CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 306

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

_id ddssup0207
id ddssup0207
authors Geurts, K., Wets, G., Brijs, T. and Vanhoof, K.
year 2002
title The Use of Rule-Based Knowledge Discovery Techniques to Profile Black Spots
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings Avegoor, the Netherlands), 2002
summary In Belgium, traffic safety is currently one of the highest topics on the list of priorities of the government. The identification of black spots and black zones and profiling them in terms of accident related data and location characteristics must provide new insights into the complexity and causes of road accidents which, in turn, provide valuable input for government actions. Data mining is the extraction of information from large amounts of data. The use of data mining algorithms is therefore particularly useful in the context of large datasets on road accidents. In this paper, association rules are used to identify accident circumstances that frequently occur together. The strength of this descriptive approach lies within the definition of different accident types and the identification of relevantvariables that make a strong contribution towards a better understanding of accident circumstances. An analysis of the produced set of rules, describing underlying patterns in the data, indicates that fiveaspects of traffic accidents can be discerned: collision with a pedestrian, collision in parallel, sideways collision, week/weekend accidents and weather conditions. For each of these accident types, different variables play an important role in the occurrence of the accidents.
series DDSS
type normal paper
last changed 2008/11/01 07:38

_id b255
authors Liew, Haldane
year 2002
title Descriptive Conventions for Shape Grammars
doi https://doi.org/10.52842/conf.acadia.2002.365
source Thresholds - Design, Research, Education and Practice, in the Space Between the Physical and the Virtual [Proceedings of the 2002 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-11-X] Pomona (California) 24-27 October 2002, pp. 365-378
summary This paper introduces a new set of descriptive conventions for shape grammars, and illustrates howthey can be used to address problems with user experience. The shape grammar formalism has beenshown to be capable of generating designs such as Palladian villas, Prairie houses and Queen Annehouses. The formalism can describe the process to develop a design through the use of rules, symbols,and lines.The user’s experience in applying the rules is often neglected in the design of the grammars. Thiscreates four problems: 1) the user is unaware of the implicit sequencing of rules, 2) the user cangenerate invalid design states, 3) the user is forced to apply technical rules that do not change theoverall design, and 4) the user is only given a restricted set of design choices.To address these problems, a new set of descriptive conventions has been developed that provides alayer of abstraction built on top of the formalism. These conventions are currently being implementedusing the Visual LISP programming environment in AutoCAD. The program applies rules, whichincorporate the use of the new conventions, to produce a design.The conventions are based on two techniques. The first technique is an explicit control mechanism thatdetermines the sequencing of rules based on the success or failure of a rule application. Becausesome design changes require more than one rule, this allows the grammar to chain a sequence of rulesto create macros since. The second technique is a mechanism that demarcates an area of the drawingfor query. With this technique, a rule is able to recognize void spaces in a drawing.A comparison of the rules to construct a bi-laterally symmetrical grid in three grammars--Palladian,Yingzao Fashi, and Grid--will be used to demonstrate the advantages of the new conventions.
series ACADIA
email
last changed 2022/06/07 07:59

_id 7f0a
authors Chen, K.-Z.,Feng, X.-A. and Ding, L.
year 2002
title Intelligent approaches for generating assembly drawings from 3-D computer models of mechanical products
source Computer-Aided Design, Vol. 34 (5) (2002) pp. 347-355
summary In order to reduce the time of mechanical product design and ensure the high quality of their assembly drawings, this paper develops an intelligent approach for generatingassembly drawings automatically from three-dimensional (3-D) computer assembly models of mechanical products by simulating the experienced human designer's thinkingmode with the aid of computer graphics and knowledge-based expert system. The key issues include the strategies and methods for selecting the necessary views in anassembly drawing, determining necessary sectional views in each view, eliminating the unreasonable projective overlap of the components in each view, and minimizing thenumbers of both the views in an assembly drawing and the sectional views in each view. Based on the approach, corresponding software prototype was developed. Finally, itis demonstrated, from an example of the fixture in a modularized drilling machine, that its assembly drawing was generated successfully using this intelligent softwareprototype.
keywords CAD, Intelligent CAD, Expert System, Artificial Intelligence, Assembly, Drawing
series journal paper
email
last changed 2003/05/15 21:33

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id c7e0
id c7e0
authors Maria Gabriela Caffarena Celani
year 2002
title BEYOND ANALYSIS AND REPRESENTATION IN CAD: A NEW COMPUTATIONAL APPROACH TO DESIGN EDUCATION
source Submitted to the Department of Architecture in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the field of Architecture: Design & Computation at the Massachusetts Institute of Technology
summary This thesis aims at changing students' attitude towards the use of computer-aided design (CAD) in architecture. It starts from the premise that CAD is used mostly for analysis and representation, and not as a real design aide, and that architecture students have a bias against learning computer programming. For this purpose, a prototypical instruction system that mixes computer-aided design and computational design theory was developed, based on a series of fundamental concepts that are common to both fields. This system was influenced by Mitchell's (1987) The Art of Computer Graphics Programming and Stiny's (1976) shape grammars. Despite being based on solid theoretical foundations, CAD has progressively become an exclusively practical tool, since its origins in the 50's and 60's, while computational design theories have been mostly restricted to the academic circles. This thesis proposes an inversion in the present situation: the study of CAD theory, and the application of computational design into practice. The system proposed provides a conceptual framework that can be adapted to different circumstances, including course formats and resources, as well as students' background and technical training. It is based on seven fundamental concepts from computational design theories that are also important to the study of shape grammars: symmetry, recursion, rule-based compositions, parameterization of shapes, generative systems, algorithmization of design procedures, and shape emergence. These concepts are introduced within a CAD context, where their practical implementation and experimentation are possible, focusing the understanding of the computational nature of design. During this research, the proposed system was tested in two case studies with students from schools that had contrary orientations in terms of the importance of CAD in the architectural curriculum. In these experimental courses, students' activities evolved from using a commercial CAD tool in an innovative way, to the use of programming techniques for creating meaningful tools. Despite not having a statistical reach, the fieldwork allowed drawing preliminary conclusions about the proposed system's efficacy, since virtually all the students reported changing their understanding of the role of CAD in architecture, while some also acknowledged a conceptual influence in other subjects and in the way they see architecture.
keywords Symmetry
series thesis:PhD
type normal paper
email
more http://www.fec.unicamp.br/~celani/
last changed 2004/11/17 20:51

_id 12e3
authors Ahmad Rafi, M.E., Che Zulkhairi, A. and Karboulonis, P.
year 2002
title Interactive Storytelling and Its Role in the Design Process
doi https://doi.org/10.52842/conf.caadria.2002.151
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 151-158
summary Projects of ever increasing complexity and size have incited the need for new and robust design methodologies and tools in an effort to manage complexity, lower costs, ascertain quality and reduce risk. Technology convergence through the growing availability of networked computers, rapid progress in Computer Aided Design (CAD) and information management have encouraged the undertaking of even more complex designs that demand high degrees of interaction, collaboration and the efficient sharing and dissemination of information. It is suggested that interactive storytelling and interactive design (Rafi and Karboulonis, 2001) techniques that use non-linear information mapping systems can be deployed to assist users as they navigate information that is structured to address localized needs as they arise. The design process is a collaborative effort that encompasses diverse knowledge disciplines and demands the management and utilization of available resources to satisfy the needs of a single or set of goals. It is thought that building industry specialists should work close together in an organised manner to solve design problems as they emerge and find alternatives when designs fall short. The design process involves the processing of dynamic and complex information, that can be anything from the amount of soil required to level lands - to the needs of specific lightings systems in operation theatres. Other important factors that affect the design process are related to costs and deadlines. This paper will demonstrate some of our early findings in several experiments to establish nonlinear storytelling. It will conclude with a recommendation for a plausible design of such a system based on experimental work that is currently being conducted and is reaching its final stages. The paper will lay the foundations of a possible path to implementation based on the concept of multi-path animation that is appropriate for structuring the design process as used in the building industry.
series CAADRIA
email
last changed 2022/06/07 07:54

_id d5e1
authors Bugajska, Malgorzata Maria
year 2002
title Spatial Visualization of abstract Information: A Classification Model for Visual Spatial Design Guidelines in the Digital Domain
source Swiss Federal Institute of Technology, ETH Zurich
summary Visualization of abstract information refers to the design of graphical representations of information that has no simple relation to known concrete or physical forms. Designing visualizations of abstract information requires proposing visual representation for often a large body of data pants. determining a meaningful structure for the complex relations among them and suggesting a method for Interacting with this body of data. Spatial perception plays an Important role for cognitive processing when interacting with abstract information, slice spatially-organized Information can be accessed and operated on rapidly and effortlessly, especially when a spatial arrangement reveals the conceptual organization of Information.

This thesis focuses on aspects of the spatial visual design of abstract information presented as computer-generated. dynamic and interactive images accessible through flat displays. The process of spatial visualization design is shaped by various factors including interactive, perceptual, navigational as well as organizational and metaphorical aspects and as such requires an interdisciplinary approach. Therefore, in researching spatial visual design. it is crucial to use methods facilitating the process of sharing competencies among different disciplines.

In this thesis, we introduce a new classification model accommodating features important in designing effective spatial visualizations of abstract information. To enhance the effectiveness of spatial visualization, this model offers a holistic approach in classifiying spatial Visualization features. As part of the model, we analyze properties already used in architectural representation and other visual design disciplines for spatial presentations as well as investigate their potential usage in digital domains of abstract information. The process of spatial visualization In the digital environment is mostly based on the practical experience of a designer. and therefore the majority of spatial design know-how is heuristic in nature. Based on this assumption, we present a set of guidelines addressing the general problem of spatial design.

The Spalial Design Classificahon Model, Visual Spatial Properties and Spatial Design Guidelines build an extendable infrastructure which becomes a first step towards augmenting the quality of spatial information design- We propose to use this infrastructure as a general blueprint for structuring the exchange of expertise in Interdisciplinary problem-solving processes.

series thesis:PhD
last changed 2003/05/15 12:22

_id 7a20
id 7a20
authors Carrara, G., Fioravanti, A.
year 2002
title SHARED SPACE’ AND ‘PUBLIC SPACE’ DIALECTICS IN COLLABORATIVE ARCHITECTURAL DESIGN.
source Proceedings of Collaborative Decision-Support Systems Focus Symposium, 30th July, 2002; under the auspices of InterSymp-2002, 14° International Conference on Systems Research, Informatics and Cybernetics, 2002, Baden-Baden, pg. 27-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2005/03/30 16:25

_id 6279
id 6279
authors Carrara, G.; Fioravanti, A.
year 2002
title Private Space' and ‘Shared Space’ Dialectics in Collaborative Architectural Design
source InterSymp 2002 - 14th International Conference on Systems Research, Informatics and Cybernetics (July 29 - August 3, 2002), pp 28-44.
summary The present paper describes on-going research on Collaborative Design. The proposed model, the resulting system and its implementation refer mainly to architectural and building design in the modes and forms in which it is carried on in advanced design firms. The model may actually be used effectively also in other environments. The research simultaneously pursues an integrated model of the: a) structure of the networked architectural design process (operators, activities, phases and resources); b) required knowledge (distributed and functional to the operators and the process phases). The article focuses on the first aspect of the model: the relationship that exists among the various ‘actors’ in the design process (according to the STEP-ISO definition, Wix, 1997) during the various stages of its development (McKinney and Fischer, 1998). In Collaborative Design support systems this aspect touches on a number of different problems: database structure, homogeneity of the knowledge bases, the creation of knowledge bases (Galle, 1995), the representation of the IT datum (Carrara et al., 1994; Pohl and Myers, 1994; Papamichael et al., 1996; Rosenmann and Gero, 1996; Eastman et al., 1997; Eastman, 1998; Kim, et al., 1997; Kavakli, 2001). Decision-making support and the relationship between ‘private’ design space (involving the decisions of the individual design team) and the ‘shared’ design space (involving the decisions of all the design teams, Zang and Norman, 1994) are the specific topic of the present article.

Decisions taken in the ‘private design space’ of the design team or ‘actor’ are closely related to the type of support that can be provided by a Collaborative Design system: automatic checks performed by activating procedures and methods, reporting of 'local' conflicts, methods and knowledge for the resolution of ‘local’ conflicts, creation of new IT objects/ building components, who the objects must refer to (the ‘owner’), 'situated' aspects (Gero and Reffat, 2001) of the IT objects/building components.

Decisions taken in the ‘shared design space’ involve aspects that are typical of networked design and that are partially present in the ‘private’ design space. Cross-checking, reporting of ‘global’ conflicts to all those concerned, even those who are unaware they are concerned, methods for their resolution, the modification of data structure and interface according to the actors interacting with it and the design phase, the definition of a 'dominus' for every IT object (i.e. the decision-maker, according to the design phase and the creation of the object). All this is made possible both by the model for representing the building (Carrara and Fioravanti, 2001), and by the type of IT representation of the individual building components, using the methods and techniques of Knowledge Engineering through a structured set of Knowledge Bases, Inference Engines and Databases. The aim is to develop suitable tools for supporting integrated Process/Product design activity by means of a effective and innovative representation of building entities (technical components, constraints, methods) in order to manage and resolve conflicts generated during the design activity.

keywords Collaborative Design, Architectural Design, Distributed Knowledge Bases, ‘Situated’ Object, Process/Product Model, Private/Shared ‘Design Space’, Conflict Reduction.
series other
type symposium
email
last changed 2012/12/04 07:53

_id 2cd9
authors Ceccato, C. Fischer, Th., Li Chun-Man, G. and Frazer, J.
year 2002
title A Large-Scale Computing Infrastructure for Design Education
doi https://doi.org/10.52842/conf.ecaade.2002.282
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 282-289
summary Most departmental computing infrastructure reflects the state of networking technology and available funds at the time of construction, which converge in a preconceived notion of homogeneity of network architecture and usage patterns. The DMAN (Digital Media Access Network) project, a large-scale server and network foundation for The Hong Kong Polytechnic University’s School of Design, was created as a platform that would support a highly complex academic environment while giving maximum freedom to students, faculty and researchers through simplicity and ease of use. As a centralized multi-user computation backbone, DMAN faces an extremely heterogeneous user and application profile, exceeding implementation and maintenance challenges of typical enterprise, and even most academic server set-ups. This paper summarizes the specification, implementation and application of the system while describing its significance for design education in a computational context.
series eCAADe
email
last changed 2022/06/07 07:55

_id ga0201
id ga0201
authors Dehlinger, H. E.
year 2002
title Instance and System: a Figure and its 2.18 Variations
source International Conference on Generative Art
summary From the structural characteristics of an existing figure - a graphical logo – a plausible solution space of related figures is constructed, which contains all other figures, which may be generated by systematically exploiting the structural characteristics of the input figure. The constructed space of figures can be understood to represent the solution space for the design of the logo. A designer, proceeding systematically by following some generative set of rules would have to construct this solution space at least to the point of a decision, if not entirely. In the presented experiment, this “solution space” will be exhausted completely and the resulting images (there are 218 will be outputted graphically. Questions will be asked concerning the design process, the generative rules, and the selection of the one instance representing a solution. The presented results are to be seen as “work in progress”.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ddssup0206
id ddssup0206
authors Dickey, J.W. and Jones, Dennis B.
year 2002
title CyberQuest Prospector (CQP):A Guide for the Evolutionary Discovery Process
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings Avegoor, the Netherlands), 2002
summary CyberQuest Prospector (CQP) is a tool to guide an individual or team through the evolutionary process of finding better approaches to a particular problem, project, program, plan, or design. This prospectingprocess can involve, for example, new definitions, different data, altered evaluation techniques and new ideas and actions on many other topics. CQP involves a five step process. At step zero all the requisite historical background knowledge is entered. This knowledge is divided into topical areas or statements. In step one the team updates the various knowledge statements in the system and then assigns a "maturity" to them. The team then adds any new statements (step two). Next, (step three) the team makes decisions on actions to be undertaken and also on the external factors likely to be "in play" in the upcoming time period. After that period (step four) the team records the results and rates the "success" achieved. CQP subsequently changes the associated knowledge statement confidences. In the last step the clock is advanced. The ultimate result is a set of definitions, data, relationships, experimental techniques, issues,implications, and even personality traits in which some degree of confidence has evolved. The CQP process is demonstrated here with an urban transportation planning example involving such diverse topics asplanning/analysis techniques, data collection methods, and procedures for working with advocacy coalition networks.
series DDSS
last changed 2003/08/07 16:36

_id ga0220
id ga0220
authors Eleni, P., Turner, A. and Thum, R.
year 2002
title Interacting unities: an agent-based system
source International Conference on Generative Art
summary Recently architects have been inspired by Thompson’s Cartesian deformations and Waddington’s flexible topological surface to work within a dynamic field characterized by forces. In this more active space of interactions, movement is the medium through which form evolves. This paper explores the interaction between pedestrians and their environment by regarding it as a process occurring between the two. It is hypothesized that the recurrent interaction between pedestrians and environment can lead to a structural coupling between those elements. Every time a change occurs in each one of them, as an expression of its own structural dynamics, it triggers changes to the other one. An agent-based system has been developed in order to explore that interaction, where the two interacting elements, agents (pedestrians) and environment, are autonomous units with a set of internal rules. The result is a landscape where each agent locally modifies its environment that in turn affects its movement, while the other agents respond to the new environment at a later time, indicating that the phenomenon of stigmergy is possible to take place among interactions with human analogy. It is found that it is the environment’s internal rules that determine the nature and extent of change.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id 1a42
authors Fjeld, M., Lauche, K., Bichsel, M., Voorhorst, F., Krueger, H., Rauterberg, M.
year 2002
title Physical and Virtual Tools: Activity Theory Applied to the Design of Groupware
source Computer Supported Cooperative Work (CSCW), Kluwer
summary Activity theory is based on the concept of tools mediating between subjects and objects. In this theory, an individual's creative interaction with his or her surroundings can result in the production of tools. When an individual's mental processes are exteriorized in the form of tools - termed objectification - they become more accessible to other people and are therefore useful for social interaction. This paper shows how our understanding of activity theory has shaped our design philosophy for groupware and how we have applied it. Our design philosophy and practice is exemplified by a description of the BUILD-IT system. This is an Augmented Reality system we developed to enhance group work; it is a kind of graspable groupware which supports cooperative planning. The system allows a group of people, co-located around a table, to interact, by means of physical bricks, with models in a virtual three-dimensional (3D) setting. Guided by task analysis, a set of specific tools for different 3D planning and configuration tasks was implemented as part of this system. We investigate both physical and virtual tools. These tools allow users to adjust model height, viewpoint, and scale of the virtual setting. Finally, our design practice is summarized in a set of design guidelines. Based on these guidelines, we reflect on our own design practice and the usefulness of activity theory for design.
series other
last changed 2003/04/23 15:50

_id e641
authors Gero, John S. and Jupp, Julie R.
year 2002
title Measuring the Information Content of Architectural Plans
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 155-158
summary This paper describes and develops a preliminary approach to the measurement of the information content of two-dimensional design drawings. We utilise a general method for extracting information from an encoded string of symbols as a canonical representation of architectural plans. The information content of each drawing or set of drawings is determined by measuring its entropy. We present two classes of qualitative representation of shape and space. The first uses a qualitative representation of the outline of shapes in the drawing. The second uses a qualitative representation of the spaces described in the drawing. We describe the preliminary implementation of the method to a time-evolution of two formally described design styles, Romanesque and Gothic cathedral plans.
series SIGRADI
email
last changed 2016/03/10 09:52

_id 8fba
authors Hui, K.C.
year 2002
title Free-form design using axial curve-pairs
source Computer-Aided Design, Vol. 34 (8) (2002) pp. 583-595
summary Deformation of 3D shapes usually requires the use of a deformation tool. The freeform deformation technique requires the use of a lattice of control point for deforming anobject. This may require a synchronized movement of the lattice control points in order to obtain the desired effects. The axial deformation technique allows an object to bedeformed by manipulating an axial curve. However, unexpected twist of the object may be obtained. This is a result of the lack of control on the local coordinate frame of thecurve. This paper presents a technique for deforming objects with a set of axial curve-pairs. The use of a curve-pair allows the local coordinate frame to be controlledintuitively. A curve-pair is composed of a primary and an orientation curve. The orientation curve is an approximate offset of the primary curve. A technique is proposed formaintaining the relation between the primary and the orientation curve when the curve-pair is adjusted. By associating a complex 3D object to a curve-pair, the object can bestretched, bended, and twisted intuitively through manipulating the curve-pair. This deformation technique is particularly suitable for manipulating complex shapes (e.g.decorative components) in industrial and aesthetic design, and is also suitable for modelling characters and animals with flexible bodies. Adjusting the curve-pair according tosome motion constraints produces different postures of a character or animal model. This in turn can be used as decorative components for aesthetic design.
keywords Cross-Sectional Design, Sweeping, Axial Curve-Pair, Axial Deformations, Aesthetic Design, Geometric Modelling
series journal paper
last changed 2003/05/15 21:33

_id 9dc7
authors Hwang, Jie-Eun and Choi, Jin-Won
year 2002
title SpaceCore: Metadata for Retrieving Spatial Information in Architecture
doi https://doi.org/10.52842/conf.acadia.2002.197
source Thresholds - Design, Research, Education and Practice, in the Space Between the Physical and the Virtual [Proceedings of the 2002 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-11-X] Pomona (California) 24-27 October 2002, pp. 197-215
summary This research investigates the spatial information retrieval in architecture focused on constructingefficient metadata that is crucial for data retrieval. Generally speaking, metadata is ‘structured dataabout data’ to describe the resources especially in a digital method. In this research, metadata is a sortof data object to be used in searching spatial information, such as describing a raw spatial data objectnot only as attribute data but also as content, structurally and semantically. There are two issues thatmotivate this research; 1) the materialization of the intangible space as a data object, and 2) thecontent-based information retrieval. In the viewpoint of content-based retrieval, we analyze spatialinformation on the apartment unit floor plan common in Korea. Then we extract the metadata items in astructured manner. To manage the items efficiently, we develop a data model for spatial informationaccording to the concept of “Structured Floor Plan”. For exploiting the metadata, this research showsseveral possibilities of query operations to present a set of sample queries about L-D-K(Living room -Dining room – Kitchen). Implementation of the prototype system is divided into three parts: 1) amodeling module, Vitruvis; 2) an indexing module, SpaceCore; and 3) a browsing module.
series ACADIA
email
last changed 2022/06/07 07:50

_id c839
authors Hwang, Jie-Eun
year 2002
title SpaceScope: Developing a Spatial Information Retrieval System - Focused on Apartment Unit Floor Plans -
source Yonsei University, Dept. of Housing & Interior Design
summary This research investigates the spatial information retrieval (IR) in architecture focused on constructing efficient metadata that is crucial for data retrieval. Generally speaking, metadata is ‘structured data about data’ to describe resources especially in a digital format. In this research, metadata is a sort of data object to be useful in searching spatial information. Metadata is also used to describe raw spatial data object as not only attribute data but also content structurally and semantic ally. There are two issues that motivate this research; 1) what is the spatial information – that materializes the intangible space as a data object, and 2) how we can search the information efficiently – the content-based information retrieval. Although knowledge of a building’s spatial content is most important in architecture, there has been no logical method to manage it.

From the viewpoint of content-based retrieval, the researcher analyzes spatial information of a floor plan, with a focus on the apartment unit floor plan common in Korea. Then the metadata items are extracted in a structured manner. To manage the items efficiently, the researcher develops a data model for spatial information according to the concept of the “Structured Floor Plan”. The main object of content to retrieve is a spatial network that consists of nodes of spaces and their linkages. There are two ways to organize the metadata: the traditional index files and the RDF (Resource Description Framework). While the index files are still efficient with computability, the RDF applies greater options to retrieve, such as fuzzy predicates, semantic predicates, and so on. To exploit the metadata, this research shows several possibilities of query operations that present a set of sample queries about L-DK(Living room – Dining room – Kitchen). Implementation of the prototype system is divided into three parts: 1) a modeling module using Vitruvius; 2) an indexing module using MS SQL Server? 2000 in conjunction XML; and 3) a browsing module using the SpaceScope browser.

The future works may consider XML-based databases and a knowledge based query language, such as RQL/XQL, working on such databases. The more specific domain knowledge is involved, the more practical systems would be. Even in architecture, there may be a diverse range of domain knowledge, such as design, building performance, facility management, energy management, post occupied evaluation, historical research, and so on. Also the issue of interface should be investigated in depth, so that it will be adequate to the needs of the architectural field.

keywords Content-based Information Retrieval; Metadata; RDF; XML; Spatial Information; Apartment Floor Plan; Semantics
series thesis:MSc
email
last changed 2003/04/25 07:27

_id d5ac
authors Kalisperis, L.N., Otto, G., Muramoto, K., Gundrum, J.S., Masters, R. and Orland, B.
year 2002
title Virtual Reality/Space Visualization in Design Education: The VR-Desktop Initiative
doi https://doi.org/10.52842/conf.ecaade.2002.064
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 64-71
summary Although virtual reality (VR) is a fast-growing field, utilization of its potential within an affordable environment in the early years of architectural education has been limited. Currently, we are in the process of exploring the educational potential of virtual reality in the creation and understanding of space as a set of dynamic volumes that can be experienced. The VR-Desktop initiative is an effort to bring the salient features of projection-based VR to second-year architecture students in a way that is more generally accessible than the many canonical, first-generation, projection-based VR systems. The VR-Desktop has been implemented in the teaching of the architectural design studio in the second year of a fiveyear curriculum, as part of the physical architectural studio. Through the VR-Desktop system in the studio, students immediately start working in an immersive environment. They create space by manipulating solids and voids while evaluating the anthropometric relations of the proposed solution. The students are able to study and test conceptual details in a virtual environment from the very beginning of their architectural design project. In order to assess student perception of the usefulness of various system attributes for diverse tasks, we have begun a usability study. Thirty-five surveys were collected from the students who had used the lab during the two semesters for which the two-screen system was available. Preliminary observations indicate that within the architectural context, virtual reality techniques involving depth perception can convey relevant information to students more efficiently and with less misrepresentation than traditional techniques. This paper suggests that full field of view, motion, stereoscopic vision, and interactivity are possible components of the 3D visualization techniques that are necessary to enhance architectural education
series eCAADe
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 15HOMELOGIN (you are user _anon_771765 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002