CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 515

_id 82ac
authors Caldas, Luisa Gama and Norford, Leslie K.
year 2002
title A design optimization tool based on a genetic algorithm
source Automation in Construction 11 (2) (2002) pp. 173-184
summary Much interest has been recently devoted to generative processes in design. Advances in computational tools for design applications, coupled with techniques from the field of artificial intelligence, have lead to new possibilities in the way computers can inform and actively interact with the design process. In this paper, we use the concepts of generative and goal-oriented design to propose a computer tool that can help the designer to generate and evaluate certain aspects of a solution towards an optimized behavior of the final configuration. This work focuses mostly on those aspects related to the environmental performance of buildings. Genetic Algorithms (GAs) are applied as a generative and search procedure to look for optimized design solutions in terms of thermal and lighting performance in a building. The GA is first used to generate possible design solutions, which are then evaluated in terms of lighting and thermal behavior using a detailed thermal analysis program (DOE2.1E). The results from the simulations are subsequently used to further guide the GA search towards finding low-energy solutions to the problem under study. Solutions can be visualized using an AutoLisp routine. The specific problem addressed in this study is the placing and sizing of windows in an office building. The same method is applicable to a wide range of design problems like the choice of construction materials, design of shading elements, or sizing of lighting and mechanical systems for buildings.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 7992
id 7992
authors von Buelow, Peter
year 2002
title USING EVOLUTIONARY ALGORITHMS TO AID DESIGNERS OF ARCHITECTURAL STRUCTURES
source Creative evolutionary systems, eds Bentley, Peter & Corne, David, Morgan Kaufmann, pp 315-336
summary This paper describes the application of an Intelligent Genetic Design Tool (IGDT) in the design of architectural, structural elements. As a computer design aid an IGDT is innovative in its intelligent interaction with the designer. By always submitting multiple solutions for review by the designer, it is less likely to cause design fixation than other optimization techniques, and allows the user greater range in exploring hard-to-code design criteria such as aesthetics. As an example, the design of a cantilever truss is briefly explored. Using the coded optimization criterion of weight, and the designer's non-coded criteria of visual aesthetics and performance, a series of possible designs are explored. The ability of an IGDT to intelligently respond to the designer's preferences in a way that promotes creative thinking on the part of the designer is demonstrated. A final truss design is selected based on the use of the tool. It is concluded that an IGDT offers a significantly different approach to computer aided structural design which has the potential to enhance the user's own creativity in determining a good solution.
keywords evolutionary form exploration genetic algorithm design
series book
type normal paper
email
last changed 2006/04/07 21:55

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
doi https://doi.org/10.52842/conf.acadia.2016.140
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id ga0226
id ga0226
authors Liu, X., Frazer, Jh. and Tang, M.X.
year 2002
title A generative design system based on evolutionary and mathematical functions
source International Conference on Generative Art
summary Previous work by Professor John Frazer on Evolutionary Architecture provides a basis for the development of a system evolving architectural envelopes in a generic and abstract manner. Recent research by the authors has focused on the implementation of a virtual environment for the automatic generation and exploration of complex forms and architectural envelopes based on solid modelling techniques and the integration of evolutionary algorithms, enhanced computational and mathematical models. Abstract data types are introduced for genotypes in a genetic algorithm order to develop complex models using generative and evolutionary computing techniques. Multi-objective optimisation techniques are employed for defining the fitness function in the evaluation process.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id ddssar0223
id ddssar0223
authors Mahdavi, A, Suter G. and Ries, R.
year 2002
title A Representation Scheme for Integrated Building Performance Analysis
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary This paper presents a representational scheme for integrated building performance analysis. The underlying research work was motivated by the need for seamless exchange of structured design information.A comprehensive and widely accepted industry standard suitable for exchanging design information among the various AEC (Architecture/Engineering/Construction) applications has yet to emerge. As a contribution to this on-going discussion, we present a specific approach to the integration problem in building product modeling. This approach can be viewed as pragmatic or bottom-up in the sense that itwas driven by the informational needs of related individual domains (particularly in the early stages of design) rather than by a quest for a universally applicable solution. In this paper, we describe a schemawhich emerged from the SEMPER effort, a multi-year project aimed at supporting detailed performance analysis for early design in the energy, life-cycle analysis, lighting, and thermal comfort domains. Thisschema relies on a representational division of labor between a shared building model, and various disciplinary (domain) models. Specifically, we present a documentation of the shared object model together with disciplinary models for the energy, light, acoustics, and life-cyle assessment domain.
keywords building product models, building performance, integration
series DDSS
last changed 2003/08/07 16:36

_id d65c
authors Glymph, J., Shelden, D., Ceccato, C., Mussel, J. and Schober, H.
year 2002
title A Parametric Strategy for Freeform Glass Structures Using Quadrilateral Planar Facets
doi https://doi.org/10.52842/conf.acadia.2002.303
source Thresholds - Design, Research, Education and Practice, in the Space Between the Physical and the Virtual [Proceedings of the 2002 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-11-X] Pomona (California) 24-27 October 2002, pp. 303-321
summary The design and construction of freeform glass roofing structures is generally accomplished through theuse of either planar triangular glass facets or curved (formed) glass panes. This paper describesongoing research on the constructability of such structures using planar quadrilateral glass facets for theJerusalem Museum of Tolerance project by Gehry Partners, in collaboration with Schlaich Bergermann& Partners, engineers. The challenge here lies not only in the development of a geometric strategy forgenerating quadrilateral planar facet solutions, but also in the fact that said solutions must closely matchthe designs created initially in physical model form by the architects.We describe a simple but robust geometric method for achieving the structure by incorporating thenecessary geometric principles into a computational parametric framework using the CATIA Version 5system. This generative system consists of a hierarchical set of geometric ‘control elements’, that drivethe design toward constructible configurations. Optimization techniques for approximating the generatedstructural shape to the original created by the designers are also described. The paper presents theunderlying geometric principles to the strategy and the resulting computational approach.
series ACADIA
email
last changed 2022/06/07 07:51

_id caadria2006_179
id caadria2006_179
authors KEATRUANGKAMALA K., NILKAEW P.
year 2006
title STRONG VALID INEQUALITY CONSTRAINTS FOR ARCHITECTURAL LAYOUT DESIGN OPTIMIZATION
doi https://doi.org/10.52842/conf.caadria.2006.x.w5d
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 179-185
summary In the past decades, many attempts have been made to solve the challenging architectural layout design problem such as non-linear programming and evolutionary algorithm (Michalek and Papalambros, 2002). The Mixed Integer Programming (MIP) (Kamol and Krung, 2005) was recently developed to find the global optimal solution. However, the problem can be shown to belong to the class of NP-hard problem (Michalek and Papalambros, 2002). Hence, only the small instances of the problem can be solved in a reasonable time. In order to deal with large problem sizes, this paper utilizes the strong valid inequalities (George and Laurence). It cut off the infeasible points in the integral search space by formulated the disconnected constraints involved with line configurations of three rooms. It is shown to significantly increase the computational speed to more than thirty percents. This exhibits the practical use of the MIP formulation to solve the medium size architectural layout design problems.
series CAADRIA
email
last changed 2022/06/07 07:49

_id 8cc7
authors Chen, Julie
year 2002
title DAM: Digital Animation Museum
source University of Washington, Design Machine Group
summary The interaction of architecture and technology is, to many, simply a relationship between a building and the materials from which it is constructed. This thesis, however, explores the notion that architectural spaces and forms are influenced not only by construction technology, but also by everyday technology that we use to better our lives, and particularly focuses on the potential impact of wireless information technology on architecture. This thesis asserts that the implementation of information technology in architecture encourages greater interactivity between building and visitor and also increases flexibility in spatial programming. By incorporating wireless information technology as an essential design element of a museum, traditional notions of control points can be eliminated, and the building experience may be manipulated in a variety of ways to interact with and respond to visitor interests and preferences. In this way, both building and visitors are able to collaborate to produce a unique and individualized experience of the building space.
series thesis:MSc
email
more http://dmg.caup.washington.edu/xmlSiteEngine/browsers/stylin/publications.html
last changed 2004/06/02 19:12

_id acadia17_202
id acadia17_202
authors Cupkova, Dana; Promoppatum, Patcharapit
year 2017
title Modulating Thermal Mass Behavior Through Surface Figuration
doi https://doi.org/10.52842/conf.acadia.2017.202
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 202-211
summary This research builds upon a previous body of work focused on the relationship between surface geometry and heat transfer coefficients in thermal mass passive systems. It argues for the design of passive systems with higher fidelity to multivariable space between performance and perception. Rooted in the combination of form and matter, the intention is to instrumentalize design principles for the choreography of thermal gradients between buildings and their environment from experiential, spatial and topological perspectives (Figure 1). Our work is built upon the premise that complex geometries can be used to improve both the aesthetic and thermodynamic performance of passive building systems (Cupkova and Azel 2015) by actuating thermal performance through geometric parameters primarily due to convection. Currently, the engineering-oriented approach to the design of thermal mass relies on averaged thermal calculations (Holman 2002), which do not adequately describe the nuanced differences that can be produced by complex three-dimensional geometries of passive thermal mass systems. Using a combination of computational fluid dynamic simulations with physically measured data, we investigate the relationship of heat transfer coefficients related to parameters of surface geometry. Our measured results suggest that we can deliberately and significantly delay heat absorption re-radiation purely by changing the geometric surface pattern over the same thermal mass. The goal of this work is to offer designers a more robust rule set for understanding approximate thermal lag behaviors of complex geometric systems, with a focus on the design of geometric properties rather than complex thermal calculations.
keywords design methods; information processing; physics; smart materials
series ACADIA
email
last changed 2022/06/07 07:56

_id b74f
authors Dijkstra, Jan and Timmermans, Harry
year 2002
title Towards a multi-agent model for visualizing simulated user behavior to support the assessment of design performance
source Automation in Construction 11 (2) (2002) pp. 135-145
summary We introduce the outline of a multi-agent model that can be used for visualizing simulated user behavior to support the assessment of design performance. We will consider various performance indicators of building environments, which are related to user reaction to design decisions. This system may serve as a media tool in the design process for a better understanding of what the design will look like, especially for those cases where design or planning decisions will affect the behavior of individuals. The system is based on cellular automata and multi-agent simulation technology. The system simulates how agents move around in a particular 3D (or 2D) environment, in which space is represented as a lattice of cells. Agents represent objects or people with their own behavior, moving over the network. Each agent will be located in a simulated space, based on the cellular automata grid. Each iteration of the simulation is based on a parallel update of the agents conforming local rules. Agents positioned within an environment will need sensors to perceive their local neighborhood and some means with which to affect the environment. In this way, autonomous individuals and the interaction between them can be simulated by the system. As a result, designers can use the system to assess the likely consequences of their design decisions on user behavior. We think that the system provides a potentially valuable tool to support design and decision-making processes, related to user behavior in architecture and urban planning.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id 349e
authors Durmisevic, Sanja
year 2002
title Perception Aspects in Underground Spaces using Intelligent Knowledge Modeling
source Delft University of Technology
summary The intensification, combination and transformation are main strategies for future spatial development of the Netherlands, which are stated in the Fifth Bill regarding Spatial Planning. These strategies indicate that in the future, space should be utilized in a more compact and more efficient way requiring, at the same time, re-evaluation of the existing built environment and finding ways to improve it. In this context, the concept of multiple space usage is accentuated, which would focus on intensive 4-dimensional spatial exploration. The underground space is acknowledged as an important part of multiple space usage. In the document 'Spatial Exploration 2000', the underground space is recognized by policy makers as an important new 'frontier' that could provide significant contribution to future spatial requirements.In a relatively short period, the underground space became an important research area. Although among specialists there is appreciation of what underground space could provide for densely populated urban areas, there are still reserved feelings by the public, which mostly relate to the poor quality of these spaces. Many realized underground projects, namely subways, resulted in poor user satisfaction. Today, there is still a significant knowledge gap related to perception of underground space. There is also a lack of detailed documentation on actual applications of the theories, followed by research results and applied techniques. This is the case in different areas of architectural design, but for underground spaces perhaps most evident due to their infancv role in general architectural practice. In order to create better designs, diverse aspects, which are very often of qualitative nature, should be considered in perspective with the final goal to improve quality and image of underground space. In the architectural design process, one has to establish certain relations among design information in advance, to make design backed by sound rationale. The main difficulty at this point is that such relationships may not be determined due to various reasons. One example may be the vagueness of the architectural design data due to linguistic qualities in them. Another, may be vaguely defined design qualities. In this work, the problem was not only the initial fuzziness of the information but also the desired relevancy determination among all pieces of information given. Presently, to determine the existence of such relevancy is more or less a matter of architectural subjective judgement rather than systematic, non-subjective decision-making based on an existing design. This implies that the invocation of certain tools dealing with fuzzy information is essential for enhanced design decisions. Efficient methods and tools to deal with qualitative, soft data are scarce, especially in the architectural domain. Traditionally well established methods, such as statistical analysis, have been used mainly for data analysis focused on similar types to the present research. These methods mainly fall into a category of pattern recognition. Statistical regression methods are the most common approaches towards this goal. One essential drawback of this method is the inability of dealing efficiently with non-linear data. With statistical analysis, the linear relationships are established by regression analysis where dealing with non-linearity is mostly evaded. Concerning the presence of multi-dimensional data sets, it is evident that the assumption of linear relationships among all pieces of information would be a gross approximation, which one has no basis to assume. A starting point in this research was that there maybe both linearity and non-linearity present in the data and therefore the appropriate methods should be used in order to deal with that non-linearity. Therefore, some other commensurate methods were adopted for knowledge modeling. In that respect, soft computing techniques proved to match the quality of the multi-dimensional data-set subject to analysis, which is deemed to be 'soft'. There is yet another reason why soft-computing techniques were applied, which is related to the automation of knowledge modeling. In this respect, traditional models such as Decision Support Systems and Expert Systems have drawbacks. One important drawback is that the development of these systems is a time-consuming process. The programming part, in which various deliberations are required to form a consistent if-then rule knowledge based system, is also a time-consuming activity. For these reasons, the methods and tools from other disciplines, which also deal with soft data, should be integrated into architectural design. With fuzzy logic, the imprecision of data can be dealt with in a similar way to how humans do it. Artificial neural networks are deemed to some extent to model the human brain, and simulate its functions in the form of parallel information processing. They are considered important components of Artificial Intelligence (Al). With neural networks, it is possible to learn from examples, or more precisely to learn from input-output data samples. The combination of the neural and fuzzy approach proved to be a powerful combination for dealing with qualitative data. The problem of automated knowledge modeling is efficiently solved by employment of machine learning techniques. Here, the expertise of prof. dr. Ozer Ciftcioglu in the field of soft computing was crucial for tool development. By combining knowledge from two different disciplines a unique tool could be developed that would enable intelligent modeling of soft data needed for support of the building design process. In this respect, this research is a starting point in that direction. It is multidisciplinary and on the cutting edge between the field of Architecture and the field of Artificial Intelligence. From the architectural viewpoint, the perception of space is considered through relationship between a human being and a built environment. Techniques from the field of Artificial Intelligence are employed to model that relationship. Such an efficient combination of two disciplines makes it possible to extend our knowledge boundaries in the field of architecture and improve design quality. With additional techniques, meta know/edge, or in other words "knowledge about knowledge", can be created. Such techniques involve sensitivity analysis, which determines the amount of dependency of the output of a model (comfort and public safety) on the information fed into the model (input). Another technique is functional relationship modeling between aspects, which is derivation of dependency of a design parameter as a function of user's perceptions. With this technique, it is possible to determine functional relationships between dependent and independent variables. This thesis is a contribution to better understanding of users' perception of underground space, through the prism of public safety and comfort, which was achieved by means of intelligent knowledge modeling. In this respect, this thesis demonstrated an application of ICT (Information and Communication Technology) as a partner in the building design process by employing advanced modeling techniques. The method explained throughout this work is very generic and is possible to apply to not only different areas of architectural design, but also to other domains that involve qualitative data.
keywords Underground Space; Perception; Soft Computing
series thesis:PhD
email
last changed 2003/02/12 22:37

_id 2c3e
authors Estévez, Alberto T.
year 2002
title El nuevo proyectar cibernético-digital y El nuevo proyectar ecológico-medioambiental [The new cyber-digital project and the new ecological-environmental project.]
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 10-13
summary “Genetic architectures”, not only like a metaphorical name. New materials and new tools give a new architecture. Up to now the human being had to conform with acting only at the superficial level of objects. Now, it’s possible to think further away and descend to actions at the molecular level, influencing on genetic design and on programming chains which are then developed by themselves as artificial computing elements and natural live elements. It’s time to apply all these to architecture, when these can become an integrating part of architecture. These should include an advanced contemporary architecture versus (and basing itself on) the use of the computer as a mere substitute of manual drafts while improving pintoresque ecology: “the new cibernetic-digital architectural design & the new ecological-environmental architectural design”. Not building in the nature, building with the nature, building the nature self. The utopy of today is the reality of tomorrow.
series SIGRADI
email
last changed 2016/03/10 09:51

_id bca4
authors Glaser, D., Warfield, R., Carrier, K., Lam, A., Yong, Y.,Canny, J., Ubbelohde, M. and Do, E.
year 2002
title Multi-Resolution Sky Visualization: Daylight Design and Design Tools
doi https://doi.org/10.52842/conf.acadia.2002.251
source Thresholds - Design, Research, Education and Practice, in the Space Between the Physical and the Virtual [Proceedings of the 2002 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-11-X] Pomona (California) 24-27 October 2002, pp. 251-261
summary This paper describes how building designers make sense of the sky and modern visualizationtechniques for representing them. The dialectic approach addresses technological innovation withrespect to existing social practices. This is done for two reasons—to illustrate where practices are andhow they can be extended with innovative technologies. It is shown that building designers maintainvarious levels of expertise for managing daylight design. Visualization prototypes are introduced alsowith different degrees of precision. The paper concludes with implications for the development ofdesign tools and use by building designers.
series ACADIA
email
last changed 2022/06/07 07:51

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id 9f9c
authors Hu, Xiaochun
year 2002
title An Information-based Framework for Composites Design
source Drexel University
summary The heterogeneity of composites determines that composite materials can be engineered to better satisfy a specific design requirement. The main problems that have hindered the application of composites are the need for the material and manufacturing design to be conducted simultaneously, the involvement of a large number of design factors, the difficulty in the characterization of composites, and the inherent repetition of the design process. Considering these problems, this thesis presents an information-based framework for composites design. This research consists of four main aspects: (1) The development of a heterogeneous CAD modeling algorithm and an integrated CAD/CAE method, and their application in a unit cell-based characterization of composite materials with a complex fiber form; (2)The development of a unit cell database for improving the material and manufacturing process design, which covers the design of its database model and the access strategies based on the logic architecture of unit cells and the relationships among elements of unit cells and with the environments; (3)The design of an Information-Based Design Support System (IBDSS) to support the composites design by using the unit cell database, in which the blackboard framework is adopted for the system to organize various computer techniques for different design stages, and to support the design iterating to satisfactory ones incrementally and efficiently, and the data structure of the blackboard, the algorithm to control design iterations, and design procedures for every stage are studied; and (4) The introduction of a ranking-based unit cell evaluation methodology and effective ranking factors for facilitating and improving the composite design process. The approach improves the efficiency of composites design by automating design iterations, supporting composite characterization, alleviating the cost of composite material and manufacturing method design, and assisting in tailored material selection. Case studies are presented to show how the IBDSS is applied to support composites design.
keywords Mechanical Engineering
series thesis:PhD
email
last changed 2003/02/12 22:37

_id c7e9
authors Maver, T.W.
year 2002
title Predicting the Past, Remembering the Future
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 2-3
summary Charlas Magistrales 2There never has been such an exciting moment in time in the extraordinary 30 year history of our subject area, as NOW,when the philosophical theoretical and practical issues of virtuality are taking centre stage.The PastThere have, of course, been other defining moments during these exciting 30 years:• the first algorithms for generating building layouts (circa 1965).• the first use of Computer graphics for building appraisal (circa 1966).• the first integrated package for building performance appraisal (circa 1972).• the first computer generated perspective drawings (circa 1973).• the first robust drafting systems (circa 1975).• the first dynamic energy models (circa 1982).• the first photorealistic colour imaging (circa 1986).• the first animations (circa 1988)• the first multimedia systems (circa 1995), and• the first convincing demonstrations of virtual reality (circa 1996).Whereas the CAAD community has been hugely inventive in the development of ICT applications to building design, it hasbeen woefully remiss in its attempts to evaluate the contribution of those developments to the quality of the built environmentor to the efficiency of the design process. In the absence of any real evidence, one can only conjecture regarding the realbenefits which fall, it is suggested, under the following headings:• Verisimilitude: The extraordinary quality of still and animated images of the formal qualities of the interiors and exteriorsof individual buildings and of whole neighborhoods must surely give great comfort to practitioners and their clients thatwhat is intended, formally, is what will be delivered, i.e. WYSIWYG - what you see is what you get.• Sustainability: The power of «first-principle» models of the dynamic energetic behaviour of buildings in response tochanging diurnal and seasonal conditions has the potential to save millions of dollars and dramatically to reduce thedamaging environmental pollution created by badly designed and managed buildings.• Productivity: CAD is now a multi-billion dollar business which offers design decision support systems which operate,effectively, across continents, time-zones, professions and companies.• Communication: Multi-media technology - cheap to deliver but high in value - is changing the way in which we canexplain and understand the past and, envisage and anticipate the future; virtual past and virtual future!MacromyopiaThe late John Lansdown offered the view, in his wonderfully prophetic way, that ...”the future will be just like the past, onlymore so...”So what can we expect the extraordinary trajectory of our subject area to be?To have any chance of being accurate we have to have an understanding of the phenomenon of macromyopia: thephenomenon exhibitted by society of greatly exaggerating the immediate short-term impact of new technologies (particularlythe information technologies) but, more importantly, seriously underestimating their sustained long-term impacts - socially,economically and intellectually . Examples of flawed predictions regarding the the future application of information technologiesinclude:• The British Government in 1880 declined to support the idea of a national telephonic system, backed by the argumentthat there were sufficient small boys in the countryside to run with messages.• Alexander Bell was modest enough to say that: «I am not boasting or exaggerating but I believe, one day, there will bea telephone in every American city».• Tom Watson, in 1943 said: «I think there is a world market for about 5 computers».• In 1977, Ken Olssop of Digital said: «There is no reason for any individuals to have a computer in their home».The FutureJust as the ascent of woman/man-kind can be attributed to her/his capacity to discover amplifiers of the modest humancapability, so we shall discover how best to exploit our most important amplifier - that of the intellect. The more we know themore we can figure; the more we can figure the more we understand; the more we understand the more we can appraise;the more we can appraise the more we can decide; the more we can decide the more we can act; the more we can act themore we can shape; and the more we can shape, the better the chance that we can leave for future generations a trulysustainable built environment which is fit-for-purpose, cost-beneficial, environmentally friendly and culturally significactCentral to this aspiration will be our understanding of the relationship between real and virtual worlds and how to moveeffortlessly between them. We need to be able to design, from within the virtual world, environments which may be real ormay remain virtual or, perhaps, be part real and part virtual.What is certain is that the next 30 years will be every bit as exciting and challenging as the first 30 years.
series SIGRADI
email
last changed 2016/03/10 09:55

_id ddssup0212
id ddssup0212
authors Nascimento, M.A.P., Francisco, S.D., Souza, L.C.L. and Silva, A.N.R.
year 2002
title A Multimedia Application to Support Professionals in an EnvironmentallyResponsible Building Design Process
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings Avegoor, the Netherlands), 2002
summary One of the problems faced by the design professionals in trying to incorporate thermal and acoustic concerns when designing a building is the quantity and diversity of building materials that can be applied to improve a poor indoor environment and, in many cases, to later reduce energy consumption. The large amount of information on building materials usually provided as documents makes it almost impossible to the designer to compare products. In the light of the stated facts, the objective of this work was the development of a multimedia application, which was thought as a module of a more comprehensive system able to support professionals in an environmentally responsible building design process. The application takes advantage of the ability of computers to handle texts, images, sounds and movies to introduce several building materials and their characteristics to the designers, in an interactive way. The conclusion of this stage shows that rather than being a module of a larger system, the developed application can work as a powerful standalone multimedia catalogue of building materials that have special interest on thermal, acoustic, and thermal-acoustic applications. It is an application that are notonly fundamental in a support system for effective building design, but also a powerful tool for training architecture students as part of an environmentally responsible building design process.
series DDSS
last changed 2003/08/07 16:36

_id e721
authors Nitsche, Michael and Roudavski, Stanislav
year 2002
title Building Cuthbert Hall Virtual College as a Dramatically Engaging Environment
source PDC 02 - Proceedings of Participatory Design conference, T. Binder, J. Gregory, I. Wagner (eds.), Malmö. Sweden, 23-25 June 2002 [ISBN 0-9667818-2-1]
summary This paper outlines the interdisciplinary nature, collaborative work patterns and role of aesthetics in the Cuthbert Hall Virtual College research project at the Cambridge University Moving Image Studio (CUMIS) and the Centre for Applied Research in Education Technology (CARET). The project identifies key properties of dramatically engaging real-time three-dimensional virtual environments (RT 3D VE) and how the holistic experiential phenomenon of place is organised and mediated through spatial narrative patterns. Interdisciplinary by nature, the project requires a collaborative approach between science, engineering, media and architecture, and the results are revealing for all these areas. The Cuthbert Hall project invites discussion of the importance in the creation and use of RT 3D VE's - under single and multi-user conditions - of articulate aesthetics (the quality of architectural, visual and audio design; the production and incorporation of dramatic properties) and of the conditions required for collaborative, communicative use of the environment. The full theoretical and technical discussions as well as the evaluation results are outside the scope of this submission.
keywords Real-time virtual environment, Computer Game, Place, Mediation, Expressive space
series other
email
last changed 2003/02/09 16:03

_id 8461
authors Saunders, Rob
year 2002
title Curious Design Agents and Artificial Creativity - A Synthetic Approach to the Study of Creative Behaviour
source The University of Sydney, Faculty of Architecture
summary Creative products are generally recognised as satisfying two requirements: firstly they are useful, and secondly they are novel. Much effort in AI and design computing has been put into developing systems that can recognise the usefulness of the products that they generate. In contrast, the work presented in this thesis has concentrated on developing computational systems that are able to recognise the novelty of their work. The research has shown that when computational systems are given the ability to recognise both the novelty and the usefulness of their products they gain a level of autonomy that opens up new possibilities for the study of creative behaviour in single agents and the emergence of social creativity in multi-agent systems. The work presented in this thesis has developed a model of curiosity in design as the selection of design actions with the goal of generating novel artefacts. Agents that embody this model of curiosity are called “curious design agents”. The behaviour of curious design agents is demonstrated with a range of applications to visual and nonvisual design domains. Visual domains include rectilinear drawings, Spirograph patterns, and “genetic artworks” similar to the work of Karl Sims. Non-visual domains include an illustrative abstract design space useful for visualising the behaviour of curious agents and the design of doorways to accommodate the passage of large crowds. The design methods used in the different domains show that the model of curiosity is applicable to models of designing by direct manipulation, parametric configuration or by using a separate design tool that embodies the generative aspects of the design process. In addition, an approach to developing multi-agent systems with autonomous notions of creativity called artificial creativity is presented. The opportunities for studying social creativity in design are illustrated with an artificial creativity system used to study the emergence of social notions of whom and what are creative in a society of curious design agents. Developing similar artificial creativity systems promises to be a useful synthetic approach to the study of socially situated, creative design.
series thesis:PhD
email
last changed 2003/05/06 11:33

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_830387 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002