CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 513

_id bcf7
authors Arvin, Scott A. and House, Donald H.
year 2002
title Modeling architectural design objectives in physically based space planning
source Automation in Construction 11 (2) (2002) pp. 213-225
summary Physically based space planning is a means for automating the conceptual design process by applying the physics of motion to space plan elements. This methodology provides for a responsive design process, which allows a designer to easily make decisions whose consequences immediately propagate throughout the design. It combines the speed of automated design methods with the flexibility of manual design methods, while adding a highly interactive quality and a sense of collaboration with the design itself. In our approach, the designer creates a space plan by specifying and modifying graphic design objectives rather than by directly manipulating primitive geometry. The plan adapts to the changing state of objectives by applying the physics of motion to its elements. For design objectives to affect a physically based space plan, they need to apply appropriate forces to space plan elements. Space planning can be separated into two problems, determining topological properties and determining geometric properties. Design objectives can then be categorized as topological or geometric objectives. Topological objectives influence the location of individual spaces, affecting how one space relates to another. Geometric objectives influence the size and shape of space boundaries, affecting the dimensions of individual walls. This paper focuses on how to model a variety of design objectives for use in a physically based space planning system. We describe how topological objectives, such as adjacency and orientation can be modeled to apply forces to space locations, and how geometric objectives, such as area, proportion, and alignment, can be modeled to apply forces to boundary edges.
series journal paper
email
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id b13d
authors Broek, J.J., Horváth, I., Smit, B. de, Lennings, A.F., Rusák, Z. and Vergeest, J.S.M.
year 2002
title Free-form thick layer object manufacturing technology for large-sized physical models
source Automation in Construction 11 (3) (2002) pp. 335-347
summary Large-sized free-form objects of different materials are widely used in various industrial applications. Currently, layered rapid prototyping technologies are not suitable for the fabrication of this kind of objects, due to the necessity of a large number of layers and the limitations in size. This paper reports a novel approach of layered manufacturing that is more appropriate for the fabrication of these large objects. A method of thick-layered object manufacturing is presented, which is based on a higher order approximation of the shape and application of a flexible curved cutting tool. The method allows the production of physical prototypes, which need little or no finishing. In order to meet the designer's intend, as closely as possible, some feasible system characteristics are introduced. The process is ordered in a sequential way and provides a highly automated process. A hierarchical decomposition of the CAD geometry takes place into components, segments, layers and sectors, based on morphological analysis. This method enables the manufacturing and the re-assembly of the parts to produce the physical prototypes without affecting the requested functionality. Due to the possibility of obtaining multiple solutions in the physical model, much attention must be paid to the efficiency of the process.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id f4e4
authors Chiarelli, Julia
year 2002
title Una Posible visión Griega del Realismo geométrico en las Imágenes Arquitectónicas [A Possible Greek Vision of Geometric Realism in Architectural Images ]
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 268-271
summary The vision of a reality that is individual and personal. Along the history we see as the different towns they build their cities and their temples with different morphologies and in a different establishment way; but the question is: As they decided their construction? Starting from that law?The Greeks already discovered certain mechanisms of the vision in the century IV B.C This posture on the visual sense made that optic illusions have been analyzed for then to be used with premeditation in theconstruction of certain temples and its location. The departure hypothesis is centered in 2 (two)-investigation levels: 1. The definition of Illusion of Hering (optic illusions) and their with the realism in architectural image2. The analysis of the electronic scale models based on the geometry proyectual.
series SIGRADI
email
last changed 2016/03/10 09:48

_id caadria2006_597
id caadria2006_597
authors CHOR-KHENG LIM, CHING-SHUN TANG, WEI-YEN HSAO, JUNE-HAO HOU, YU-TUNG LIU
year 2006
title NEW MEDIA IN DIGITAL DESIGN PROCESS: Towards a standardize procedure of CAD/CAM fabrication
doi https://doi.org/10.52842/conf.caadria.2006.x.r4i
source CAADRIA 2006 [Proceedings of the 11th International Conference on Computer Aided Architectural Design Research in Asia] Kumamoto (Japan) March 30th - April 2nd 2006, 597-599
summary In 1990, due to the traditional architecture design and construction method difficult to build the complicated and non-geometry free-form Fish Structure in Barcelona, architect Frank Gehry started learn from the field of aerospace to utilize CAD/CAM technology in design and manufacture process. He created the free-form fish model in CAD system and exported the digital CAD model data to CAM machine (RP and CNC) to fabricate the design components, and finally assembled on the site. Gehry pioneered in the new digital design process in using CAD/CAM technology or so-called digital fabrication. It becomes an important issue recently as the CAD/CAM technology progressively act as the new digital design media in architectural design and construction process (Ryder et al., 2002; Kolarevic, 2003). Furthermore, in the field of architecture professional, some commercial computer systems had been developed on purpose of standardizes the digital design process in using CAD/CAM fabrication such as Gehry Technologies formed by Gehry Partners; SmartGeometry Group in Europe and Objectile proposed by Bernard Cache. Researchers in the research field like Mark Burry, Larry Sass, Branko Kolarevic, Schodek and others are enthusiastic about the exploration of the role of CAD/CAM fabrication as new design media in design process (Burry, 2002; Schodek et al., 2005; Lee, 2005).
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia17_202
id acadia17_202
authors Cupkova, Dana; Promoppatum, Patcharapit
year 2017
title Modulating Thermal Mass Behavior Through Surface Figuration
doi https://doi.org/10.52842/conf.acadia.2017.202
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 202-211
summary This research builds upon a previous body of work focused on the relationship between surface geometry and heat transfer coefficients in thermal mass passive systems. It argues for the design of passive systems with higher fidelity to multivariable space between performance and perception. Rooted in the combination of form and matter, the intention is to instrumentalize design principles for the choreography of thermal gradients between buildings and their environment from experiential, spatial and topological perspectives (Figure 1). Our work is built upon the premise that complex geometries can be used to improve both the aesthetic and thermodynamic performance of passive building systems (Cupkova and Azel 2015) by actuating thermal performance through geometric parameters primarily due to convection. Currently, the engineering-oriented approach to the design of thermal mass relies on averaged thermal calculations (Holman 2002), which do not adequately describe the nuanced differences that can be produced by complex three-dimensional geometries of passive thermal mass systems. Using a combination of computational fluid dynamic simulations with physically measured data, we investigate the relationship of heat transfer coefficients related to parameters of surface geometry. Our measured results suggest that we can deliberately and significantly delay heat absorption re-radiation purely by changing the geometric surface pattern over the same thermal mass. The goal of this work is to offer designers a more robust rule set for understanding approximate thermal lag behaviors of complex geometric systems, with a focus on the design of geometric properties rather than complex thermal calculations.
keywords design methods; information processing; physics; smart materials
series ACADIA
email
last changed 2022/06/07 07:56

_id ijac201412305
id ijac201412305
authors Davis, Daniel
year 2014
title Quantitatively Analysing Parametric Models
source International Journal of Architectural Computing vol. 12 - no. 3, 307-320
summary Architectural practices regularly work with parametric models, yet almost nothing is known about the general properties of these models. We do not know how large a typical model is, or how complicated, or even what the typical parametric model does. These knowledge gaps are the focus of this article, which documents the first large-scale quantitative parametric model survey. In this paper three key quantitative metrics - dimensionality, size, and cyclomatic complexity - are applied to a collection of 2002 parametric models created by 575 designers. The results show that parametric models generally exhibit a number of strong correlations, which reveal a practice of parametric modelling that has as much to do with the management of data as it does with the modelling of geometry. These findings demonstrate the utility of software engineering metrics in the description and analysis of parametric models.
series journal
last changed 2019/05/24 09:55

_id ecaade2024_230
id ecaade2024_230
authors Fekar, Hugo; Novák, Jan; Míèa, Jakub; Žigmundová, Viktória; Suleimanova, Diana; Tsikoliya, Shota; Vasko, Imrich
year 2024
title Fabrication with Residual Wood through Scanning Optimization and Robotic Milling
doi https://doi.org/10.52842/conf.ecaade.2024.1.025
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 1, pp. 25–34
summary The project deals with the use of residual wood of tree stumps and roots through scanning, optimization and robotic milling. Wood logging residue makes up to 50 percent of the trees harvested biomass. (Hakkila and Parikka 2002). Among prevailing strategies is leaving residue on site, and recovering residue for bioenergy. (Perlack and others 2005). The project explores the third strategy, using parts of the logging residue for fabrication, which may reduce the overall amount of wood logging volume. Furthermore approach aims for applying residue in its natural form and taking advantage of specific local characteristics of wood (Desch and Dinwoodie 1996). The project applies the strategy on working with stump and roots of an oak tree. Due to considerations of scale, available milling technics and available resources, chosen goal of the approach is to create a functioning chair prototype. Among the problems of the approach is the complex shape of the residue, uneven quality of wood, varying humidity and contamination with soil. After cleaning and drying, the stump is scanned and a 3D model is created. The 3D model od a stump is confronted with a 3D modelled limits of the goal typology (height, width, length, sitting surface area and overal volume of a chair) and topological optimization algorithm is used to iteratively reach the desired geometry. Unlike in established topological optimization proces, which aims for a minimal volume, the project attempts to achieve required qualities with removing minimal amount of wood. Due to geometric complexity of both stump and goal object, milling with an 6axis industrial robotic arm and a rotary table was chosen as a fabrication method. The object was clamped to the board (then connected to a rotary table) in order to provide precise location and orientation in 3D space. The milling of the object was divided in two parts, with the seating area milled in higher detail. Overall process of working with a residual wood that has potential to be both effective and present aesthetic quality based on individual characteristics of wood. Further development can integrate a generative tool which would streamline the design and fabrication proces further.
keywords Robotic arm milling, Scanning, Residual wood
series eCAADe
email
last changed 2024/11/17 22:05

_id 0d4c
authors Fischer, T., Herr, C.M., Burry, M.C. and Frazer, J.H.
year 2002
title Tangible Interfaces to Explain Gaudi's Use of Ruled-Surface Geometries: Interactive Systems Design for Haptic, Non-verbal Learning
doi https://doi.org/10.52842/conf.caadria.2002.131
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 131-138
summary This paper summarises the development of a machinereadable model series for explaining Gaudí’s use of ruled surface geometry in the Sagrada Familia in Barcelona, Spain. The first part discusses the modeling methods underlying the columns of the cathedral and the techniques required to translate them into built structures. The second part discusses the design and development of a tangible machine-readable model to explain column-modeling methods interactively in educational contexts such as art exhibitions. It is designed to explain the principles underlying the column design by means of physical interaction without using mathematical terms or language.
series CAADRIA
email
last changed 2022/06/07 07:50

_id 6a37
authors Fowler, Thomas and Muller, Brook
year 2002
title Physical and Digital Media Strategies For Exploring ‘Imagined’ Realities of Space, Skin and Light
doi https://doi.org/10.52842/conf.acadia.2002.013
source Thresholds - Design, Research, Education and Practice, in the Space Between the Physical and the Virtual [Proceedings of the 2002 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-11-X] Pomona (California) 24-27 October 2002, pp. 13-23
summary This paper will discuss an unconventional methodology for using physical and digital media strategies ina tightly structured framework for the integration of Environmental Control Systems (ECS) principles intoa third year design studio. An interchangeable use of digital media and physical material enabledarchitectural explorations of rich tactile and luminous engagement.The principles that provide the foundation for integrative strategies between a design studio and buildingtechnology course spring from the Bauhaus tradition where a systematic approach to craftsmanship andvisual perception is emphasized. Focusing particularly on color, light, texture and materials, Josef Albersexplored the assemblage of found objects, transforming these materials into unexpected dynamiccompositions. Moholy-Nagy developed a technique called the photogram or camera-less photograph torecord the temporal movements of light. Wassily Kandinsky developed a method of analytical drawingthat breaks a still life composition into diagrammatic forces to express tension and geometry. Theseschematic diagrams provide a method for students to examine and analyze the implications of elementplacements in space (Bermudez, Neiman 1997). Gyorgy Kepes's Language of Vision provides a primerfor learning basic design principles. Kepes argued that the perception of a visual image needs aprocess of organization. According to Kepes, the experience of an image is "a creative act ofintegration". All of these principles provide the framework for the studio investigation.The quarter started with a series of intense short workshops that used an interchangeable use of digitaland physical media to focus on ECS topics such as day lighting, electric lighting, and skin vocabulary tolead students to consider these components as part of their form-making inspiration.In integrating ECS components with the design studio, an nine-step methodology was established toprovide students with a compelling and tangible framework for design:Examples of student work will be presented for the two times this course was offered (2001/02) to showhow exercises were linked to allow for a clear design progression.
series ACADIA
email
last changed 2022/06/07 07:51

_id ecaade2009_193
id ecaade2009_193
authors Frumar, Jerome; Zhou, Yiyi
year 2009
title Beyond Representation: Real Time Form Finding of Tensegrity Structures with 3d ‘Compressed’ Components
doi https://doi.org/10.52842/conf.ecaade.2009.021
source Computation: The New Realm of Architectural Design [27th eCAADe Conference Proceedings / ISBN 978-0-9541183-8-9] Istanbul (Turkey) 16-19 September 2009, pp. 21-30
summary Tensegrity structures are of interest to architecture and engineering as a practical means to explore lightweight and rapidly deployable modular structures that have a high degree of geometric freedom and formal potency. The notion of tensegrity structures with 3D ‘compressed’ components is introduced and their feasibility is demonstrated through selected physical models. Attempts to further explore the architectural potential of tensegrity structures within a computational environment have proven difficult, as they are statically indeterminate and require form finding procedures to “find a geometry compatible with a self-stress state” (Motro 2002). An overview of tensegrity ‘capable’ software that can be used for architectural design is followed by a discussion that introduces an additional computational method based on particle-spring systems. This approach enables real time manipulation of tensegrity networks. Two projects that utilize this unique tool are described.
wos WOS:000334282200001
keywords Form finding, particle-spring, tensegrity, 3D compressed component
series eCAADe
email
last changed 2022/06/07 07:50

_id ga0204
id ga0204
authors García-Salgado, Tomás
year 2002
title Modular Perspective as a Method for Generative Design
source International Conference on Generative Art
summary Apparently there are many methods for perspective but if we categorize them there are just a few. Some criterions of classification relate perspective to the so-called 1-point, 2-point and 3-point methods, others —more formally— to projective geometry, descriptive geometry or vectorial algebra. Of course we cannot forget to mention the early treatises on perspective such as Alberti’s Della Pittura or Piero’s De Prospectiva Pingendi, which escapes any classification. Our aim on this article is not precisely to solve the classification problem rather we propose a new comprehensive method for perspective, capable of 3D representation without using vanishing points.The modular perspective method allows us to work in true three-dimensionality on the perspective plane (PPl). We will explain how to measure directly on the PPl the triad coordinates (x, y, p) of a given point into the visual space, and how to play with the symmetrical planes X and Y (SPl X/Y) in order to generate or recover data. Finally we will explain how to employ modular perspective in generative design formal-process through an example of application.
series other
email
more http://www.generativeart.com/
last changed 2003/08/07 17:25

_id sigradi2006_e028c
id sigradi2006_e028c
authors Griffith, Kenfield; Sass, Larry and Michaud, Dennis
year 2006
title A strategy for complex-curved building design:Design structure with Bi-lateral contouring as integrally connected ribs
source SIGraDi 2006 - [Proceedings of the 10th Iberoamerican Congress of Digital Graphics] Santiago de Chile - Chile 21-23 November 2006, pp. 465-469
summary Shapes in designs created by architects such as Gehry Partners (Shelden, 2002), Foster and Partners, and Kohn Peterson and Fox rely on computational processes for rationalizing complex geometry for building construction. Rationalization is the reduction of a complete geometric shape into discrete components. Unfortunately, for many architects the rationalization is limited reducing solid models to surfaces or data on spread sheets for contractors to follow. Rationalized models produced by the firms listed above do not offer strategies for construction or digital fabrication. For the physical production of CAD description an alternative to the rationalized description is needed. This paper examines the coupling of digital rationalization and digital fabrication with physical mockups (Rich, 1989). Our aim is to explore complex relationships found in early and mid stage design phases when digital fabrication is used to produce design outcomes. Results of our investigation will aid architects and engineers in addressing the complications found in the translation of design models embedded with precision to constructible geometries. We present an algorithmically based approach to design rationalization that supports physical production as well as surface production of desktop models. Our approach is an alternative to conventional rapid prototyping that builds objects by assembly of laterally sliced contours from a solid model. We explored an improved product description for rapid manufacture as bilateral contouring for structure and panelling for strength (Kolarevic, 2003). Infrastructure typically found within aerospace, automotive, and shipbuilding industries, bilateral contouring is an organized matrix of horizontal and vertical interlocking ribs evenly distributed along a surface. These structures are monocoque and semi-monocoque assemblies composed of structural ribs and skinning attached by rivets and adhesives. Alternative, bi-lateral contouring discussed is an interlocking matrix of plywood strips having integral joinery for assembly. Unlike traditional methods of building representations through malleable materials for creating tangible objects (Friedman, 2002), this approach constructs with the implication for building life-size solutions. Three algorithms are presented as examples of rationalized design production with physical results. The first algorithm [Figure 1] deconstructs an initial 2D curved form into ribbed slices to be assembled through integral connections constructed as part of the rib solution. The second algorithm [Figure 2] deconstructs curved forms of greater complexity. The algorithm walks along the surface extracting surface information along horizontal and vertical axes saving surface information resulting in a ribbed structure of slight double curvature. The final algorithm [Figure 3] is expressed as plug-in software for Rhino that deconstructs a design to components for assembly as rib structures. The plug-in also translates geometries to a flatten position for 2D fabrication. The software demonstrates the full scope of the research exploration. Studies published by Dodgson argued that innovation technology (IvT) (Dodgson, Gann, Salter, 2004) helped in solving projects like the Guggenheim in Bilbao, the leaning Tower of Pisa in Italy, and the Millennium Bridge in London. Similarly, the method discussed in this paper will aid in solving physical production problems with complex building forms. References Bentley, P.J. (Ed.). Evolutionary Design by Computers. Morgan Kaufman Publishers Inc. San Francisco, CA, 1-73 Celani, G, (2004) “From simple to complex: using AutoCAD to build generative design systems” in: L. Caldas and J. Duarte (org.) Implementations issues in generative design systems. First Intl. Conference on Design Computing and Cognition, July 2004 Dodgson M, Gann D.M., Salter A, (2004), “Impact of Innovation Technology on Engineering Problem Solving: Lessons from High Profile Public Projects,” Industrial Dynamics, Innovation and Development, 2004 Dristas, (2004) “Design Operators.” Thesis. Massachusetts Institute of Technology, Cambridge, MA, 2004 Friedman, M, (2002), Gehry Talks: Architecture + Practice, Universe Publishing, New York, NY, 2002 Kolarevic, B, (2003), Architecture in the Digital Age: Design and Manufacturing, Spon Press, London, UK, 2003 Opas J, Bochnick H, Tuomi J, (1994), “Manufacturability Analysis as a Part of CAD/CAM Integration”, Intelligent Systems in Design and Manufacturing, 261-292 Rudolph S, Alber R, (2002), “An Evolutionary Approach to the Inverse Problem in Rule-Based Design Representations”, Artificial Intelligence in Design ’02, 329-350 Rich M, (1989), Digital Mockup, American Institute of Aeronautics and Astronautics, Reston, VA, 1989 Schön, D., The Reflective Practitioner: How Professional Think in Action. Basic Books. 1983 Shelden, D, (2003), “Digital Surface Representation and the Constructability of Gehry’s Architecture.” Diss. Massachusetts Institute of Technology, Cambridge, MA, 2003 Smithers T, Conkie A, Doheny J, Logan B, Millington K, (1989), “Design as Intelligent Behaviour: An AI in Design Thesis Programme”, Artificial Intelligence in Design, 293-334 Smithers T, (2002), “Synthesis in Designing”, Artificial Intelligence in Design ’02, 3-24 Stiny, G, (1977), “Ice-ray: a note on the generation of Chinese lattice designs” Environmental and Planning B, volume 4, pp. 89-98
keywords Digital fabrication; bilateral contouring; integral connection; complex-curve
series SIGRADI
email
last changed 2016/03/10 09:52

_id c8df
authors Issa, Rajaa and Moloney, Jules
year 2002
title The Potential of Computer Modeling Software to Support a Consideration of Building Materials in Architectural Design Education
doi https://doi.org/10.52842/conf.ecaade.2002.440
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 440-447
summary Most CAAD software in use for architectural education relies heavily on abstract geometry manipulation to create architectural form. Building materials are usually applied as finishing textures to complement the visual effect of the geometry. This paper attempts to investigate the limitations of commonly used CAAD software in terms of encouraging an intuitive thinking about the physical characteristics of building materials in the design studio environment. A case study involving 90 students is presented. The possibility of developing software that uses geometrical abstractions of different materials as the basis for modeling architectural form in the design studio is introduced.
series eCAADe
email
last changed 2022/06/07 07:50

_id ddssar0222
id ddssar0222
authors Mahdavi, Ardeshir and Gurtekin, Beran
year 2002
title Shapes, Numbers, Perception: Aspects and Dimensions of the Design-Performance Space
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary The design-performance space denotes a virtual space that can be constructed based on discretized design variables and performance indicators. For an n-dimensional design-performance space, n = d + p,whereby d = the number of discrete design variables, and p = the number of discrete performance indicators. Once constructed, this space can be visualized and used by the designer to explore the relationship between design variables and corresponding performance attributes. We present, for the building design domain, an approach to generation and exploration of the design-performance space. In this approach, an initial design is used to generate a set of alternative designs that collectively constitutethe design space. One way of doing this relies on the "scalarization" of design variables. The scalarization leads to the representation of a building as a point in a d-dimensional design space. Each coordinate ofsuch a space accommodates a salient (semantic or geometric) design variable. Subsequently, the entire corpus of design alternatives is subjected to performance modeling. Based on the modeling results, an ndimensionaldesign-performance space is constructed. We specifically address the potential for and limitations of describing building geometry in terms of a continuous scalar dimension of the design space. We introduce the concept of "Relative Compactness", which is derived by comparing the volume tosurface area ratio of a shape to that of a (compact) reference shape with the same volume. We present the results of an empirical study, which shows a significant correlation between the numeric values of relativecompactness and the subjective evaluation of the compactness of architectural shapes.
keywords Buildings, design, performance, simulation, geometry
series DDSS
last changed 2003/08/07 16:36

_id 24ff
authors Mark, Earl and Aish, Robert
year 2002
title Exploring New Pathways Between Physical and Virtual Models - The Vaults at Fountains Abbey
doi https://doi.org/10.52842/conf.ecaade.2002.464
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 464-470
summary The first generations of computer aided design systems were largely characterized by geometrical modeling software that could, in some applications, generate physical output in the form of computer aided manufacturing. More recently the technology has expanded to include a variety of ways to reverse direction, such that physical objects are captured and translated into computer graphics geometrical models. Laser surveying methods that produce point clouds are among the newer technologies that make this possible. The interpretation of the point clouds and translation of them into a computer graphics three-dimensional model can be subject to various mediation processes. This paper reports on a translation environment that interprets the point clouds so as to not just replicate the physical world, but rather encapsulates it towards the refinement and realization of geometry design objectives. A case study of Fountains Abbey, a Cistercian Abbey in the United Kingdom, serves as the basis for experimentation and control of surface geometry.
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia16_140
id acadia16_140
authors Nejur, Andrei; Steinfeld, Kyle
year 2016
title Ivy: Bringing a Weighted-Mesh Representations to Bear on Generative Architectural Design Applications
doi https://doi.org/10.52842/conf.acadia.2016.140
source ACADIA // 2016: POSTHUMAN FRONTIERS: Data, Designers, and Cognitive Machines [Proceedings of the 36th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-77095-5] Ann Arbor 27-29 October, 2016, pp. 140-151
summary Mesh segmentation has become an important and well-researched topic in computational geometry in recent years (Agathos et al. 2008). As a result, a number of new approaches have been developed that have led to innovations in a diverse set of problems in computer graphics (CG) (Sharmir 2008). Specifically, a range of effective methods for the division of a mesh have recently been proposed, including by K-means (Shlafman et al. 2002), graph cuts (Golovinskiy and Funkhouser 2008; Katz and Tal 2003), hierarchical clustering (Garland et al. 2001; Gelfand and Guibas 2004; Golovinskiy and Funkhouser 2008), primitive fitting (Athene et al. 2004), random walks (Lai et al.), core extraction (Katz et al.) tubular multi-scale analysis (Mortara et al. 2004), spectral clustering (Liu and Zhang 2004), and critical point analysis (Lin et al. 20070, all of which depend upon a weighted graph representation, typically the dual of a given mesh (Sharmir 2008). While these approaches have been proven effective within the narrowly defined domains of application for which they have been developed (Chen 2009), they have not been brought to bear on wider classes of problems in fields outside of CG, specifically on problems relevant to generative architectural design. Given the widespread use of meshes and the utility of segmentation in GAD, by surveying the relevant and recently matured approaches to mesh segmentation in CG that share a common representation of the mesh dual, this paper identifies and takes steps to address a heretofore unrealized transfer of technology that would resolve a missed opportunity for both subject areas. Meshes are often employed by architectural designers for purposes that are distinct from and present a unique set of requirements in relation to similar applications that have enjoyed more focused study in computer science. This paper presents a survey of similar applications, including thin-sheet fabrication (Mitani and Suzuki 2004), rendering optimization (Garland et al. 2001), 3D mesh compression (Taubin et al. 1998), morphin (Shapira et al. 2008) and mesh simplification (Kalvin and Taylor 1996), and distinguish the requirements of these applications from those presented by GAD, including non-refinement in advance of the constraining of mesh geometry to planar-quad faces, and the ability to address a diversity of mesh features that may or may not be preserved. Following this survey of existing approaches and unmet needs, the authors assert that if a generalized framework for working with graph representations of meshes is developed, allowing for the interactive adjustment of edge weights, then the recent developments in mesh segmentation may be better brought to bear on GAD problems. This paper presents work toward the development of just such a framework, implemented as a plug-in for the visual programming environment Grasshopper.
keywords tool-building, design simulation, fabrication, computation, megalith
series ACADIA
type paper
email
last changed 2022/06/07 07:58

_id caadria2019_307
id caadria2019_307
authors Nguyen, Binh Vinh Duc, Peng, Chengzhi and Wang, Tsung-Hsien
year 2019
title KOALA - Developing a generative house design system with agent-based modelling of social spatial processes
doi https://doi.org/10.52842/conf.caadria.2019.1.235
source M. Haeusler, M. A. Schnabel, T. Fukuda (eds.), Intelligent & Informed - Proceedings of the 24th CAADRIA Conference - Volume 1, Victoria University of Wellington, Wellington, New Zealand, 15-18 April 2019, pp. 235-244
summary The paper presents the development of an agent-based approach to modelling the interaction of human emotion and behaviour with built spaces. The study addresses how human behaviour and social relation can be represented and modelled to interact with a virtual built environment composed in parametric architectural geometry. KOALA, a prototype of agent-based modelling of social spatial dynamics at the core of a parametric architectural design environment is proposed. In building KOALA's system architecture, we adapted the PECS (Physical, Emotional, Cognitive, Social) reference model of human behaviour (Schmidt 2002) and introduced the concept of Social Spatial Comfort as a measurement of three key factors influencing human spatial experiences. KOALA was evaluated by a comparative modelling of two contrasting Vietnamese dwellings known to us. As expected, KOALA returns very different temporal characteristics of spatial modifications of the two dwellings over a simulated timeframe of one year. We discuss the lessons learned and further research required.
keywords Parametricism; generative house design system; architectural parametric geometry; human behaviour; social-spatial dynamics
series CAADRIA
email
last changed 2022/06/07 07:58

_id 6862
authors Ozel, Filiz and Kohler, Niklaus
year 2002
title Data Modeling Issues in Simulating the Dynamic Processes in Life Cycle Analysis of Buildings
doi https://doi.org/10.52842/conf.acadia.2002.187
source Thresholds - Design, Research, Education and Practice, in the Space Between the Physical and the Virtual [Proceedings of the 2002 Annual Conference of the Association for Computer Aided Design In Architecture / ISBN 1-880250-11-X] Pomona (California) 24-27 October 2002, pp. 187-195
summary Typically, in simulating the dynamic processes in buildings, data modeling efforts require the modelingof the building geometry, its components and the relationship between these components, as well asthe modeling of the process that is under study. For example, in simulating the life cycle of a building,one must simulate the flow of materials as well as the flow of information as part of the processmodeling, while a component model is needed to represent the building as an artifact. A third aspect ofthis modeling effort constitutes the simulation of human intervention, i.e. the decision process that mightaffect the nature of the building itself as well as the process that acts upon it. For example, the decisionto remodel a certain component clearly affects both the component itself as well as the process ofaging, when life cycle of buildings is simulated. This paper looks at the data modeling requirements ofthe simulation of building life cycle within the context of the three parameters mentioned above: datamodel for buildings; process models and decision models. Temporal issues in data modeling, such asversioning for components, keeping track of data that are related to change and remodeling, andbuildings as temporal-spatial entities for life cycle analysis purposes are also addressed.
series ACADIA
email
last changed 2022/06/07 08:00

_id ff26
authors Paglini, Milena
year 2002
title Mandalas y Fractales: Morfologías de la Naturaleza [Mandalas and Fractals: Nature Morphologies ]
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 212-215
summary The research on the different morphological representations of Nature throughout History is only a general analysis of forms. In this case, the concepts of mandala and fractals will be found in different productions distant from one another both in time and culture. In the relationship between Art and Geometry, the mandala stands out as a way of representing nature, the one and the multiple, diversity and unity; a study of its manifestations in astrological calendars, in the rose windows of the Gothic cathedrals and the Tibetan images. The Theory of Fractals, in its differences from the Euclidean concept of dimension, will lead us to an interpretation of the “among”, the fractional, the sinuous, a continuos manifestation in nature itself; besides, bearing in mind the internal homothety, a pythagorical concept of the harmony of forms. A general look into the different modalities of representation of the same subject. The act of thinking, the reasoning on a process of geometrization on which man has always placed himself; an attempt to understand as well as to imitate what surrounds him.
series SIGRADI
email
last changed 2016/03/10 09:57

_id 1fda
authors Rashid, Hani and Couture, Lise Anne
year 2002
title Virtual Architecture – Real Space
doi https://doi.org/10.52842/conf.caadria.2002.005
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 005-8
summary We are in the very early stages of a digital revolution whose direction we will not be certain of for sometime, much in the same way that Enlightenment-era architects, theologians, and thinkers did not quite comprehend the profound changes taking place in their own time. Today’s digital technologies are having profound effects on many different aspects of our contemporary understanding from the human genome to the mapping of the cosmos. Digital manipulations that use virtual-reality technologies form a major part of this revolution. As architects we are responding in a number of ways, by conceiving of entirely new geometric principles, new methodologies, and entirely novel approaches to representation beyond perspectival geometry.
series CAADRIA
email
more http://www.asymptote.net
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 25HOMELOGIN (you are user _anon_269373 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002