CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 513

_id 2a84
authors Donath, D. Hansen, St. and Richter, K.
year 2002
title Architectural Window - Computer networks as planning and integration tools
doi https://doi.org/10.52842/conf.ecaade.2002.302
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 302-305
summary As building projects become increasingly more complex, the number of project participants increases as does their spatial distribution. An effective decentralised work process and co-operation is of increasing importance. The global computer network, the internet, has great potential and recent times have seen the development of a variety of techniques in this field. The project proposal described here is based upon this approach and also takes it a step further. A specific analysis of the subject and the subsequent identification of potential approaches formed the basis for an architectural application that brings the architect in contact with other project participants using the internet as a powerful yet simple and easy to use medium. The project is currently (2002) undergoing practice tests and academic investigation and is installed on a freely-accessible server.
series eCAADe
email
last changed 2022/06/07 07:55

_id adf8
authors Donath, D., Hansen, St. and Richter, K.
year 2002
title Architectural Content System - ACS Internet Based Support for Architectural Planning Proceses
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 121-123
summary As building projects become increasingly more complex, the number of project participants increases as does their spatial distribution. An effective decentralised work process and co-operation is of increasing importance. The global computer network, the internet, has great potential and recent times have seen the development of a variety of techniques in this field. The project proposal described here is based upon this approach and also takes it a step further. A specific analysis of the subject and the subsequent identification of potential approaches formed the basis for an architectural application that brings the architect in contact with other project participants using the internet as a powerful yet simple and easy to use medium.
series SIGRADI
email
last changed 2016/03/10 09:50

_id d03a
authors Noble, Douglas and Kensek, Karen M.
year 2002
title CAD/CAM Methods in Support of Historic Preservation: A Case Study of the Freeman House by Frank Lloyd Wright
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 52-54
summary Preservationists have an impressive array of digital tools to aid them in documentation and analysis of historic structures. The tools range from near photo-realistic renderings to demonstrate what a “restored” building might have looked like at one specifi c time in history to complex chemical analysis of paint chips and pigments to geographic information systems used as management tools for historic prop er ties. Computer-aided design / computer-aided manufacturing (CAD/CAM) is set of important digital aids in historic preservation efforts. This paper presents a case study of the use of CAD/CAM in support of an effort to restore a textile block house designed by Frank Lloyd Wright. CAD/CAM methods are being employed to help produce a new mold so that new textile blocks can be manufactured that match the existing blocks. An existing textile block mold was digitally scanned, digitally mirrored and edited, and will be fabricated from an aluminum billet to replace a mold that no longer exists. Although seemingly a simple process and well within current technological abilities, the work proved substantially more challenging that initially imagined.
keywords CAD/CAM, historic preservation, textile block, Frank Lloyd Wright
series SIGRADI
email
last changed 2016/03/10 09:56

_id 3183
authors Da Veiga, Jose and La Roche, Pablo
year 2002
title A Computer Solar Analysis Tool for the Design and Manufacturing of Complex Architectural Envelopes: EvSurf
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 105-109
summary Heat flows (gains or losses) in a building are affected by solar radiation, internal gains and temperature differences. A prototype of a tool that evaluates solar radiation on building envelopes has been developed as an applet to run on the Internet. This tool analyses the relationship of the solar position with the surfaces of complex envelopes by evaluating the potential amount of direct solar radiation that each surface section receives as a function of the angle of each surface with the sun for specific days and latitudes. A fitness function rates the overall performance of the proposed building envelope at specific hours or whole days, permitting to compare alternatives. Because of its characteristics, this tool is a Very Simple Design tool that works interactively with the user during the design process helping to design solar responsive building envelopes.
series SIGRADI
email
last changed 2016/03/10 09:50

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id 2cd9
authors Ceccato, C. Fischer, Th., Li Chun-Man, G. and Frazer, J.
year 2002
title A Large-Scale Computing Infrastructure for Design Education
doi https://doi.org/10.52842/conf.ecaade.2002.282
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 282-289
summary Most departmental computing infrastructure reflects the state of networking technology and available funds at the time of construction, which converge in a preconceived notion of homogeneity of network architecture and usage patterns. The DMAN (Digital Media Access Network) project, a large-scale server and network foundation for The Hong Kong Polytechnic University’s School of Design, was created as a platform that would support a highly complex academic environment while giving maximum freedom to students, faculty and researchers through simplicity and ease of use. As a centralized multi-user computation backbone, DMAN faces an extremely heterogeneous user and application profile, exceeding implementation and maintenance challenges of typical enterprise, and even most academic server set-ups. This paper summarizes the specification, implementation and application of the system while describing its significance for design education in a computational context.
series eCAADe
email
last changed 2022/06/07 07:55

_id b74f
authors Dijkstra, Jan and Timmermans, Harry
year 2002
title Towards a multi-agent model for visualizing simulated user behavior to support the assessment of design performance
source Automation in Construction 11 (2) (2002) pp. 135-145
summary We introduce the outline of a multi-agent model that can be used for visualizing simulated user behavior to support the assessment of design performance. We will consider various performance indicators of building environments, which are related to user reaction to design decisions. This system may serve as a media tool in the design process for a better understanding of what the design will look like, especially for those cases where design or planning decisions will affect the behavior of individuals. The system is based on cellular automata and multi-agent simulation technology. The system simulates how agents move around in a particular 3D (or 2D) environment, in which space is represented as a lattice of cells. Agents represent objects or people with their own behavior, moving over the network. Each agent will be located in a simulated space, based on the cellular automata grid. Each iteration of the simulation is based on a parallel update of the agents conforming local rules. Agents positioned within an environment will need sensors to perceive their local neighborhood and some means with which to affect the environment. In this way, autonomous individuals and the interaction between them can be simulated by the system. As a result, designers can use the system to assess the likely consequences of their design decisions on user behavior. We think that the system provides a potentially valuable tool to support design and decision-making processes, related to user behavior in architecture and urban planning.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 4956
authors Huang, C.H., Wan, P.H., Lee, Y.Z., Su, J.Y., Lai, T., Chang, C.L. and Liu, Y.T.
year 2002
title Some Phenomena of Spatial Interaction in the Networked Spaces
doi https://doi.org/10.52842/conf.caadria.2002.039
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 039-47
summary As a result of the network-based nature of Internet and communications technologies, a new spatial form, which is defined as networked spaces by this research, is emerging. This paper provides a significant theoretical framework to unpack complex spatial relationships caused by the networked spaces. Such emerging design approach challenges the design thinking, design process and design knowledge of architecture, urban design, as well as media design.
series CAADRIA
email
last changed 2022/06/07 07:50

_id c839
authors Hwang, Jie-Eun
year 2002
title SpaceScope: Developing a Spatial Information Retrieval System - Focused on Apartment Unit Floor Plans -
source Yonsei University, Dept. of Housing & Interior Design
summary This research investigates the spatial information retrieval (IR) in architecture focused on constructing efficient metadata that is crucial for data retrieval. Generally speaking, metadata is ‘structured data about data’ to describe resources especially in a digital format. In this research, metadata is a sort of data object to be useful in searching spatial information. Metadata is also used to describe raw spatial data object as not only attribute data but also content structurally and semantic ally. There are two issues that motivate this research; 1) what is the spatial information – that materializes the intangible space as a data object, and 2) how we can search the information efficiently – the content-based information retrieval. Although knowledge of a building’s spatial content is most important in architecture, there has been no logical method to manage it.

From the viewpoint of content-based retrieval, the researcher analyzes spatial information of a floor plan, with a focus on the apartment unit floor plan common in Korea. Then the metadata items are extracted in a structured manner. To manage the items efficiently, the researcher develops a data model for spatial information according to the concept of the “Structured Floor Plan”. The main object of content to retrieve is a spatial network that consists of nodes of spaces and their linkages. There are two ways to organize the metadata: the traditional index files and the RDF (Resource Description Framework). While the index files are still efficient with computability, the RDF applies greater options to retrieve, such as fuzzy predicates, semantic predicates, and so on. To exploit the metadata, this research shows several possibilities of query operations that present a set of sample queries about L-DK(Living room – Dining room – Kitchen). Implementation of the prototype system is divided into three parts: 1) a modeling module using Vitruvius; 2) an indexing module using MS SQL Server? 2000 in conjunction XML; and 3) a browsing module using the SpaceScope browser.

The future works may consider XML-based databases and a knowledge based query language, such as RQL/XQL, working on such databases. The more specific domain knowledge is involved, the more practical systems would be. Even in architecture, there may be a diverse range of domain knowledge, such as design, building performance, facility management, energy management, post occupied evaluation, historical research, and so on. Also the issue of interface should be investigated in depth, so that it will be adequate to the needs of the architectural field.

keywords Content-based Information Retrieval; Metadata; RDF; XML; Spatial Information; Apartment Floor Plan; Semantics
series thesis:MSc
email
last changed 2003/04/25 07:27

_id ddssup0203
id ddssup0203
authors Kovács, L.B., Kotsis, I. and Dobosy, A.
year 2002
title A Generic Support Module to Site Planning with Road Access
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings Avegoor, the Netherlands), 2002
summary The aim of this paper is to present a generic module providing several support functions for site planning. The site will be composed of several building lots in harmony with each other and the surroundings. The site plan should satisfy the goals, conditions, rules and regulations explicitly orimplicitly indicated by the design brief. The maximum size and the placement area for the building on each of the lots are part of the plan. Proper road access should be provided for each of the building lots.A variety of ideas and patterns are used to create unified groups of building lots subject to certain restrictions on size, form and other attributes of the composition. Two basically different approachesfor the road planning will be compared. One of them is space planning first with some preconceptions on the structure of the road network, followed by the actual road formation. The other one starts with planning the road access first - provided that the site is properly divided into subareas. In the second phase of this approach the building lots are formed on each of the sites created by the road network. In both approaches several iterations might be necessary. A logic programming prototype with Prologimplementation is presented. Connection to earlier support modules and ideas for an integrated support system are outlined.
series DDSS
last changed 2003/08/07 16:36

_id eabb
authors Boeykens, St. Geebelen, B. and Neuckermans, H.
year 2002
title Design phase transitions in object-oriented modeling of architecture
doi https://doi.org/10.52842/conf.ecaade.2002.310
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 310-313
summary The project IDEA+ aims to develop an “Integrated Design Environment for Architecture”. Its goal is providing a tool for the designer-architect that can be of assistance in the early-design phases. It should provide the possibility to perform tests (like heat or cost calculations) and simple simulations in the different (early) design phases, without the need for a fully detailed design or remodeling in a different application. The test for daylighting is already in development (Geebelen, to be published). The conceptual foundation for this design environment has been laid out in a scheme in which different design phases and scales are defined, together with appropriate tests at the different levels (Neuckermans, 1992). It is a translation of the “designerly” way of thinking of the architect (Cross, 1982). This conceptual model has been translated into a “Core Object Model” (Hendricx, 2000), which defines a structured object model to describe the necessary building model. These developments form the theoretical basis for the implementation of IDEA+ (both the data structure & prototype software), which is currently in progress. The research project addresses some issues, which are at the forefront of the architect’s interest while designing with CAAD. These are treated from the point of view of a practicing architect.
series eCAADe
email
last changed 2022/06/07 07:52

_id d5e1
authors Bugajska, Malgorzata Maria
year 2002
title Spatial Visualization of abstract Information: A Classification Model for Visual Spatial Design Guidelines in the Digital Domain
source Swiss Federal Institute of Technology, ETH Zurich
summary Visualization of abstract information refers to the design of graphical representations of information that has no simple relation to known concrete or physical forms. Designing visualizations of abstract information requires proposing visual representation for often a large body of data pants. determining a meaningful structure for the complex relations among them and suggesting a method for Interacting with this body of data. Spatial perception plays an Important role for cognitive processing when interacting with abstract information, slice spatially-organized Information can be accessed and operated on rapidly and effortlessly, especially when a spatial arrangement reveals the conceptual organization of Information.

This thesis focuses on aspects of the spatial visual design of abstract information presented as computer-generated. dynamic and interactive images accessible through flat displays. The process of spatial visualization design is shaped by various factors including interactive, perceptual, navigational as well as organizational and metaphorical aspects and as such requires an interdisciplinary approach. Therefore, in researching spatial visual design. it is crucial to use methods facilitating the process of sharing competencies among different disciplines.

In this thesis, we introduce a new classification model accommodating features important in designing effective spatial visualizations of abstract information. To enhance the effectiveness of spatial visualization, this model offers a holistic approach in classifiying spatial Visualization features. As part of the model, we analyze properties already used in architectural representation and other visual design disciplines for spatial presentations as well as investigate their potential usage in digital domains of abstract information. The process of spatial visualization In the digital environment is mostly based on the practical experience of a designer. and therefore the majority of spatial design know-how is heuristic in nature. Based on this assumption, we present a set of guidelines addressing the general problem of spatial design.

The Spalial Design Classificahon Model, Visual Spatial Properties and Spatial Design Guidelines build an extendable infrastructure which becomes a first step towards augmenting the quality of spatial information design- We propose to use this infrastructure as a general blueprint for structuring the exchange of expertise in Interdisciplinary problem-solving processes.

series thesis:PhD
last changed 2003/05/15 12:22

_id 154d
authors Colajanni, B., Pellitteri, G. and Concialdi, S.
year 2002
title Intelligent Structures for Collaborating with the Architect
doi https://doi.org/10.52842/conf.ecaade.2002.360
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 360-364
summary The number of different designers with different competencies collaborating in a building project is today conspicuous. An undesired consequence is the possible rise of conflicts between decisions taken independently by more than one specialist on the same building object. The early detection of such conflicts is then one of the most important features in collaborative design. Moreover, of great interest would be the possibility not only of automatic detection but also of solution proposal of at least the most manageable of those conflicts. In this perspective smart models of building components could be very useful. This is possible giving the building elements, represented as objects, the specific intelligence. A simple example of this possibility is given in this paper. In a precedent work we proposed a way of managing elementary spatial conflicts between building components tending to occupy the same spaces. The automatic detection derived from the previous declaration of two levels of constraints (soft constraint and hard constraints) in such way that a violation of them could be immediately signaled to the actor wanting to take the decision triggering the conflict. In this paper the topic is the consequences of the rise of a spatial conflict (occupation of the same space) between a column of a spatial frame of columns and beams, and another building object of any sort subject to a soft or hard constraint. The procedure identifies the minimum displacement of the two objects, propagates the column displacement to the other structural elements connected to it and checks the feasibility of the new configuration of the structural schema both with regard to the possible rise of new conflicts and with the compliance to previous structural criteria.
series eCAADe
email
last changed 2022/06/07 07:56

_id 12e3
authors Ahmad Rafi, M.E., Che Zulkhairi, A. and Karboulonis, P.
year 2002
title Interactive Storytelling and Its Role in the Design Process
doi https://doi.org/10.52842/conf.caadria.2002.151
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 151-158
summary Projects of ever increasing complexity and size have incited the need for new and robust design methodologies and tools in an effort to manage complexity, lower costs, ascertain quality and reduce risk. Technology convergence through the growing availability of networked computers, rapid progress in Computer Aided Design (CAD) and information management have encouraged the undertaking of even more complex designs that demand high degrees of interaction, collaboration and the efficient sharing and dissemination of information. It is suggested that interactive storytelling and interactive design (Rafi and Karboulonis, 2001) techniques that use non-linear information mapping systems can be deployed to assist users as they navigate information that is structured to address localized needs as they arise. The design process is a collaborative effort that encompasses diverse knowledge disciplines and demands the management and utilization of available resources to satisfy the needs of a single or set of goals. It is thought that building industry specialists should work close together in an organised manner to solve design problems as they emerge and find alternatives when designs fall short. The design process involves the processing of dynamic and complex information, that can be anything from the amount of soil required to level lands - to the needs of specific lightings systems in operation theatres. Other important factors that affect the design process are related to costs and deadlines. This paper will demonstrate some of our early findings in several experiments to establish nonlinear storytelling. It will conclude with a recommendation for a plausible design of such a system based on experimental work that is currently being conducted and is reaching its final stages. The paper will lay the foundations of a possible path to implementation based on the concept of multi-path animation that is appropriate for structuring the design process as used in the building industry.
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia17_202
id acadia17_202
authors Cupkova, Dana; Promoppatum, Patcharapit
year 2017
title Modulating Thermal Mass Behavior Through Surface Figuration
doi https://doi.org/10.52842/conf.acadia.2017.202
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 202-211
summary This research builds upon a previous body of work focused on the relationship between surface geometry and heat transfer coefficients in thermal mass passive systems. It argues for the design of passive systems with higher fidelity to multivariable space between performance and perception. Rooted in the combination of form and matter, the intention is to instrumentalize design principles for the choreography of thermal gradients between buildings and their environment from experiential, spatial and topological perspectives (Figure 1). Our work is built upon the premise that complex geometries can be used to improve both the aesthetic and thermodynamic performance of passive building systems (Cupkova and Azel 2015) by actuating thermal performance through geometric parameters primarily due to convection. Currently, the engineering-oriented approach to the design of thermal mass relies on averaged thermal calculations (Holman 2002), which do not adequately describe the nuanced differences that can be produced by complex three-dimensional geometries of passive thermal mass systems. Using a combination of computational fluid dynamic simulations with physically measured data, we investigate the relationship of heat transfer coefficients related to parameters of surface geometry. Our measured results suggest that we can deliberately and significantly delay heat absorption re-radiation purely by changing the geometric surface pattern over the same thermal mass. The goal of this work is to offer designers a more robust rule set for understanding approximate thermal lag behaviors of complex geometric systems, with a focus on the design of geometric properties rather than complex thermal calculations.
keywords design methods; information processing; physics; smart materials
series ACADIA
email
last changed 2022/06/07 07:56

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 5c95
authors Lou, C.W., Kaga, A. and Sasada, T.
year 2002
title Environmental Design with Huge Landscape in Real-Time Simulation System: Real-time Simulation System to Real Project
doi https://doi.org/10.52842/conf.caadria.2002.265
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 265-272
summary This paper is the culmination of a period of studying and participating in certain real project on environmental design with realtime simulation system application. The focus of this paper is on understanding that a generally real-time simulation system, can render a complex scene that consisted by a huge landscape model with millions polygons and building models with thousands details. It is also more than just a collection of unorganized techniques. This paper must dual with issues of scene elements management as a front end that efficiently provide the ability to process complex and moving objects in a physically realistic way. We establish a platform providing good support for the environmental designers.
series CAADRIA
email
last changed 2022/06/07 07:59

_id ddssar0224
id ddssar0224
authors Mardjono, F., Trum, H.M.G.J. and Janssen, J.
year 2002
title Development of a Decision Support Tool for Bamboo Building Design
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary The design process of a bamboo building is sometimes very complex for building designers, since there is no accepted design methodology for it. This process may be caused by a lack of relevant information provided to the designer. Based on this issue, this paper proposes a decision support system for application in bamboo building design that might be helpful for the designer in his/her design process. For this purpose, a decision support tool for bamboo building design process is being developed. Thedevelopment of the tool uses approaches, i.e. a taxonomy of bamboo building to identify the design problems, IDEFÆ to model the decision support tool, and develops a dedicated tool for Bamboo building design process. This tool has been tested in an international bamboo-housing workshop, hence results, suggestions, and recommendations from the workshop will be analysed. With this tool, the bamboo-building designer can make a bamboo building design in a systematic way. This tool also helpsthe designer to be as best informed, explicit, correct, and complete as possible during the design process.
series DDSS
last changed 2003/08/07 16:36

_id 9e16
authors Neuckermans, H., Heylighen, A. and Morisse, P.
year 2002
title Visual Keys to Architectural Design
doi https://doi.org/10.52842/conf.caadria.2002.175
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 175-182
summary This paper presents a new mechanism to access and interact with DYNAMO, a collective case base for architectural design developed as a Web-based tool. The system is fully operational since a few years in the context of architectural design education as well as for seminars on architectural theory. We have now developed a set of visual keys structured at the one hand according to the Vitruvian tripartition of architecture: Firmitas (structure, materials,…), Utilitas (building programme,…), Venustas (formal qualities/articulation, spatial configuration,…) to which we added Context (topography, site, budget, climate,...) as a supplementary dimension, and at the other hand including three levels of detail: single spaces, building blocks or master plan entities. Visual keys match the architect’s designerly way of thinking. The visual keys are in fact nothing else than a graphical codification of architecture within the realm of architectural composition. The software, that has been developed so far, does not only allow users to access cases via the keys we have implemented, but it also provides a tool to sketch and submit their own keys.
series CAADRIA
email
last changed 2022/06/07 07:58

_id 4f57
authors Nikiforiadis, Faidon and Pitts, Adrian
year 2002
title A Study of the Accuracy of Daylighting Simulation of Heavily Obstructed Buildings in the Urban Canyons of Athens
doi https://doi.org/10.52842/conf.ecaade.2002.456
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 456-463
summary This paper deals with the use and evaluation of daylighting simulation tools in relation to a complex urban environment. The environment concerned is one commonly found in city centre areas where the proximity of buildings leads to the creation of ‘urban canyons’; the result of this is that assessment and simulation of daylight requires a more sophisticated approach than for other situations. In urban areas building layout is the most important factor effecting daylight, sunlight and solar heat gain reaching a building. It also affects sunlight in open spaces, ventilation, shelter and the dispersal of pollutants. In order to produce a more realistic understanding of the dynamic effects of daylight, there is a need not only for the research and development of advanced CAD and lighting simulation tools, but also of the study of possible alternative methods in their application. In the work reported in this paper, an attempt has been made to move the focus of lighting and daylighting simulation from the scale of a room to that of a whole building; the building itself being surrounded by its specific urban environment (including its microclimate). The study evaluates if there is sufficient evidence that it is possible with such complexity to reach reliable computation results after executing the simulation. The case study presented uses a 4D model of an urban canyon to investigate the sensitivity of such a complex simulation system. It can also be used to find ways to analyse and predict how daylight is reflected, refracted, scattered, diffused, polarised, diffracted and absorbed as it traverses an urban environment.
series eCAADe
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_631499 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002