CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id avocaad_2001_20
id avocaad_2001_20
authors Shen-Kai Tang
year 2001
title Toward a procedure of computer simulation in the restoration of historical architecture
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the field of architectural design, “visualization¨ generally refers to some media, communicating and representing the idea of designers, such as ordinary drafts, maps, perspectives, photos and physical models, etc. (Rahman, 1992; Susan, 2000). The main reason why we adopt visualization is that it enables us to understand clearly and to control complicated procedures (Gombrich, 1990). Secondly, the way we get design knowledge is more from the published visualized images and less from personal experiences (Evans, 1989). Thus the importance of the representation of visualization is manifested.Due to the developments of computer technology in recent years, various computer aided design system are invented and used in a great amount, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and collaboration, etc. (Lawson, 1995; Liu, 1996). The conventional media are greatly replaced by computer media, and the visualization is further brought into the computerized stage. The procedure of visual impact analysis and assessment (VIAA), addressed by Rahman (1992), is renewed and amended for the intervention of computer (Liu, 2000). Based on the procedures above, a great amount of applied researches are proceeded. Therefore it is evident that the computer visualization is helpful to the discussion and evaluation during the design process (Hall, 1988, 1990, 1992, 1995, 1996, 1997, 1998; Liu, 1997; Sasada, 1986, 1988, 1990, 1993, 1997, 1998). In addition to the process of architectural design, the computer visualization is also applied to the subject of construction, which is repeatedly amended and corrected by the images of computer simulation (Liu, 2000). Potier (2000) probes into the contextual research and restoration of historical architecture by the technology of computer simulation before the practical restoration is constructed. In this way he established a communicative mode among archeologists, architects via computer media.In the research of restoration and preservation of historical architecture in Taiwan, many scholars have been devoted into the studies of historical contextual criticism (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000). Clues that accompany the historical contextual criticism (such as oral information, writings, photographs, pictures, etc.) help to explore the construction and the procedure of restoration (Hung, 1995), and serve as an aid to the studies of the usage and durability of the materials in the restoration of historical architecture (Dasser, 1990; Wang, 1998). Many clues are lost, because historical architecture is often age-old (Hung, 1995). Under the circumstance, restoration of historical architecture can only be proceeded by restricted pictures, written data and oral information (Shi, 1989). Therefore, computer simulation is employed by scholars to simulate the condition of historical architecture with restricted information after restoration (Potier, 2000). Yet this is only the early stage of computer-aid restoration. The focus of the paper aims at exploring that whether visual simulation of computer can help to investigate the practice of restoration and the estimation and evaluation after restoration.By exploring the restoration of historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example), this study aims to establish a complete work on computer visualization, including the concept of restoration, the practice of restoration, and the estimation and evaluation of restoration.This research is to simulate the process of restoration by computer simulation based on visualized media (restricted pictures, restricted written data and restricted oral information) and the specialized experience of historical architects (Potier, 2000). During the process of practicing, communicates with craftsmen repeatedly with some simulated alternatives, and makes the result as the foundation of evaluating and adjusting the simulating process and outcome. In this way we address a suitable and complete process of computer visualization for historical architecture.The significance of this paper is that we are able to control every detail more exactly, and then prevent possible problems during the process of restoration of historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 2dba
id 2dba
authors Tasli, S
year 2001
title WHAT DOES COMPUTER AIDED DESIGN OFFER FOR PRODUCING LIVABLE BUILDINGS IN THE 21ST CENTURY?
source Proceedings of the Livable Environments and Architecture International Congress (LIVENARCH 2001). July 4-7, 2001, Trabzon, Turkey, pp. 278-282.
summary Designing livable buildings has always been a major concern for architects but they are often criticized on account of failing in this aim. However, this is not only due to the ignorance of the designers, but also of the complexity of the factors that are essential to design but difficult to incorporate the design process. Buildings are shaped and occupied under several dynamically changing conditions and paper-based media and conventional Computer Aided Design (CAD) tools are inefficient in representing them. This paper aims to discuss the changing role of digital media for architectural design in response to the increasing complexity of design processes. Some proposals, supported by recent technological innovations, are suggested for the future and they are compared with the conventional uses of CAD. It is claimed that in the 21st century, the main advantage of using computers will be to dynamically simulate buildings in time in highly visualized virtual environments to evaluate the future performance of proposed designs. The design model will not only look as if it were real, but it will also “behave” as if it were real so as to provide dynamic and intelligent response. The two key technologies for the development of such modeling, virtual reality and object-oriented programming are addressed and four promising application areas for near future (evaluation of user-building interaction, visualization of environmental factors, construction scheduling, and combined CAD-GIS) are discussed. Some important considerations for the development of dynamically simulated virtual models are analyzed and suggestions are made for further research.

keywords Architectural Design, Dynamic Simulation, and Virtual Environments
series other
type normal paper
email
last changed 2005/12/01 16:02

_id 3386
authors Gavin, L., Keuppers, S., Mottram, C. and Penn, A.
year 2001
title Awareness Space in Distributed Social Networks
source Proceedings of the Ninth International Conference on Computer Aided Architectural Design Futures [ISBN 0-7923-7023-6] Eindhoven, 8-11 July 2001, pp. 615-628
summary In the real work environment we are constantly aware of the presence and activity of others. We know when people are away from their desks, whether they are doing concentrated work, or whether they are available for interaction. We use this peripheral awareness of others to guide our interactions and social behaviour. However, when teams of workers are spatially separated we lose 'awareness' information and this severely inhibits interaction and information flow. The Theatre of Work (TOWER) aims to develop a virtual space to help create a sense of social awareness and presence to support distributed working. Presence, status and activity of other people are made visible in the theatre of work and allow one to build peripheral awareness of the current activity patterns of those who we do not share space with in reality. TOWER is developing a construction set to augment the workplace with synchronous as well as asynchronous awareness. Current, synchronous activity patterns and statuses are played out in a 3D virtual space through the use of symbolic acting. The environment itself however is automatically constructed on the basis of the organisation's information resources and is in effect an information space. Location of the symbolic actor in the environment can therefore represent the focus of that person's current activity. The environment itself evolves to reflect historic patterns of information use and exchange, and becomes an asynchronous representation of the past history of the organisation. A module that records specific episodes from the synchronous event cycle as a Docudrama forms an asynchronous information resource to give a history of team work and decision taking. The TOWER environment is displayed using a number of screen based and ambient display devices. Current status and activity events are supplied to the system using a range of sensors both in the real environment and in the information systems. The methodology has been established as a two-stage process. The 3D spatial environment will be automatically constructed or generated from some aspect of the pre-existing organisational structure or its information resources or usage patterns. The methodology must be extended to provide means for that structure to grow and evolve in the light of patterns of actual user behaviour in the TOWER space. We have developed a generative algorithm that uses a cell aggregation process to transcribe the information space into a 3d space. In stage 2 that space was analysed using space syntax methods (Hillier & Hanson, 1984; Hillier 1996) to allow the properties of permeability and intelligibility to be measured, and then these fed back into the generative algorithm. Finally, these same measures have been used to evaluate the spatialised behaviour that users of the TOWER space show, and will used to feed this back into the evolution of the space. The stage of transcription from information structure to 3d space through a generative algorithm is critical since it is this stage that allows neighbourhood relations to be created that are not present in the original information structure. It is these relations that could be expected to help increase social density.
keywords Algorithmic Form Generation, Distributed Workgroups, Space Syntax
series CAAD Futures
email
last changed 2006/11/07 07:22

_id avocaad_2001_22
id avocaad_2001_22
authors Jos van Leeuwen, Joran Jessurun
year 2001
title XML for Flexibility an Extensibility of Design Information Models
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The VR-DIS research programme aims at the development of a Virtual Reality – Design Information System. This is a design and decision support system for collaborative design that provides a VR interface for the interaction with both the geometric representation of a design and the non-geometric information concerning the design throughout the design process. The major part of the research programme focuses on early stages of design. The programme is carried out by a large number of researchers from a variety of disciplines in the domain of construction and architecture, including architectural design, building physics, structural design, construction management, etc.Management of design information is at the core of this design and decision support system. Much effort in the development of the system has been and still is dedicated to the underlying theory for information management and its implementation in an Application Programming Interface (API) that the various modules of the system use. The theory is based on a so-called Feature-based modelling approach and is described in the PhD thesis by [first author, 1999] and in [first author et al., 2000a]. This information modelling approach provides three major capabilities: (1) it allows for extensibility of conceptual schemas, which is used to enable a designer to define new typologies to model with; (2) it supports sharing of conceptual schemas, called type-libraries; and (3) it provides a high level of flexibility that offers the designer the opportunity to easily reuse design information and to model information constructs that are not foreseen in any existing typologies. The latter aspect involves the capability to expand information entities in a model with relationships and properties that are not typologically defined but applicable to a particular design situation only; this helps the designer to represent the actual design concepts more accurately.The functional design of the information modelling system is based on a three-layered framework. In the bottom layer, the actual design data is stored in so-called Feature Instances. The middle layer defines the typologies of these instances in so-called Feature Types. The top layer is called the meta-layer because it provides the class definitions for both the Types layer and the Instances layer; both Feature Types and Feature Instances are objects of the classes defined in the top layer. This top layer ensures that types can be defined on the fly and that instances can be created from these types, as well as expanded with non-typological properties and relationships while still conforming to the information structures laid out in the meta-layer.The VR-DIS system consists of a growing number of modules for different kinds of functionality in relation with the design task. These modules access the design information through the API that implements the meta-layer of the framework. This API has previously been implemented using an Object-Oriented Database (OODB), but this implementation had a number of disadvantages. The dependency of the OODB, a commercial software library, was considered the most problematic. Not only are licenses of the OODB library rather expensive, also the fact that this library is not common technology that can easily be shared among a wide range of applications, including existing applications, reduces its suitability for a system with the aforementioned specifications. In addition, the OODB approach required a relatively large effort to implement the desired functionality. It lacked adequate support to generate unique identifications for worldwide information sources that were understandable for human interpretation. This strongly limited the capabilities of the system to share conceptual schemas.The approach that is currently being implemented for the core of the VR-DIS system is based on eXtensible Markup Language (XML). Rather than implementing the meta-layer of the framework into classes of Feature Types and Feature Instances, this level of meta-definitions is provided in a document type definition (DTD). The DTD is complemented with a set of rules that are implemented into a parser API, based on the Document Object Model (DOM). The advantages of the XML approach for the modelling framework are immediate. Type-libraries distributed through Internet are now supported through the mechanisms of namespaces and XLink. The implementation of the API is no longer dependent of a particular database system. This provides much more flexibility in the implementation of the various modules of the VR-DIS system. Being based on the (supposed to become) standard of XML the implementation is much more versatile in its future usage, specifically in a distributed, Internet-based environment.These immediate advantages of the XML approach opened the door to a wide range of applications that are and will be developed on top of the VR-DIS core. Examples of these are the VR-based 3D sketching module [VR-DIS ref., 2000]; the VR-based information-modelling tool that allows the management and manipulation of information models for design in a VR environment [VR-DIS ref., 2000]; and a design-knowledge capturing module that is now under development [first author et al., 2000a and 2000b]. The latter module aims to assist the designer in the recognition and utilisation of existing and new typologies in a design situation. The replacement of the OODB implementation of the API by the XML implementation enables these modules to use distributed Feature databases through Internet, without many changes to their own code, and without the loss of the flexibility and extensibility of conceptual schemas that are implemented as part of the API. Research in the near future will result in Internet-based applications that support designers in the utilisation of distributed libraries of product-information, design-knowledge, case-bases, etc.The paper roughly follows the outline of the abstract, starting with an introduction to the VR-DIS project, its objectives, and the developed theory of the Feature-modelling framework that forms the core of it. It briefly discusses the necessity of schema evolution, flexibility and extensibility of conceptual schemas, and how these capabilities have been addressed in the framework. The major part of the paper describes how the previously mentioned aspects of the framework are implemented in the XML-based approach, providing details on the so-called meta-layer, its definition in the DTD, and the parser rules that complement it. The impact of the XML approach on the functionality of the VR-DIS modules and the system as a whole is demonstrated by a discussion of these modules and scenarios of their usage for design tasks. The paper is concluded with an overview of future work on the sharing of Internet-based design information and design knowledge.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 7134
id 7134
authors Penttilä, Hannu (Ed.)
year 2001
title Architectural Information Management [Conference Proceedings]
source 19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1 / Helsinki (Finland) 29-31 August 2001, 578 p.
doi https://doi.org/10.52842/conf.ecaade.2001
summary Several common phrases, such as “information society” or “virtual reality” point out the fact that information technology, digital tools and numerous different services via various communication networks have become crucially important factors of our western lifestyle and living environment. The trends of the society reflects naturally the working environments of the construction field, architectural discipline being amongst them. It is almost inconceivable to even imagine an architect without computer-based tools anymore. This evolutional development process has, from historical perspective, only recently started. The process is constantly evolving and rapidly increasing our possibilities to use and enjoy these modern digital fruits. The sometimes unpredictable and rapid changes in our working environment should make architects nervous about the impacts of the changes. All those delicate methods and collective traditions of the several thousand year architectural discipline(!), just simply cannot be transferred into the digital realm in a few decades. Researchers and teachers should very carefully, but still open mindedly, critically explore, analyse and adjust the so-called “modern technology” into the world of architecture, construction, design, planning – and education. We are not just “endusers”, It is we, in fact, who should define what, where and how are we willing to use it(IT). The value of information is constantly growing in our society, and in the future it will evidently be even more so. The value of information is quite hard to define with measurable or agreed concepts, but information evidently contains value-factors. The information which the architects are creating, modifying and manipulating, contains essential and valuable core data concerning the whole built environment of our society. It affects the physical surroundings of our society, in which we will be living for decades – hence, the information has a historical basis. The architectural core information also very strongly affects the quality of life of our fellow citizens – consequently, it has deep social meaning. The essentials of architectural information relies on the tradition of centuries – hence, it clearly has acknowledged cultural values, which are also extremely difficult to quantify. So how could architectural information be described? The information covers a wide range of heterogeneous concepts, items, values, methods, tools, materials, true facts, rumours, intuition and knowledge, plus a multitude of yet undefined or unpredictable factors, which still have to be watched and prepared for. Since the information deals with common and general subjects, it should also be described with common and general concepts. On the other hand as the information is also concerned with the minutiae of specific projects, the architectural information should also be described with well identified and unique entities. With our digital tools we handle all information – including architectural – more and more digitally. We have to handle and manipulate information currently as digital data, which could be understood the ”raw material” of architectural information. Digital data becomes valuable information, when some kind of meaning or purpose to somebody can be attributed to it. In the early gloomy days of ”digital architecture” in the 1960’s and 1970’s, researchers tried to describe architectural artefacts and even design process mathematically. The details of architectural information were quite difficult to describe with binary alphanumeric information of main-frame machines. The architects’ tools development then led to a trend where architects could better represent and visualize the design objects digitally. The widespread and common use of 2D-drawing and 3D-modelling tools is still a very strong trend within our discipline. In fact it is “the way” the majority of architectural information is managed today. During the last 15–20 years, so-called conceptual modelling or product data modelling, done in various technical and construction field research units worldwide, has from one viewpoint clarified the basis and essence of architectural information. Hence, it’s not only CAD-software application development, but also elementary and theoretical research that gives us valuable help to survive among the ever growing seas of terabits of data in the future to come. Architectural information is something that simply cannot be described just with DWG-drawings or dummy scanned photographs any more. Although drawings and photos may contain very important bits of architectural documentation, we need ntimes more “complexity layers”, concepts and tools to manage and understand the essence of architectural information today. A proper way to manage the data we are working with, has to cover the whole architectural discipline. The methods and tools also have to be valid and flexible for several decades in the future.
keywords Information Management & Data Structuring, Education & Curricula, Modeling & City Planning
series eCAADe
email
more http://www.hut.fi/events/ecaade/
last changed 2022/06/07 07:49

_id 6a02
id 6a02
authors Tan, Beng-Kiang
year 2001
title Visualizing Building Occupancy Pattern on Campus
source Reinventing the Discourse - How Digital Tools Help Bridge and Transform Research, Education and Practice in Architecture [Proceedings of the Twenty First Annual Conference of the Association for Computer-Aided Design in Architecture / ISBN 1-880250-10-1] Buffalo (New York) 11-14 October 2001, pp. 398-404
doi https://doi.org/10.52842/conf.acadia.2001.398
summary This paper addresses the problem of information opacity that planners and university administrators have when they have multiple sets of data that are not interconnected and how these data can be visualized. The visualization of building occupancy pattern on campus is used as an example to illustrate how this general problem can be addressed through a database driven effective visualization that supports decision-making. This paper proposes a solution using web-based 3D Virtual Reality Modeling Language (VRML) animation dynamically generated from a database and describes a prototype in progress. The prototype displays a broad overview of building occupancy patterns across campus through 3D animation of occupancy over time. From the overview, users can navigate further to find out the details of occupancy throughout the day for specific buildings on campus.
keywords Visualization, VRML, Animation, Campus Population, Information Visualization
series ACADIA
email
last changed 2022/06/07 07:56

_id a469
authors Brown, Andre and Berridge, Phil
year 2001
title Games One : Two : Three A triangle of virtual game scenarios for architectural collaboration
source Stellingwerff, Martijn and Verbeke, Johan (Eds.), ACCOLADE - Architecture, Collaboration, Design. Delft University Press (DUP Science) / ISBN 90-407-2216-1 / The Netherlands, pp. 95-120 [Book ordering info: m.c.stellingwerff@bk.tudelft.nl]
summary This paper is split into three parts, each of which deals with different aspects of, and approaches to, the collaboration process. Each of the approaches shares a common root in an aspect of games or gaming. Together the three approaches represent a tripartite attack on the spectrum of problems that need to be addressed to achieve successful collaboration. The first technique is dealt with in Game One One. This deals with the issue of encouraging collaboration. It is based on work using a role playing game scenario and is intended to allow construction industry professionals and clients to develop a common framework for discussion. It originally existed as a paper based game and is now being tested in a web-based environment. Game Two is based on work that has evolved from contemporary game and meeting place environments that have been attracting attention recently. Here internet-based three-dimensional worlds are used as a virtual replacement of real spaces and participants meet as avatars. In the architectural context we have investigated the potential for application of such 3D worlds as meeting, and discussion places where architectural information and ideas can be exchanged. In Game Three we take the idea that currently, virtual environments are still rather uncomfortable and unnatural in terms of human interaction, and in particular in the way that we move around and display architectural scenes. We develop the idea that games software incorporates techniques that make the representation of animated, interactive 3D architectural environments computationally efficient. We have augmented the software used in games environments and have considered how we construct architectural models and man-machine interfaces to improve the effectiveness of such environments in an architectural context.
series other
email
last changed 2001/09/14 21:30

_id e693
authors Caneparo, Luca
year 2001
title Shared virtual reality for design and management: the Porta Susa project
source Automation in Construction 10 (2) (2001) pp. 217-228
summary The paper presents the implementation of a system of Shared Virtual Reality (SVR) in Internet applied to a large-scale project. The applications of SVR to architectural and urban design are presented in the context of a real project, the new railway junction of Porta Susa and the surrounding urban area in the city centre of Turin, Italy. SVR differs from Virtual Reality (VR) in that the experience of virtual spaces is no longer individual, but rather shared across the Internet with other users simultaneously connected. SVR offers an effective approach to Construction Data Model and Computer Supported Collaborative Work, because it integrates both the communicative tools to improve collaboration and the distributed environment to process information across the networks.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id avocaad_2001_02
id avocaad_2001_02
authors Cheng-Yuan Lin, Yu-Tung Liu
year 2001
title A digital Procedure of Building Construction: A practical project
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In earlier times in which computers have not yet been developed well, there has been some researches regarding representation using conventional media (Gombrich, 1960; Arnheim, 1970). For ancient architects, the design process was described abstractly by text (Hewitt, 1985; Cable, 1983); the process evolved from unselfconscious to conscious ways (Alexander, 1964). Till the appearance of 2D drawings, these drawings could only express abstract visual thinking and visually conceptualized vocabulary (Goldschmidt, 1999). Then with the massive use of physical models in the Renaissance, the form and space of architecture was given better precision (Millon, 1994). Researches continued their attempts to identify the nature of different design tools (Eastman and Fereshe, 1994). Simon (1981) figured out that human increasingly relies on other specialists, computational agents, and materials referred to augment their cognitive abilities. This discourse was verified by recent research on conception of design and the expression using digital technologies (McCullough, 1996; Perez-Gomez and Pelletier, 1997). While other design tools did not change as much as representation (Panofsky, 1991; Koch, 1997), the involvement of computers in conventional architecture design arouses a new design thinking of digital architecture (Liu, 1996; Krawczyk, 1997; Murray, 1997; Wertheim, 1999). The notion of the link between ideas and media is emphasized throughout various fields, such as architectural education (Radford, 2000), Internet, and restoration of historical architecture (Potier et al., 2000). Information technology is also an important tool for civil engineering projects (Choi and Ibbs, 1989). Compared with conventional design media, computers avoid some errors in the process (Zaera, 1997). However, most of the application of computers to construction is restricted to simulations in building process (Halpin, 1990). It is worth studying how to employ computer technology meaningfully to bring significant changes to concept stage during the process of building construction (Madazo, 2000; Dave, 2000) and communication (Haymaker, 2000).In architectural design, concept design was achieved through drawings and models (Mitchell, 1997), while the working drawings and even shop drawings were brewed and communicated through drawings only. However, the most effective method of shaping building elements is to build models by computer (Madrazo, 1999). With the trend of 3D visualization (Johnson and Clayton, 1998) and the difference of designing between the physical environment and virtual environment (Maher et al. 2000), we intend to study the possibilities of using digital models, in addition to drawings, as a critical media in the conceptual stage of building construction process in the near future (just as the critical role that physical models played in early design process in the Renaissance). This research is combined with two practical building projects, following the progress of construction by using digital models and animations to simulate the structural layouts of the projects. We also tried to solve the complicated and even conflicting problems in the detail and piping design process through an easily accessible and precise interface. An attempt was made to delineate the hierarchy of the elements in a single structural and constructional system, and the corresponding relations among the systems. Since building construction is often complicated and even conflicting, precision needed to complete the projects can not be based merely on 2D drawings with some imagination. The purpose of this paper is to describe all the related elements according to precision and correctness, to discuss every possibility of different thinking in design of electric-mechanical engineering, to receive feedback from the construction projects in the real world, and to compare the digital models with conventional drawings.Through the application of this research, the subtle relations between the conventional drawings and digital models can be used in the area of building construction. Moreover, a theoretical model and standard process is proposed by using conventional drawings, digital models and physical buildings. By introducing the intervention of digital media in design process of working drawings and shop drawings, there is an opportune chance to use the digital media as a prominent design tool. This study extends the use of digital model and animation from design process to construction process. However, the entire construction process involves various details and exceptions, which are not discussed in this paper. These limitations should be explored in future studies.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 89fe
authors Ferrar, Steve
year 2001
title The Nature of Non-Physical Space - Or how I learned to love cyberspace wherever it may be
source Architectural Information Management [19th eCAADe Conference Proceedings / ISBN 0-9523687-8-1] Helsinki (Finland) 29-31 August 2001, pp. 208-213
doi https://doi.org/10.52842/conf.ecaade.2001.208
summary More designers are concerned with the occupation of the virtual world, through immersive techniques, for example, than in using it as a means for conceptualising and theorising architectural space. The paper examines how architects think about space and how our consideration of nonphysical space might assist in spatial theory and in teaching. It also considers cyberspace fiction both in writing and film to see how it might help us think about space in a more liberating way. Architects and architectural teaching tends to focus on space as an element of construction rather than a theoretical proposition. By discussing imaginary spaces in greater depth we could encourage students to think about space and spatial concepts in a less rigid way. In particular the paper addresses the issues of interaction and transactions in these environments and how information is represented and accessed in an apparently threedimensional manner. In his book ‘Snow Crash’, Neil Stephenson deals with many ideas concerning not only architectural space but also universal space and its organisation in space and time. He uses metaphor in his depiction of the ultimate in information gathering and management. These are compelling ways in which to communicate ideas about threedimensional thinking, and information collection and management to students of architecture as well as helping architects with the theory and visualisation of non-physical space.
keywords Space: Virtual Reality, Cyberspace, Film, Literature
series eCAADe
email
last changed 2022/06/07 07:56

_id 100d
authors Hadikusumo, B.H.W. and Rowlinson, S.
year 2001
title Development of a virtually real construction site - design for safety
source CIDAC, Volume 3 Issue 2 May 2001
summary Interpreting two-dimensional drawings presents problems for builders since they are required to transfer these into three-dimensional mental images. Virtual Reality (VR) technology has several advantages. One is that it can be used to solve the problem of image transfer since VR supports a What-You-See-Is-What-You-Get object together with a binocular effect, improving users' visual sense. Another advantage of VR is the capability to present a real time dynamic simulation, which can be used to represent construction processes. By representing virtually real construction components and processes, users can walk through the virtual project. Using his/her safety knowledge, he/she can identify safety hazards inherent within the virtually real construction components and processes and determine the appropriate safety precautions to employ to make the virtual construction site safe.

This hazard identification process can be better achieved if a guideline is provided. Therefore, a Design-For-Safety-Process (DFSP) guideline is developed to assist users to identify safety hazards as well as to recommend remedial safety measures. This paper discusses how virtual reality benefits the construction industry in terms of a design representation. In addition, important issues in developing virtually real construction components and processes as well as functions of virtual reality which are needed to support the DFSP are discussed.

series journal paper
last changed 2003/05/15 20:36

_id 7853
authors Low, Boon Kee and Sloan, Brian
year 2001
title A perspective on the digital interactive service industry for building professionals
source Automation in Construction 10 (2) (2001) pp. 229-237
summary The digital interactive service industry has the potential to generate innovation and strategic advantage for existing business if the underlying dynamics of the emerging industry are fostered through appropriate understanding and strategic actions. This paper puts in perspective the fundamentals affecting the creation of new interactive services for building professions. The fundamentals reviewed include issues related to acquiring new skills as well as establishing market and user needs. In addition, recent advent of the industry has resulted in various new business models being utilised not only for business process improvement but also more strategically for market penetration and business expansion. Through the use of three examples viz. interactive content studio, content rights intermediary and virtual community, this paper investigates the current and potential impacts of these new models upon the businesses within the building sectors.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ce55
authors Muñoz Pereira, Leonardo
year 2001
title LA INDUSTRIA DE LA CONSTRUCCION COMO CADENA DE VALOR (The Construction Industry in the Value Chain)
source SIGraDi biobio2001 - [Proceedings of the 5th Iberoamerican Congress of Digital Graphics / ISBN 956-7813-12-4] Concepcion (Chile) 21-23 november 2001, pp. 288-290
summary In the ever-changing “new economy”, buildings are among the few capital goods that are actually left. The Construction Industry drives a very high level of resources, marking the paths of the economy. It is, however, a non-integrated process, with few or none sinergies and with a relatively ambiguous relationship with technology. Moreover, we architects have limited ourselves the role we play, concentrating more in representation than in the work as a whole. The proposal wants to conceive our work as a long-term Strategic Alliance between several actors around the building: Customers / Manufacturers / Vendors / Architects / Specialty Engineers / Builders / Contractors / Managers / Supporters / Users, and so on We are facing a historic opportunity to clarify the relationship of our Industry with technology, allowing it to gain its true dimension on this century. Besides, this will re-define the role of the architect in the Industry: we will evolve from designers, project-oriented, to be creators, owners and managers of “Virtual Buildings” that manage, coordinate and give value to the building as an integrated process, and co-exist with it along its lifecycle.
series SIGRADI
email
last changed 2016/03/10 09:55

_id avocaad_2001_19
id avocaad_2001_19
authors Shen-Kai Tang, Yu-Tung Liu, Yu-Sheng Chung, Chi-Seng Chung
year 2001
title The visual harmony between new and old materials in the restoration of historical architecture: A study of computer simulation
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary In the research of historical architecture restoration, scholars respectively focus on the field of architectural context and architectural archeology (Shi, 1988, 1990, 1991, 1992, 1995; Fu, 1995, 1997; Chiu, 2000) or on architecture construction and the procedure of restoration (Shi, 1988, 1989; Chiu, 1990). How to choose materials and cope with their durability becomes an important issue in the restoration of historical architecture (Dasser, 1990; Wang, 1998).In the related research of the usage and durability of materials, some scholars deem that, instead of continuing the traditional ways that last for hundreds of years (that is to replace new materials with old ones), it might be better to keep the original materials (Dasser, 1990). However, unavoidably, some of the originals are much worn. Thus we have to first establish the standard of eliminating components, and secondly to replace identical or similar materials with the old components (Lee, 1990). After accomplishing the restoration, we often unexpectedly find out that the renewed historical building is too new that the sense of history is eliminated (Dasser, 1990; Fu, 1997). Actually this is the important factor that determines the accomplishment of restoration. In the past, some scholars find out that the contrast and conflict between new and old materials are contributed to the different time of manufacture and different coating, such as antiseptic, pattern, etc., which result in the discrepancy of the sense of visual perception (Lee, 1990; Fu, 1997; Dasser, 1990).In recent years, a number of researches and practice of computer technology have been done in the field of architectural design. We are able to proceed design communication more exactly by the application of some systematic softwares, such as image processing, computer graphic, computer modeling/rendering, animation, multimedia, virtual reality and so on (Lawson, 1995; Liu, 1996). The application of computer technology to the research of the preservation of historical architecture is comparatively late. Continually some researchers explore the procedure of restoration by computer simulation technology (Potier, 2000), or establish digital database of the investigation of historical architecture (Sasada, 2000; Wang, 1998). How to choose materials by the technology of computer simulation influences the sense of visual perception. Liu (2000) has a more complete result on visual impact analysis and assessment (VIAA) about the research of urban design projection. The main subjects of this research paper focuses on whether the technology of computer simulation can extenuate the conflict between new and old materials that imposed on visual perception.The objective of this paper is to propose a standard method of visual harmony effects for materials in historical architecture (taking the Gigi Train Station destroyed by the earthquake in last September as the operating example).There are five steps in this research: 1.Categorize the materials of historical architecture and establish the information in digital database. 2.Get new materials of historical architecture and establish the information in digital database. 3.According to the mixing amount of new and old materials, determinate their proportion of the building; mixing new and old materials in a certain way. 4.Assign the mixed materials to the computer model and proceed the simulation of lighting. 5.Make experts and the citizens to evaluate the accomplished computer model in order to propose the expected standard method.According to the experiment mentioned above, we first address a procedure of material simulation of the historical architecture restoration and then offer some suggestions of how to mix new and old materials.By this procedure of simulation, we offer a better view to control the restoration of historical architecture. And, the discrepancy and discordance by new and old materials can be released. Moreover, we thus avoid to reconstructing ¡§too new¡¨ historical architecture.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id avocaad_2001_07
id avocaad_2001_07
authors Stefan Wrona, Adam Gorczyca
year 2001
title Complexity in Architecture - How CAAD can be involved to Deal with it. - "Duality"
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary “Complexity “ is for us a very ambigous notion. It may be understood in two contexts.1.Thorough solution of a problem.Complexity means full recognition of design area, followed by appropriate work. That work must be thorough and interdisciplinary – if necessary, separated to different co-operatives. These trade designers reqiure a branch coordination and – the most important- all of them must have a „common denominator”. Such as a proper CAAD platform and office standards. That will reduce costs of changes, improve an interplay between designers and somtimes enable to face up a new challenge.Nowadays architects are no longer “solitary” individualists working alone – they must concern a team – they become a member, a part of a huge design machine. “Import/export”, compatibility, interplay – these words must appear and we have to put a stress on them. How to organize work for different trade-designers? How to join in common database architectural design ,engineering design, HVAC design, electricity design, technology design, computer network design and all other trades ?...A key to solve this range of problems is in good work organization. Universal prescription does not exist, but some evergreen rules can be observed. We are going to present a scheme of work in CAAD application ALLPLAN FT v.16 with a Group manager , which starts to conquest polish market and is widely spread in Germany. “Golden rules” of ALLPLAN FT There is one database – it is placed on server. It includes all projects. There is a well-developed office standard. It must be created at the beginning of collaboration, although it is possible to improve it later. It consist of hatches, fonts, symbols, macros, materials, pen-widths, and – the most important –layers . A layer set – predefined structure divided into functional groups – e.g. drafting, text, dimensioning, architecture, HVAC, engineering, urban design, etc.That stucture is a part of an office standard – all workers use a relevant part of it. No name duplicates, no misunderstandings... If however design extends, and a new group of layers is required, it can be easily added, e.g. computer networks, fireguard systems. Administrator of ALLPLAN network defines different users and gives them different permitions of access. For example – an electrician will be able to draft on layer “electricity”, but he won’t modify anything at layer “architecture – walls”, and he won’t even see a layer “engineering- slabs”, because he doesn’t need it..At the same time our electrician will be able to see , how architect moves some walls and how HVAC moved and started to cross with his wires. Every user is able to see relevant changes, after they are saved by author. Two different users can not access at the same time the same file. That excludes inconsistent or overlapping changes . All users operate on a 3D model. While putting some data into a model, they must remember about a “Z” coordinate at work-storey. But at the same time all create a fully-integrated, synchronous database, which can be used later for bills of quantities, specifications, and – of course – for visuaisation. That method can be described as “model-centric”. To simplify complex structure of architectural object -ALLPLAN offers files. Usually one file means one storey, but at special designs it might become a functional part of a storey, or whatever you wish. Files connected with layers easy enable to separate certain structural elements, e.g. if we want to glance only at concrete slabs and columns in the building – we will turn on all files with “layer filter” – “slabs” and “columns”. ALLPLAN is of course one of possible solutions. We described it , because we use it in our workshop. It seems to be stretchy enough to face up every demand and ever-increasing complexity of current projects. The essence of the matter, however, is not a name or version of application – it is a set of features, we mentioned above, which allows to deal with EVERY project. The number of solutions is infinite.2. Increasing difficulties during design process. It may be associated with more and more installations inside of new buildings, especially some “high-tech” examples. The number of these installations increases as well as their complexity. Now buildings are full of sensors, video-screens, computer networks, safety-guard systems... Difficulties are connected with some trends in contemporary architecture, for example an organic architecture, which conceives “morphed” shapes, “moving” surfaces, “soft” solids. This direction is specially supported by modelling or CAD applications. Sometimes it is good – they allow to realize all imaginations, but often they lead to produce “unbuildable” forms, which can exist only in virtual world.Obstacles appear, when we design huge cubatures with “dense” functional scheme. Multi-purposed objects, exhibition halls, olimpic stadium at Sydney – all of them have to be stretchy, even if it requires sliding thousands pound concrete blocks! Requirements were never so high.The last reason, why designs become so complex is obvious - intensifying changes due to specific requirements of clients/developers.We could say “ signum tempori” – everything gets more and more complicated , people have to become specialists, to face up new technology. But how CAAD can help us with it? How?! We have already answered that question. Sometimes CAAD is the only way to imagine and sketch something, to visualize something, to compute a construction , to prepare a simulation... So that human must “only” interprete ready solutions. Sometimes CAAD help us to notify a problem. It works exactly in the same way, as spy-glasses does. For example – without a real-time visualization we we would have never realised (until finished!) some strange interference of solids, which have occured in the upper roof part of our new appartment-house.ConclusionsTemporary CAAD is an integral part of design process – not only as a tool, but sometimes as an inspiration. It helps to organize our work, to define problems, to filter relevant elements and to render our visions. It becomes an integral part of our senses – and that will be a real complexity in architecture...
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 793a
authors Turk, Ziga
year 2001
title Multimedia: providing students with real world experiences
source Automation in Construction 10 (2) (2001) pp. 247-255
summary Multimedia has been quickly accepted by the engineering community. In the first part of the paper, the author provides a theoretical explanation why multimedia is popular in engineering: because it tries to provide an artificial "being-in-the-world" experience. This explanation is backed-up by Heidegger's philosophy and Winogard's critique of artificial intelligence (AI). Heidegger believed that humans basically act pre-reflectively, depending on the situation into which they are thrown. Such decisions are based on common sense and intuitive knowledge accumulated while "being-in-the-world", and particularly during breakdowns. Engineering students have few opportunities to observe breakdowns, however, information technology, particularly virtual reality and multimedia provide them. In the second part of the paper, a system to teach earthquake engineering is presented, based on the principles of breakdown-oriented learning. The system is built around a multimedia database that contains digitised photographs of damages caused by some of the recent major earthquakes. To a large extent, such multimedia tools can replace the learning from real breakdowns and complements theoretical knowledge that can be passed on using traditional means.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id cc97
authors Zhou, Q., Krawczyk, R.J. and Schipporeit, G.
year 2002
title From CAD to iAD - A Web-based Steel Consulting of Steel Construction in Architecture
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 346-349
doi https://doi.org/10.52842/conf.ecaade.2002.346
summary Information technology has become so powerful that what is conventionally called CAD might evolve to iAD (Internet Aided Design) (Zhou 2000). For Internet applications in the AEC industry, most of the efforts and success have been concentrated on project management and collaboration, while in the design and engineering consulting area, limited progress has been made. At the same time, contemporary development has not changed the nature of the fragmentation of the AEC industry. Based on previous research of surveys of development of Internet applications in the AEC industry (Zhou 2001), and the proposal of conceptual model of Internet-based engineering consulting in architecture (Zhou2002), we try to apply these theories and concepts into a specified area, steel construction consulting for architects. In previous research, first of all, we defined the contents and scope of steel construction consulting and their potential application. Second, we proposed a solid working model covering structure organization, audience, services provided and technology. In this research, a web-based application will be out by prototyped by conducting a conceptual design consulting in steel structure in order to show the whole process of how this Internet-based consulting model works.
series eCAADe
email
last changed 2022/06/07 07:57

_id 9c0c
authors Af Klercker, Jonas and HenrichsÈn, Jan
year 2001
title Can simulations in VE support architects in solving complex design problems?
source Stellingwerff, Martijn and Verbeke, Johan (Eds.), ACCOLADE - Architecture, Collaboration, Design. Delft University Press (DUP Science) / ISBN 90-407-2216-1 / The Netherlands, pp. 77-82 [Book ordering info: m.c.stellingwerff@bk.tudelft.nl]
summary Building design is facing development of industrialization of the production on the one hand and more complex 'One of a Kind' products on the other. This will be for rebuilding of a large stock of existing buildings and what can be left to new production. In both cases the results of the design process have to be solid to guarantee a successful product. In both cases an integrated and careful design process is absolutely crucial. The demands on the built environment make the systems of buildings more and more complex and have to be handled by a lot of different expertise. To avoid the 'Relay Race' of today the design teams of tomorrow must work much more integrated. To make integrated solutions, which means simultaneous constrains on all systems, the experts of different fields have to understand more of how all engaged systems relate and influence each other. Communication then consists of complex situations and processes that have to be understood and related to reality. In this aspect a multidimensional Virtual Environment interface has advantages and has been successfully used in design processes in other industries. In this paper the problems that have to be studied are for example Methodical, Conceptual, Technical and Process economical.
series other
email
last changed 2001/09/14 21:30

_id avocaad_2001_18
id avocaad_2001_18
authors Aleksander Asanowicz
year 2001
title The End of Methodology - Towards New Integration
source AVOCAAD - ADDED VALUE OF COMPUTER AIDED ARCHITECTURAL DESIGN, Nys Koenraad, Provoost Tom, Verbeke Johan, Verleye Johan (Eds.), (2001) Hogeschool voor Wetenschap en Kunst - Departement Architectuur Sint-Lucas, Campus Brussel, ISBN 80-76101-05-1
summary The present paper is devoted to the deliberation on the genesis and development of designing from the point of view of the potential use of computers in the process. Moreover, it also presents the great hopes which were connected with the use of the systematic designing methods in the 1960’s, as well as the great disappointment resulting from the lack of concrete results. At this time a great deal of attention was paid to the process of design as a branch of a wider process of problem-solving. Many people believed that the intuitive methods of design traditionally used by architects were incapable of dealing with the complexity of the problems to be solved. Therefore, the basic problem was the definition of a vertical structure of the designing process, which would make it possible to optimise each process of architectural design. The studies of design methodology directed at the codification of the norms of actions have not brought about any solutions which could be commonly accepted, as the efforts to present the designing process as a formally logical one and one that is not internally “uncontrary” from the mathematical point of view, were doomed to fail. Moreover, the difficulties connected with the use of the computer in designing were caused by the lack of a graphic interface, which is so very characteristic of an architect’s workshop. In result, the methodology ceased to be the main area of the architect’s interest and efforts were focused on facilitating the method of the designer’s communication with the computer. New tools were created, which enabled both the automatic generation of diversity and the creation of forms on the basis of genetic algorithms, as well as the presentation of the obtained results in the form of rendering, animation and VRML. This was the end of the general methodology of designing and the beginning of a number of methods solving the partial problems of computer-supported design. The present situation can be described with the words of Ian Stewart as a “chaotic run in all directions”. An immediate need for new integration is felt. Cyber-real space could be a solution to the problem. C-R-S is not a virtual reality understood as an unreal world. Whilst VR could be indeed treated as a sort of an illusion, C-R-S is a much more realistic being, defining the area in which the creative activities are taking place. The architect gains the possibility of having a direct contact with the form he or she is creating. Direct design enables one to creatively use the computer technology in the designing process. The intelligent system of recognising speech, integrated with the system of virtual reality, will allow to create an environment for the designer – computer communication which will be most natural to the person. The elimination of this obstacle will facilitate the integration of the new methods into one designing environment. The theoretical assumptions of such an environment are described in the present paper.
series AVOCAAD
email
last changed 2005/09/09 10:48

_id 0f2b
authors Brown, Andre G.P. and Knight, Michael W.
year 2001
title NAVRgate: Gateways to architectural virtual reality - A review and thought on future directions
source CAADRIA 2001 [Proceedings of the Sixth Conference on Computer Aided Architectural Design Research in Asia / ISBN 1-86487-096-6] Sydney 19-21 April 2001, pp. 195-198
doi https://doi.org/10.52842/conf.caadria.2001.195
summary A core element in the success of a virtual environment is the ease and appropriateness of the navigation process. Navigation is a two part process which consists of a facility for enabling movement [Locomotion] and sensory input to aid the navigator in finding they way around [Cognition]. Our work has focussed on Navigation in Virtual Environments for Architecture and that work is summarised here.
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_800281 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002