even more complex designs that demand high degrees of interaction, collaboration and the efficient sharing and dissemination of information. It is suggested that interactive storytelling and interactive design (Rafi and Karboulonis, 2001) techniques that use non-linear information mapping systems can be deployed to assist users as they navigate information that is structured to address localized needs as they arise. The design process is a collaborative effort that encompasses diverse knowledge disciplines and demands the management and utilization of available resources to satisfy the needs of a single or set of goals. It is thought that building industry specialists should work close together in an organised manner to solve design problems as they emerge and find alternatives when designs fall short. The design process involves the processing of dynamic and complex information, that can be anything from the amount of soil required to level lands - to the needs of specific lightings systems in operation theatres. Other important factors that affect the design process are related to costs and deadlines. This paper will demonstrate some of our early findings in several experiments to establish nonlinear storytelling. It will conclude with a recommendation for a plausible design of such a system based on experimental work that is currently being conducted and is reaching its final stages. The paper will lay the foundations of a possible path to implementation based on the concept of multi-path animation that is appropriate for structuring the design process as used in the building industry.
series CAADRIA
email
last changed 2022/06/07 07:54

_id 0b74
authors Chow, B., Lam, S. and Tsou, J.
year 2001
title The impact of computer-based design tools for daylighting simulation and prediction for a built environment
doi https://doi.org/10.52842/conf.caadria.2001.169
source CAADRIA 2001 [Proceedings of the Sixth Conference on Computer Aided Architectural Design Research in Asia / ISBN 1-86487-096-6] Sydney 19-21 April 2001, pp. 169-179
summary This paper investigates the application of computer daylighting simulation to provide qualitative assessment and comparison for designers to improve the built environment especially for non-technical architecture students. A comprehensive study was carried out to evaluate different daylighting design tools and to identify the limitation of current systems in the academic field. The paper will focus mainly on the dynamic information exchange between scientific visualization and the design decision-making process. Both architectural design studio environment and practical design problems in the real world setting were experimented and evaluated. Two case studies are presented: a proposed gallery space for a museum, and a detail architectural design of a community church. Architectural design alterations are proposed, simulated and discussed. The recursive feedback of the designers are studied and documented. Through a combination of qualitative assessment and comparison, designers can evaluate and compare different design options in the computing environment before implementing in the real world situation.
series CAADRIA
email
last changed 2022/06/07 07:56

_id 04f2
authors Cimerman, Benjamin
year 2001
title Clients, architects, houses and computers: Experiment and reflection on new roles and relationships in design
doi https://doi.org/10.52842/conf.acadia.2001.100
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 100-109
summary This paper reports on recent work that focused on the potential impact of standard computer technology on the relationship between client and architect in the context of residential design. A study of software applications a client could use to develop and evaluate ideas exposed the dearth of software available for the design of spatial complexity by individuals without advanced computer skills, and led to the design of a specific piece of software we call “Space Modeler.” It was prototyped using off-the-shelf virtual reality technology, and tested by a group of freshmen students. The paper discusses the specificities of the software and provides analysis and reflection based on the results of the test, both in terms of design artifacts and users’ comments. The paper concludes that the evolution of the interface to electronic environments is a matter of interest for those concerned with rethinking the training, role and activity of the architect. In the near future prospective homeowners may be able to experience and experiment with the space of their home before it is built. How can the profession embrace new information technology developments and appropriate them for the benefits of society at large?
keywords Design Software, Design Participation, Visualization, Simulation
series ACADIA
email
last changed 2022/06/07 07:52

_id ec4d
authors Croser, J.
year 2001
title GDL Object
source The Architect’s Journal, 14 June 2001, pp. 49-50
summary It is all too common for technology companies to seek a new route to solving the same problem but for the most part the solutions address the effect and not the cause. The good old-fashioned pencil is the perfect example where inventors have sought to design-out the effect of the inherent brittleness of lead. Traditionally different methods of sharpening were suggested and more recently the propelling pencil has reigned king, the lead being supported by the dispensing sleeve thus reducing the likelihood of breakage. Developers convinced by the Single Building Model approach to design development have each embarked on a difficult journey to create an easy to use feature packed application. Unfortunately it seems that the two are not mutually compatible if we are to believe what we see emanating from Technology giants Autodesk in the guise of Architectural Desktop 3. The effect of their development is a feature rich environment but the cost and in this case the cause is a tool which is far from easy to use. However, this is only a small part of a much bigger problem, Interoperability. You see when one designer develops a model with one tool the information is typically locked in that environment. Of course the geometry can be distributed and shared amongst the team for use with their tools but the properties, or as often misquoted, the intelligence is lost along the way. The effect is the technological version of rubble; the cause is the low quality of data-translation available to us. Fortunately there is one company, which is making rapid advancements on the whole issue of collaboration, and data sharing. An old timer (Graphisoft - famous for ArchiCAD) has just donned a smart new suit, set up a new company called GDL Technology and stepped into the ring to do battle, with a difference. The difference is that GDL Technology does not rely on conquering the competition, quite the opposite in fact their success relies upon the continued success of all the major CAD platforms including AutoCAD, MicroStation and ArchiCAD (of course). GDL Technology have created a standard data format for manufacturers called GDL Objects. Product manufacturers such as Velux are now able to develop product libraries using GDL Objects, which can then be placed in a CAD model, or drawing using almost any CAD tool. The product libraries can be stored on the web or on CD giving easy download access to any building industry professional. These objects are created using scripts which makes them tiny for downloading from the web. Each object contains 3 important types of information: · Parametric scale dependant 2d plan symbols · Full 3d geometric data · Manufacturers information such as material, colour and price Whilst manufacturers are racing to GDL Technologies door to sign up, developers and clients are quick to see the benefit too. Porsche are using GDL Objects to manage their brand identity as they build over 300 new showrooms worldwide. Having defined the building style and interior Porsche, in conjunction with the product suppliers, have produced a CD-ROM with all of the selected building components such as cladding, doors, furniture, and finishes. Designing and detailing the various schemes will therefore be as straightforward as using Lego. To ease the process of accessing, sizing and placing the product libraries GDL Technology have developed a product called GDL Object Explorer, a free-standing application which can be placed on the CD with the product libraries. Furthermore, whilst the Object Explorer gives access to the GDL Objects it also enables the user to save the object in one of many file formats including DWG, DGN, DXF, 3DS and even the IAI's IFC. However, if you are an AutoCAD user there is another tool, which has been designed especially for you, it is called the Object Adapter and it works inside of AutoCAD 14 and 2000. The Object Adapter will dynamically convert all GDL Objects to AutoCAD Blocks during placement, which means that they can be controlled with standard AutoCAD commands. Furthermore, each object can be linked to an online document from the manufacturer web site, which is ideal for more extensive product information. Other tools, which have been developed to make the most of the objects, are the Web Plug-in and SalesCAD. The Plug-in enables objects to be dynamically modified and displayed on web pages and Sales CAD is an easy to learn and use design tool for sales teams to explore, develop and cost designs on a Notebook PC whilst sitting in the architects office. All sales quotations are directly extracted from the model and presented in HTML format as a mixture of product images, product descriptions and tables identifying quantities and costs. With full lifecycle information stored in each GDL Object it is no surprise that GDL Technology see their objects as the future for building design. Indeed they are not alone, the IAI have already said that they are going to explore the possibility of associating GDL Objects with their own data sharing format the IFC. So down to the dirty stuff, money and how much it costs? Well, at the risk of sounding like a market trader in Petticoat Lane, "To you guv? Nuffin". That's right as a user of this technology it will cost you nothing! Not a penny, it is gratis, free. The product manufacturer pays for the license to host their libraries on the web or on CD and even then their costs are small costing from as little as 50p for each CD filled with objects. GDL Technology has come up trumps with their GDL Objects. They have developed a new way to solve old problems. If CAD were a pencil then GDL Objects would be ballistic lead, which would never break or loose its point. A much better alternative to the strategy used by many of their competitors who seek to avoid breaking the pencil by persuading the artist not to press down so hard. If you are still reading and you have not already dropped the magazine and run off to find out if your favorite product supplier has already signed up then I suggest you check out the following web sites www.gdlcentral.com and www.gdltechnology.com. If you do not see them there, pick up the phone and ask them why.
series journal paper
email
last changed 2003/04/23 15:14

_id f9d8
authors De Valpine, John and Black, Benjamin
year 2001
title Physically Based Daylight Simulation and Visualization
doi https://doi.org/10.52842/conf.acadia.2001.406
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 406-407
summary While architects typically agree that daylight is a powerful influence for design, architects rarely collect and use daylighting data to help make informed design decisions. This deficiency exists partially because there are no common tools available to provide useful and accessible data. The objective of this project is to provide accurate daylighting data of a prominent urban building site and present it in a clear way so that the architects can make well informed design decisions that respond to site daylighting conditions and improve architectural performance. An urban 3D computer model was created with AutoCad, a commercial CAD application. Daylight was simulated with Radiance, the physically based rendering engine developed at Lawrence Berkeley National Laboratory. The standard CIE model for clear sky and sun was used to produce over 500 images that represent daylight conditions for three different times of year at 10 minute intervals in both luminance and illuminance formats. The simulation data was packaged for analysis with a unique browser tool that enables the architect to easily cycle through the data to evaluate and compare behavior by time of day and by season. The architect can also toggle between luminance and illuminance format to easily visualize both qualitative and quantitative data. The exploration and use of the simulation data can be applied with sensitivity to inform the design and decision making process for the exterior building site.
series ACADIA
last changed 2022/06/07 07:55

_id ga0124
id ga0124
authors Feuerstein, Penny L.
year 2001
title Art In The Digital Age: Using Computer As An Expressive Tool
source International Conference on Generative Art
summary I use digital technology to visualize the theory that we experience any one moment in a "constant state of collage". I literally "scan" the moment, scanning objects such as rocks or paper, energy, and ideas into the computer to convert them to a new common language of binary numbers. After scanning, I work with digital tools to create generation, replication, and integration. These three attributes of the computer are used throughout my work. In this way the computer is used as an expressive tool to visualize the subconscious layering and relayering that occurs as the mind processes "experience" -that moment when the physical, intellectual, emotional and spiritual come together as one. I call this my "assemblage of the mind" with all that surrounds it. To illustrate this concept, I use software such as High Rez QFX or Photoshop to manipulate images of photographs drawings and paintings. I am exploring what happens to the gestural quality of the line or brushtroke when it has been maniplatedwith these digital tools. The manipulation of photography, drawings, paintings and found objects expresses a new reality that reflects this digital age.Digital imaging intensifies this reality because youhave the potential for infinite replications of the same image within one artwork. By making many reproductions it substitutes a plurality of copies for a unique existance. Using the generative tools, this plurality is taken a step further because it actually mimics our existance. Looking at Kasimir Malevich's painting, "basic Suprematist Element" inspired me to paint a brushstroke and transcend a photo of a landscape into it. By using transparency tools to integrate objects and photos with paintings, I want toconvey that the objective consciousness of an object is just as important as the subjective inner state of consciousness in experiencing reality. The irony is that my theory directly opposes Malevich's theories on Suprematism, yet it was Malevich who inspired me.
series other
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id d90f
authors Hanser, D., Halin, G. and Bignon, J.-C.
year 2001
title Relation-Based Groupware For Heterogeneous Design Teams
doi https://doi.org/10.52842/conf.ecaade.2001.086
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 86-91
summary This paper describes a work about coordination of concurrent engineering in the building construction and design. More particularly it describes the coordination of project teams which are heterogeneous and short-lived. The French context of the building trade is at present characterized by an increase of the quality requirements and by a reduction of the conception and realization delays. This induces the building sector to look for new modes of cooperation as they already exist in industry and services. With a few exceptions, the concurrent engineering tools taken from these sectors are not used in building projects. We make the assumption that the lack of use of these tools is due to the non-fitting of the common existing tools to the specificities of our sector. The solution we propose give a relational vision of the cooperation and the interactions existing during the processes of conception-construction in architectural works. Our first interest point concerns the representation of the actors, the documents and the assignments as a relational network and not as a hierarchical tree, mostly used in the groupware tools. In a second point, we use this relational network to produce a graphic and dynamic representation of the projects. The goal of this method is to reinforce the co-operation and the group awareness by supplying to the actors a good vision of the project evolution in order to increase the conception quality.
keywords Concurrent Engineering, Groupware, Project Management, Relational Model, Awareness
series eCAADe
last changed 2022/06/07 07:50

_id d146
authors He, Jie
year 2001
title CAD Study in Visual Analysis of the Visual Sustainability for China Urban Natural Landscape Planning
source Chinese University of Hong Kong
summary In this thesis a GIS-based CAD system prototype of evaluating visual quality of urban natural landscape environment is presented. This prototype is an indispensable component of the integrative Visual Sustainability research, and offers a calculable and visualizable technique to urban visual natural landscape assessment. This scientific method provides precise data to estimate the visibility of natural landscape in urban construction actuality. Furthermore, it can also work out supporting information for maintaining and protecting valuable visual landscape resources in further planning. Introduction of this methodology intends to improve the natural landscape cooperation in China urban planning through visual protection. Combining with popular CAD software such as AutoCAD and Microstation, the research team uses ArcView GIS software and its 3D Analyst extension to accomplish a set of research procedure, which includes data modification, model making, viewshed and view sensibility analysis. In addition, this system can create simultaneous 3D scenes or hire other information media as reference tools for professional analysis, design consultation and intercommunication. The core technologies of this proposed system are viewshed calculation and overlay analysis. In viewshed analysis, human visual characteristics are simulated by a series of ergonomics parameters of viewpoints. Viewshed of each viewpoint can be calculated into vector data and mapped by polygons identifying which region is visible and which is not. Overlay function of the proposed system is used in visual sensibility analysis to achieve the division of higher visual sensible area which indicates the common visible area from different viewpoints. Additionally, viewshed maps and visual sensibility results can add more information to mark out the areas that can satisfy certain visual parameters such as appropriate visual angle or visual distance. These overlaying results can visualized the visible areas into hierarchical visual perception quality categories in order to define the visual landscape significance of particular planning regions. A case study was operated to evaluate this system. The case is in Zhongshan city, Guangdong Province of China. Jinzishan hill region is the study site that picked by collaborating discussion of research team and the local government. It is located on the edge of urban built-up area. Jinzishan massif is the prominent landscape element of the surrounding environment. There are three topics in Jinzishan visual perception in this paper. The first topic is the visual quality evaluation of the intersections of its surrounding road system. The second is the integrated visual perception of two main roads called Qiwandao and Bo’ailu. Finally is the analysis of the hill skyline visual quality in surrounding area. The analysis results in GIS vector data can be converted into popular data format and combined with other spatial information for practical application. And comments for future urban planning are collected and analyzed by professional responses to the computer-generated information investigation.
keywords Natural Landscaping; Computer-Aided Design; Landscape Architecture; City Planning; Geographic Information Systems
series thesis:MSc
email
last changed 2003/02/12 22:37

_id e6c5
authors Heintz, John L.
year 2001
title Coordinating virtual building design teams
source Stellingwerff, Martijn and Verbeke, Johan (Eds.), ACCOLADE - Architecture, Collaboration, Design. Delft University Press (DUP Science) / ISBN 90-407-2216-1 / The Netherlands, pp. 65-76 [Book ordering info: m.c.stellingwerff@bk.tudelft.nl]
summary Most research in design project management support systems treats the subject as an isolated objective problem. The goals to be met are defined in terms of a supposed universal view of the project, and now outside concerns are taken into account. While such approaches, including project simulation, may yield excellent results, they ignore what, for many projects, are the real difficulties. Design projects are not isolated. All participants have other obligations that compete with the given project for attention and resources. The various participants in the design process have different goals. For these reasons it is proposed that design project management can be best facilitated by tools which assist the participating actors to share suitable management information in order to make better co-ordination possible, while allowing the resource balancing between projects to occur in private. Such a tool represents the design project management task as a negotiation task that spans both projects and firms; the management of one project is the management of all. The model of design collaboration upon which the Design Coordination System (DeCo) is built was developed from 1) a heuristic case study used to gain insight into the ways in which designers co-ordinate their efforts, and 2) the application of the theory of the social contract as developed by John Rawls to the problem of design project management. The key innovation in the DeCo system is the shaping of the project management system around existing practices of collaborative project design management and planning. DeCo takes advantage of how designers already co-ordinate their work with each other and resolve disputes over deadlines and time lines. The advantage of DeCo is that it formalises these existing practices in order to accommodate both the increasing co-ordination burden and the difficulties brought about by the internationalisation of design practice. DeCo, the design project management system proposed here, provides a representation, a communications protocol, and a game theoretical decision structure. The combination of these three units provides users with the ability to exchange structured pictures of the project as seen from the points of view of individual actors. Further, it suggests a mechanism based on a specific principle of fairness for arriving at mutually acceptable project plans. The DeCo system permits the users freedom to manage their design processes as they will, while providing a basic compatibility between practices of design team members which supports their collaborative efforts to co-ordinate their design work.
series other
last changed 2001/09/14 21:30

_id 7313
authors Mahdavi, A., Brahme, R. and Gupta, S.
year 2001
title Performance-based computational design via differential modeling and two-staged mapping
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 667-680
summary Computational performance-based building design support faces a conflict. It is important to provide building performance feed back to the designer as early as possible in the design process. But many aspects of building performance are significantly affected by the design of the building’s technical systems, which are typically configured in detail only in the later stages of design. The challenge is thus to find a method to use detailed simulation tools even during the early stages of design when values for many of the variables for the building’s technical sub-systems are not yet available. In this paper, we demonstrate how this problem can be partially solved by combining two levels of automation. The first level consists of differential building representation involving a number of domain (application-specific) object models that are derived from a shared object model automatically. The second level uses generative agents that create reference designs for the technical sub-systems of the building. To demonstrate the feasibility of the proposed approach, we use the building energy systems domain (heating, cooling, ventilation, and air-conditioning) as a case in point.
keywords Building Performance Simulation, Homology-Based Mapping, Intelligent Design Agents
series CAAD Futures
email
last changed 2006/11/07 07:22

_id avocaad_2001_01
id avocaad_2001_01
authors Maria Musat
year 2001
title 3D Intelligent Representations for the Facility Management Practice
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary New field, growing very fast since the nineteen eighties, facility management takes care of our built environment. As owners and users together become more and more aware of the importance that healthy built environment has for their lives, the need for high quality tools to help them manage their buildings, throughout their transformations, are growing in demand. The market is overflowed with 2D applications assembled in different information systems that have no links one to another. Intranets, that offer direct links between alphanumerical and 2D graphical databases, are considered nowadays the top tools for facility management experts. Nevertheless the sophistication of this information systems, we should not forget the fact that built environment is always 3D. Therefore, the representations not only should be 3D as well, but also they should include some of the intelligence that builders and managers have, in order to ease their tasks during the life cycle of the buildings. Health and life of our built environment bases on the quality of the management process. However their importance was pointed in the first paragraph, there are yet no norms to intelligently describe our buildings as to take the most profit of their 3D representations. Both owners and managers seem to be impressed by accurate renderings of the building models. They seem to forget that behind these models, the useful information for the facility management is the appearance of the built environment. No intelligent applications have yet been developed based on this information. Our goal is to examine the facility management specific needs in information and to research and define a coherent norm that could intelligently describe 3D representations of complex buildings for this practice.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 8d1a
authors Martens, Bob and Voigt, Andreas
year 2001
title Virtual and full-scale modeling: A collection of resources
doi https://doi.org/10.52842/conf.caadria.2001.201
source CAADRIA 2001 [Proceedings of the Sixth Conference on Computer Aided Architectural Design Research in Asia / ISBN 1-86487-096-6] Sydney 19-21 April 2001, pp. 201-204
summary In this paper the relationship between Virtual and Full-scale Mo-deling will be traced back. A number of publications supports the dis-semination of existing knowledge resp. experiences. Although a series of biannual EFA-Conferences (European Full-scale Modeling Association) produced a remarkable number of useful papers, the "scientific output" beyond this platform remained to be so far in the dust of gray literature. On the other hand the rapid growing interest for computer applications and tools rediscovered the working area of 1:1 simulation more or less the other way around. Although the term VR in the nineties was strongly occupied by computer-interfaces resp. -representations, soon the insight gained in importance that reality is by far more complex than some 10.000 polygons. Furthermore, some kind of unproductive competition resp. defense of good old modeling tra-ditions versus promising computer technology seemed to act as the main activity. However, the fusion of Virtual and Full-Scale Mo-de-ling could indefinitely serve as a promising field of research.
series CAADRIA
email
last changed 2022/06/07 07:59

_id 7134
id 7134
authors Penttilä, Hannu (Ed.)
year 2001
title Architectural Information Management [Conference Proceedings]
doi https://doi.org/10.52842/conf.ecaade.2001
source 19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1 / Helsinki (Finland) 29-31 August 2001, 578 p.
summary Several common phrases, such as “information society” or “virtual reality” point out the fact that information technology, digital tools and numerous different services via various communication networks have become crucially important factors of our western lifestyle and living environment. The trends of the society reflects naturally the working environments of the construction field, architectural discipline being amongst them. It is almost inconceivable to even imagine an architect without computer-based tools anymore. This evolutional development process has, from historical perspective, only recently started. The process is constantly evolving and rapidly increasing our possibilities to use and enjoy these modern digital fruits. The sometimes unpredictable and rapid changes in our working environment should make architects nervous about the impacts of the changes. All those delicate methods and collective traditions of the several thousand year architectural discipline(!), just simply cannot be transferred into the digital realm in a few decades. Researchers and teachers should very carefully, but still open mindedly, critically explore, analyse and adjust the so-called “modern technology” into the world of architecture, construction, design, planning – and education. We are not just “endusers”, It is we, in fact, who should define what, where and how are we willing to use it(IT). The value of information is constantly growing in our society, and in the future it will evidently be even more so. The value of information is quite hard to define with measurable or agreed concepts, but information evidently contains value-factors. The information which the architects are creating, modifying and manipulating, contains essential and valuable core data concerning the whole built environment of our society. It affects the physical surroundings of our society, in which we will be living for decades – hence, the information has a historical basis. The architectural core information also very strongly affects the quality of life of our fellow citizens – consequently, it has deep social meaning. The essentials of architectural information relies on the tradition of centuries – hence, it clearly has acknowledged cultural values, which are also extremely difficult to quantify. So how could architectural information be described? The information covers a wide range of heterogeneous concepts, items, values, methods, tools, materials, true facts, rumours, intuition and knowledge, plus a multitude of yet undefined or unpredictable factors, which still have to be watched and prepared for. Since the information deals with common and general subjects, it should also be described with common and general concepts. On the other hand as the information is also concerned with the minutiae of specific projects, the architectural information should also be described with well identified and unique entities. With our digital tools we handle all information – including architectural – more and more digitally. We have to handle and manipulate information currently as digital data, which could be understood the ”raw material” of architectural information. Digital data becomes valuable information, when some kind of meaning or purpose to somebody can be attributed to it. In the early gloomy days of ”digital architecture” in the 1960’s and 1970’s, researchers tried to describe architectural artefacts and even design process mathematically. The details of architectural information were quite difficult to describe with binary alphanumeric information of main-frame machines. The architects’ tools development then led to a trend where architects could better represent and visualize the design objects digitally. The widespread and common use of 2D-drawing and 3D-modelling tools is still a very strong trend within our discipline. In fact it is “the way” the majority of architectural information is managed today. During the last 15–20 years, so-called conceptual modelling or product data modelling, done in various technical and construction field research units worldwide, has from one viewpoint clarified the basis and essence of architectural information. Hence, it’s not only CAD-software application development, but also elementary and theoretical research that gives us valuable help to survive among the ever growing seas of terabits of data in the future to come. Architectural information is something that simply cannot be described just with DWG-drawings or dummy scanned photographs any more. Although drawings and photos may contain very important bits of architectural documentation, we need ntimes more “complexity layers”, concepts and tools to manage and understand the essence of architectural information today. A proper way to manage the data we are working with, has to cover the whole architectural discipline. The methods and tools also have to be valid and flexible for several decades in the future.
keywords Information Management & Data Structuring, Education & Curricula, Modeling & City Planning
series eCAADe
email
more http://www.hut.fi/events/ecaade/
last changed 2022/06/07 07:49

_id e7e7
authors Popova, M., Johansson, P. and Lindgren, H.
year 2001
title Case-based Reasoning in Collaborative Design: The role of product models and information structures
doi https://doi.org/10.52842/conf.ecaade.2001.092
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 92-97
summary This paper discusses methods for information management through the rational application of IT within collaborative design. We explore the possible integration of the platforms of case-based reasoning and information structures. We examine the potential combination of existing techniques (CAD-tools, word processors, general applications, WWW) and standards (IFC, national classification systems) into a system for information management. We focus on the designers’ use of heterogeneous information and the further development of a prototype based on product-model and process-model technology. Today, XML helps us structure various kinds of information before the system performs case-based reasoning sessions. The aim is to promote efficient and flexible information management in a casebased design process. Through the use of standardized product models, this information will be sharable and suitable for reuse and feedback. The more often the information is reused, the more general and adaptable it becomes i.e. it evolves. This scenario requires, though, efficient information management in the design office: a quality system for evaluating the information for reuse, consequent use of standardized product models and IT.
keywords Case-Based Reasoning, Product Models, Information Structures, Collaborative Design And Construction Process
series eCAADe
last changed 2022/06/07 08:00

_id cd85
authors Rall, Juan Carlos
year 2001
title EL INVALORABLE APORTE DEL PIXEL AL ANÁLISIS DINÁMICO URBANO (The Invaluable Contribution of the Pixel to the Urban Dynamic Analysis)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 328-330
summary Cities are growing out of control and with unforeseen complexity, with a lavish energy waste and an increasing life-quality loss. A possible approach to cope with these difficulties is the use of Urban Dynamic Analysis, a multidisciplinary body of knowledge allowing the holistic study of time-relationships between city structures and their related distinctive functions. A set of computer-aided tools is being developed following these guidelines. They are intended for the assessment of the behaviour of morphological layouts as regards to energy saving. Three such tools are described, using different pixel-counting approaches in order to simplify and facilitate their use.
series SIGRADI
email
last changed 2016/03/10 09:58

_id 4112
authors Raposo, M., Sampio, M. and Raposo, P.
year 2001
title A City Simulator
doi https://doi.org/10.52842/conf.acadia.2001.052
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 052-061
summary This paper presents a new computer model for city skyline simulation. It works by shaping medium and high-rise buildings to their best performance. This new tool was conceived to simulate and analyze cities where tall buildings are emerging on pre-existing urban schemes with irregular geometry and where inter-building spacing is proportional to the height of built blocks. The model is based on two main inputs, namely: the description of the network formed by land subdivision of the actual or irregular urban schemes, and the building regulations quantitative parameters based on solar obstruction angles and maximum usability rates. By combining data from these inputs, the computer model presents the dimensions of the building envelop for maximum profitability of each plot. That way the architect will immediately know the number of floors that leads to the maximum built area, for certain plots. In addition to this, the built blocks images are presented in the screen, as well as corresponding tables and Cartesian graphs. Furthermore, this model can also be used for analyzing city skyline for large urban areas. This analysis can range from a mere visual inspection of the variety of images built blocks will take under different legal constraints, to a more intricate analysis of how city skyline and built area, amongst others, are affected by different the regulations.
keywords Computing City Shape, Land use performance, Computing city skyline, Urban network design, Computing City Architecture.
series ACADIA
email
last changed 2022/06/07 08:00

_id 0767
authors Ries, Robert and Mahdavi, Ardeshir
year 2001
title Evaluation of Design Performance through Regional Environmental Simulation
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 629-642
summary Computational building simulation tools have historically viewed buildings as artefacts isolated and disconnected from their contexts. At most, the external environmental conditions have been viewed as outside influences or stressors encapsulated in, for example, weather files for energy simulation or sky models for lighting simulation. In the field of environmental assessment, life cycle analysis (LCA) has followed a similar path of isolating the artefact under analysis from its context. Modeling the building artefact as a participant in multiple contexts over time so that the interactions and dependencies between the regions and the building can be adequately explored in the design process requires support for the modeling of regional areas, as well as the artefact and the related life cycle processes. Using computational design and evaluation tools can provide the computing capability required for effective design decision support. This paper presents the implementation of the affordance impact assessment method and the regional environmental simulation in Ecologue. Ecologue is the computational tool for life cycle environmental impact assessment in the SEMPER integrated building design and simulation system. Ecologue contains a building model and an environmental model. The building model is automatically derived from the shared building model of the SEMPER system. The environmental model is a combination of a representation of the processes and emissions occurring in the life cycle of buildings and an impact assessment model. The impact assessment model is a combination of a context model of the physical characteristics of a region and a sub-regional fate and transport model based on the fugacity concept.
keywords Environmental Simulation, Design Decision Support, Life Cycle Analysis
series CAAD Futures
email
last changed 2006/11/07 07:22

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 35HOMELOGIN (you are user _anon_173323 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002