CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 64

_id fe60
authors Cumming, Michael
year 2002
title Flexible and distributed coordination models for collaborative design
doi https://doi.org/10.52842/conf.ecaade.2002.268
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 268-275
summary Designers working in collaborative design situations, attempt to plan or anticipate their activities, such that their work progresses in an orderly manner, according to technical demands of their domain. Designers, and the organizations that employ them, often attempt to formally represent such plans using process representations, such critical path diagrams, or Petri nets. Such process articulation and formalization can have benefits for designers and organizations, such as standardization and improvement of work practices, and improved collaboration and coordination between design parties. In addition to plan making, designers also try to coordinate their actions with the actions of others on the design team. This coordination, which often takes place in real time, is a process that is necessarily social, interactive, and iterative. Here the formulation of suitable process representations is more difficult, due to the dynamic and complex nature of social interactions. How to represent and design such coordination processes, is a continuing research question in the process modeling community. It is possible there exists general coordination mechanisms that could be useful in a variety of domains. Possibilities for distributed methods of design process coordination are examined. A coordination method is proposed that involves the exchange of design process models, represented as Petri nets. Rather than concentrating on the specific content of these models - which is assumed to vary considerably between design domains - general coordinating mechanisms are proposed. One such mechanism involves the communication of social commitments to process models, in addition to communication of the content and authorship of these models.
series eCAADe
email
last changed 2022/06/07 07:56

_id ga0211
id ga0211
authors Gartland-Jones, Andrew
year 2002
title Can a Genetic Algorithm Think Like a Composer?
source International Conference on Generative Art
summary There has now been a substantial body of work utilising Genetic Algorithms (GA) for the purpose of musical composition. A common point of discussion is how far GA’s can simulate not just the musical output of human composers, but also the process of composing itself. This paper begins by discussing the suitability of using a GA for composition, and goes on to describe a generative music system (by the author), that utilises a domain specific, knowledge rich GA. The system acts on a supplied 2-bar musical phrase (up to 4 parts), and evolves musical fragments towards a supplied target. The aim is to provide interim points on the evolutionary path, which represents a ‘new’ musical ideas audibly based on the supplied fragments. The paper concludes that the system is able to model at least part of the creative process of composition, and is effective at producing musically successful results. (Audio download sources of its output are included to support this conclusion). The system was used to generate music included in an interactive installation work, exhibited at Brighton Arts Festival 2002, and other applications under developed that use the algorithm are discussed.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id c839
authors Hwang, Jie-Eun
year 2002
title SpaceScope: Developing a Spatial Information Retrieval System - Focused on Apartment Unit Floor Plans -
source Yonsei University, Dept. of Housing & Interior Design
summary This research investigates the spatial information retrieval (IR) in architecture focused on constructing efficient metadata that is crucial for data retrieval. Generally speaking, metadata is ‘structured data about data’ to describe resources especially in a digital format. In this research, metadata is a sort of data object to be useful in searching spatial information. Metadata is also used to describe raw spatial data object as not only attribute data but also content structurally and semantic ally. There are two issues that motivate this research; 1) what is the spatial information – that materializes the intangible space as a data object, and 2) how we can search the information efficiently – the content-based information retrieval. Although knowledge of a building’s spatial content is most important in architecture, there has been no logical method to manage it.

From the viewpoint of content-based retrieval, the researcher analyzes spatial information of a floor plan, with a focus on the apartment unit floor plan common in Korea. Then the metadata items are extracted in a structured manner. To manage the items efficiently, the researcher develops a data model for spatial information according to the concept of the “Structured Floor Plan”. The main object of content to retrieve is a spatial network that consists of nodes of spaces and their linkages. There are two ways to organize the metadata: the traditional index files and the RDF (Resource Description Framework). While the index files are still efficient with computability, the RDF applies greater options to retrieve, such as fuzzy predicates, semantic predicates, and so on. To exploit the metadata, this research shows several possibilities of query operations that present a set of sample queries about L-DK(Living room – Dining room – Kitchen). Implementation of the prototype system is divided into three parts: 1) a modeling module using Vitruvius; 2) an indexing module using MS SQL Server? 2000 in conjunction XML; and 3) a browsing module using the SpaceScope browser.

The future works may consider XML-based databases and a knowledge based query language, such as RQL/XQL, working on such databases. The more specific domain knowledge is involved, the more practical systems would be. Even in architecture, there may be a diverse range of domain knowledge, such as design, building performance, facility management, energy management, post occupied evaluation, historical research, and so on. Also the issue of interface should be investigated in depth, so that it will be adequate to the needs of the architectural field.

keywords Content-based Information Retrieval; Metadata; RDF; XML; Spatial Information; Apartment Floor Plan; Semantics
series thesis:MSc
email
last changed 2003/04/25 07:27

_id ddssar0223
id ddssar0223
authors Mahdavi, A, Suter G. and Ries, R.
year 2002
title A Representation Scheme for Integrated Building Performance Analysis
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary This paper presents a representational scheme for integrated building performance analysis. The underlying research work was motivated by the need for seamless exchange of structured design information.A comprehensive and widely accepted industry standard suitable for exchanging design information among the various AEC (Architecture/Engineering/Construction) applications has yet to emerge. As a contribution to this on-going discussion, we present a specific approach to the integration problem in building product modeling. This approach can be viewed as pragmatic or bottom-up in the sense that itwas driven by the informational needs of related individual domains (particularly in the early stages of design) rather than by a quest for a universally applicable solution. In this paper, we describe a schemawhich emerged from the SEMPER effort, a multi-year project aimed at supporting detailed performance analysis for early design in the energy, life-cycle analysis, lighting, and thermal comfort domains. Thisschema relies on a representational division of labor between a shared building model, and various disciplinary (domain) models. Specifically, we present a documentation of the shared object model together with disciplinary models for the energy, light, acoustics, and life-cyle assessment domain.
keywords building product models, building performance, integration
series DDSS
last changed 2003/08/07 16:36

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ddssar0202
id ddssar0202
authors Akin, Ömer and Özkaya, Ipek
year 2002
title Models of Design Requirement
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary Case studies show that significant proportions of design errors and failures are linked to poor requirement specification during both early stages of design and as changes occur. Computational requirements engineering as a front-end to design iterations is a promising area addressing theseproblems. In other design disciplines, such as in software engineering, requirement engineering has given significant product improvements. In this paper, we present a state-space representation of requirement models for architectural design. The purpose of requirement modeling in design is tocreate a process by which requirements can be converted into working design solutions through frontend validation. We suggest three models of requirement specification, co-evolutionary [CoM], multiple domain [MDM] and single domain [SDM] models, that can facilitate this effort. Taken together all three models provide a full set of logical permutations of requirement-solution “worlds” and “operations.” We compare each model against the others in terms of facilitating change management and computability.
series DDSS
last changed 2003/11/21 15:15

_id ddssup0201
id ddssup0201
authors Alexiou, K. and Zamenopoulos, T.
year 2002
title Artificial Design and Planning Support: Interactive Plan Generation andCoordination in Distributed Decision-Making
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings Avegoor, the Netherlands), 2002
summary In this paper we discuss some basic issues pertaining to artificial plan design as a paradigm for architectural design and urban planning support. We present a model for artificial design generation based on learning control methodologies. Plan design is seen as a search for "coordinated" solutions (changes) that satisfy distributed domain requirements and views expressed by human or artificial agents. Learning control is used as a method to search for solutions that direct partial descriptionsproduced by agents, to follow their dynamically defined targets -despite conflicting requirements. The model is simulated for land use and layout plan design, involving decisions for the location and physical configuration of a hypothetical housing and retail development.
series DDSS
last changed 2003/11/21 15:15

_id ddssar0206
id ddssar0206
authors Bax, M.F.Th. and Trum, H.M.G.J.
year 2002
title Faculties of Architecture
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary In order to be inscribed in the European Architect’s register the study program leading to the diploma ‘Architect’ has to meet the criteria of the EC Architect’s Directive (1985). The criteria are enumerated in 11 principles of Article 3 of the Directive. The Advisory Committee, established by the European Council got the task to examine such diplomas in the case some doubts are raised by other Member States. To carry out this task a matrix was designed, as an independent interpreting framework that mediates between the principles of Article 3 and the actual study program of a faculty. Such a tool was needed because of inconsistencies in the list of principles, differences between linguistic versions ofthe Directive, and quantification problems with time, devoted to the principles in the study programs. The core of the matrix, its headings, is a categorisation of the principles on a higher level of abstractionin the form of a taxonomy of domains and corresponding concepts. Filling in the matrix means that each study element of the study programs is analysed according to their content in terms of domains; thesummation of study time devoted to the various domains results in a so-called ‘profile of a faculty’. Judgement of that profile takes place by committee of peers. The domains of the taxonomy are intrinsically the same as the concepts and categories, needed for the description of an architectural design object: the faculties of architecture. This correspondence relates the taxonomy to the field of design theory and philosophy. The taxonomy is an application of Domain theory. This theory,developed by the authors since 1977, takes as a view that the architectural object only can be described fully as an integration of all types of domains. The theory supports the idea of a participatory andinterdisciplinary approach to design, which proved to be awarding both from a scientific and a social point of view. All types of domains have in common that they are measured in three dimensions: form, function and process, connecting the material aspects of the object with its social and proceduralaspects. In the taxonomy the function dimension is emphasised. It will be argued in the paper that the taxonomy is a categorisation following the pragmatistic philosophy of Charles Sanders Peirce. It will bedemonstrated as well that the taxonomy is easy to handle by giving examples of its application in various countries in the last 5 years. The taxonomy proved to be an adequate tool for judgement ofstudy programs and their subsequent improvement, as constituted by the faculties of a Faculty of Architecture. The matrix is described as the result of theoretical reflection and practical application of a matrix, already in use since 1995. The major improvement of the matrix is its direct connection with Peirce’s universal categories and the self-explanatory character of its structure. The connection with Peirce’s categories gave the matrix a more universal character, which enables application in other fieldswhere the term ‘architecture’ is used as a metaphor for artefacts.
series DDSS
last changed 2003/11/21 15:16

_id 077a
authors Boucard, D., Huot, S., Colin, Ch., Hégron, G. and Siret, D.
year 2002
title An Image-based and Knowledge-based System for Efficient Architectural and Urban Modeling
doi https://doi.org/10.52842/conf.acadia.2002.229
source Thresholds - Design, Research, Education and Practice, in the Space Between the Physical and the Virtual [Proceedings of the 2002 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-11-X] Pomona (California) 24-27 October 2002, pp. 229-238
summary In this paper, we present two user-centered systems aiming at making easier the modeling ofarchitectural and urban scenes by using two different but complementary approaches. The first oneMArINa, an image-based modeler, allows the user to reconstruct urban scenes from one or moregraphical documents. This method focuses more on reconstructing models and is more dedicated tothe production of 3D sketches. The second modeler, MArCo is a knowledge-based modelercontaining the know-from and know-how on classical architecture. It allows the user to modelclassical architectural scenes verifying automatically all the domain rules. Finally, we show howMArINa and MArCo can cooperate providing the user a tool combining efficiently their respectivecapabilities.
series ACADIA
email
last changed 2022/06/07 07:54

_id d5e1
authors Bugajska, Malgorzata Maria
year 2002
title Spatial Visualization of abstract Information: A Classification Model for Visual Spatial Design Guidelines in the Digital Domain
source Swiss Federal Institute of Technology, ETH Zurich
summary Visualization of abstract information refers to the design of graphical representations of information that has no simple relation to known concrete or physical forms. Designing visualizations of abstract information requires proposing visual representation for often a large body of data pants. determining a meaningful structure for the complex relations among them and suggesting a method for Interacting with this body of data. Spatial perception plays an Important role for cognitive processing when interacting with abstract information, slice spatially-organized Information can be accessed and operated on rapidly and effortlessly, especially when a spatial arrangement reveals the conceptual organization of Information.

This thesis focuses on aspects of the spatial visual design of abstract information presented as computer-generated. dynamic and interactive images accessible through flat displays. The process of spatial visualization design is shaped by various factors including interactive, perceptual, navigational as well as organizational and metaphorical aspects and as such requires an interdisciplinary approach. Therefore, in researching spatial visual design. it is crucial to use methods facilitating the process of sharing competencies among different disciplines.

In this thesis, we introduce a new classification model accommodating features important in designing effective spatial visualizations of abstract information. To enhance the effectiveness of spatial visualization, this model offers a holistic approach in classifiying spatial Visualization features. As part of the model, we analyze properties already used in architectural representation and other visual design disciplines for spatial presentations as well as investigate their potential usage in digital domains of abstract information. The process of spatial visualization In the digital environment is mostly based on the practical experience of a designer. and therefore the majority of spatial design know-how is heuristic in nature. Based on this assumption, we present a set of guidelines addressing the general problem of spatial design.

The Spalial Design Classificahon Model, Visual Spatial Properties and Spatial Design Guidelines build an extendable infrastructure which becomes a first step towards augmenting the quality of spatial information design- We propose to use this infrastructure as a general blueprint for structuring the exchange of expertise in Interdisciplinary problem-solving processes.

series thesis:PhD
last changed 2003/05/15 12:22

_id ddssup0204
id ddssup0204
authors Caratù, G., Concilio, G. and Monno, V.
year 2002
title Structuring Lay Knowledge in a GI Perspective: Problems and Pitfall
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings Avegoor, the Netherlands), 2002
summary The present contribution, starting from some considerations developed in environmental planning domain, discusses the representation of lay knowledge in a GIS environment. Two paths of exploration in dealing with representational problems are sketched. The first is concerned with the structuring of an acquired cognitive base and, the other is about the implementation of cognitive routines. In particular the structuring process of a lay cognitive base is discussed starting from recent developments in GIS technologies and information theories. Difficulties and pitfalls, which arouse during a case study related to an environmental planning experience being carried on for a national natural park, are presented. The experimentation work is discussed also in relation with a preliminary attempt of outputs validation carried out with people who, in a preliminary stage, were interviewed in order to acquire lay knowledge.
series DDSS
last changed 2003/08/07 16:36

_id 0ee9
authors Chase, Scott C.
year 2002
title (Re)design of construction assemblies with function/behaviour/structure grammars
doi https://doi.org/10.52842/conf.ecaade.2002.356
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 356-359
summary A formal framework for redesign based upon Function/Behaviour/Structure models and design grammars is described. A proposed application domain is for the design and redesign of construction assemblies. GDL object technology is proposed as a candidate tool for implementation.
series eCAADe
email
last changed 2022/06/07 07:55

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

_id dab0
authors Halin, G., Hanser, D., Malcurat, O. and Bignon, J.C.
year 2002
title A relational approach of cooperation in building design
source International conference on concurrent enterprising, Rome
summary The methods and models of the concurrent engineering taken from the industry domain are unsuitable for the domain of the construction, which is characterized by a singular context of cooperation. The existing groupware tools can not be directly used in the framework of the architectural conception. They require a high level of definition of procedures and exchanges, which is incompatible with the flexibility of current practices. At first, we present the particularity of the context of the building cooperation, then we illustrate through an experiment the problems put by the use of a groupware tool based on a hierarchical data organization. From this experiment, we justify the interest of building a new model of cooperation where the relational organization of the project is taken into account. The integration of this new dimension allows to propose to the user an adapted vision of the project by taking into account the role he plays inside the project.
series other
last changed 2003/04/23 15:50

_id ecaade2023_206
id ecaade2023_206
authors Ham, Jeremy
year 2023
title Cross-Domain Representation Reconsidered: Using parametric tools to understand music
doi https://doi.org/10.52842/conf.ecaade.2023.2.801
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 801–810
summary This paper reconsiders the cross-disciplinary connections between music and architecture through ‘Cross-Domain Representation’ (XDR). XDR is defined as the representation of processes or artefacts from one domain within a different domain, as in the representation of music in the spatial domain. Through a case study of five drummers’ improvised responses to a piece of music, the affordances (Norman, 2002) of various methods of XDR reveal new aspects of musical performance. This case study provides an example of how cross-disciplinary practitioners may utilize the tools, methods and media of architectural design to further knowledge in the domain of music in addition to, or as a by-product of creative musico-spatial explorations.
keywords Parametric tools, music and architecture, inter-disciplinary research, cross-domain representation
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2006_561
id caadria2006_561
authors HONG-SHENG CHEN, CHAN-JUI LIU
year 2006
title AN ADAPTIVE DESIGN SUPPORT SYSTEM FOR INTERACTIVE IMAGE SEARCHING WITH DATA MINING METHODOLOGY
doi https://doi.org/10.52842/conf.caadria.2006.x.g8b
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 561-563
summary This study explodes a domain where the use of pictures is essential [Sabrina Kacher 2002]. Designers need a way to rapidly get image. Recent years, there are more and more companies start to store and sale images for designers. They try to use hypermedia or website system to support designers when they need images.
series CAADRIA
email
last changed 2022/06/07 07:50

_id ddssar0217
id ddssar0217
authors Kacher, S., Bignon, J.C., Halin, G. and Duffing, G.
year 2002
title The Content-Based Image Retrieval as an Assistance Tool to the Architectural Design
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary The architectural design requires a research of ideas and a documentation to help the designer in its creation work. It is a domain where the use of pictures (drawing, photography,…) is essential, because the information transmitted by photographic images are often more easily to understand than the one transmitted by texts. The goal of this work is to show the help that can bring the research of pictures indexed by visuals criteria, as colour, texture and shape, in the architectural design domain. If weaccept the principle that " an image is better than 10000 words ", we can make the hypothesis that an image research indexed by visual criteria can bring a supplementary help to the designer when he tries to resolve design problems. We tested a research tool resting on image indexation with graphic attributes. Two types of corpora have been used. The first one contains images illustrating building products and the second one shows buildings or parts of buildings, which illustrate the wood architecture domain. The objective of this experiment is to evaluate the relevance of this type of image indexing according to identified users needs. We try to determine which type of visual criteria is the most appropriate to help the designer in the various phases of the design process.
series DDSS
last changed 2003/08/07 16:36

_id e997
authors Kós, J., Barki, J., Segre, R., Borde, A. and Vilas Boas, N.
year 2002
title Investigação digital dos projetos do MESP: a busca dos vestígios do modernismo brasileiro [Digital exploration of MESP projects: the search for the Brazilian Modernism footprints]
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 75-78
summary This paper aims to demonstrate how the design process analysis of an important architectural icon of the city of Rio de Janeiro – the Ministry of Education and Public Health, MESP – allows the understanding of how the decisions taken during the design process synthesizes a way those involved in the project see the world, through an architectural artifact. This research presents, through 3D models, grouped in a hyperdocument, the project of that important Brazilian Modern Architecture icon. The 3D models were critical to the hypothesis development. They were a powerful tool to compare the different design versions while allowing projects with originally different forms of representation could be examined side by side from several equal point of views. Another important aspect of the investigation is the use of hyperdocument, through links of several document formats in an interactive way, to present the analysis.
series SIGRADI
email
last changed 2016/03/10 09:54

_id 5c07
authors Lee, H.-L., Liu, Y.-T., Chen, S.-C., Tang, S.-K. and Huang, C.-P., Huang, C.-H., Chang, Y.-L., Chang, K.-W. and Chen, K.-Y.
year 2002
title A Comparative study of protocol analysis for - Spatiality of a Text-based Cyberspace
doi https://doi.org/10.52842/conf.ecaade.2002.262
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 262-266
summary Graduate Institute of Architecture, National Chiao Tung University, Hsinchu, 30050, TAIWAN The adaptation of the word cyberspace (Gibson, 1984) following the emergence of the World Wide Web Internet not only succinctly revolutionized the correlation of time and space but also poised to challenge how we view the existing spatial concept. This research tries to use protocol analysis to examine text-based cyberspace, such as bulletin board, chart rooms and so forth, and the objective of this research is to realize the spatiality of cyberspace through the cognitive point of view, and to compare the differences of the definitions and perception ways of spatiality between people with general domain and in design fields. Finally, we validate the existence of cyberspace, where the process not only allows further categorization of spatial elements concluded from the earlier study, but discover that varied backgrounds can affect how a user defines and perceives cyberspace (Strate, 1999).
series eCAADe
email
last changed 2022/06/07 07:51

_id ddssar0222
id ddssar0222
authors Mahdavi, Ardeshir and Gurtekin, Beran
year 2002
title Shapes, Numbers, Perception: Aspects and Dimensions of the Design-Performance Space
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary The design-performance space denotes a virtual space that can be constructed based on discretized design variables and performance indicators. For an n-dimensional design-performance space, n = d + p,whereby d = the number of discrete design variables, and p = the number of discrete performance indicators. Once constructed, this space can be visualized and used by the designer to explore the relationship between design variables and corresponding performance attributes. We present, for the building design domain, an approach to generation and exploration of the design-performance space. In this approach, an initial design is used to generate a set of alternative designs that collectively constitutethe design space. One way of doing this relies on the "scalarization" of design variables. The scalarization leads to the representation of a building as a point in a d-dimensional design space. Each coordinate ofsuch a space accommodates a salient (semantic or geometric) design variable. Subsequently, the entire corpus of design alternatives is subjected to performance modeling. Based on the modeling results, an ndimensionaldesign-performance space is constructed. We specifically address the potential for and limitations of describing building geometry in terms of a continuous scalar dimension of the design space. We introduce the concept of "Relative Compactness", which is derived by comparing the volume tosurface area ratio of a shape to that of a (compact) reference shape with the same volume. We present the results of an empirical study, which shows a significant correlation between the numeric values of relativecompactness and the subjective evaluation of the compactness of architectural shapes.
keywords Buildings, design, performance, simulation, geometry
series DDSS
last changed 2003/08/07 16:36

For more results click below:

this is page 0show page 1show page 2show page 3HOMELOGIN (you are user _anon_686883 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002