CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 17 of 17

_id 82ac
authors Caldas, Luisa Gama and Norford, Leslie K.
year 2002
title A design optimization tool based on a genetic algorithm
source Automation in Construction 11 (2) (2002) pp. 173-184
summary Much interest has been recently devoted to generative processes in design. Advances in computational tools for design applications, coupled with techniques from the field of artificial intelligence, have lead to new possibilities in the way computers can inform and actively interact with the design process. In this paper, we use the concepts of generative and goal-oriented design to propose a computer tool that can help the designer to generate and evaluate certain aspects of a solution towards an optimized behavior of the final configuration. This work focuses mostly on those aspects related to the environmental performance of buildings. Genetic Algorithms (GAs) are applied as a generative and search procedure to look for optimized design solutions in terms of thermal and lighting performance in a building. The GA is first used to generate possible design solutions, which are then evaluated in terms of lighting and thermal behavior using a detailed thermal analysis program (DOE2.1E). The results from the simulations are subsequently used to further guide the GA search towards finding low-energy solutions to the problem under study. Solutions can be visualized using an AutoLisp routine. The specific problem addressed in this study is the placing and sizing of windows in an office building. The same method is applicable to a wide range of design problems like the choice of construction materials, design of shading elements, or sizing of lighting and mechanical systems for buildings.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:22

_id ddssar0213
id ddssar0213
authors De Groot, Ellie and Paule, Bernard
year 2002
title DIAL-Europe: New Functionality’s for an Integrated Daylighting Design Tool
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary The European project DIAL-Europe started in April 2000 and intends to enhance and to enlarge the capabilities of the LesoDIAL software. The aim of this “Swiss” tool was to give architects relevant information regarding the use of daylight, at the very first stage of the design process. DIAL-Europe focuses on European standards and climatic data. Further, a Heating & Cooling evaluation module and an Artificial Lighting module will be added. The objective of the Heating & Cooling module is to indicate the implications of the user’s design on heating and cooling energy and on thermal comfort.The objective of Artificial Lighting module is to develop a tool that will give an estimation of illuminance values on the work plane and provide guidance on qualitative aspects and visual comfort as well as on switching control and integration with daylight based on generic light sources and luminaires. Furthermore, the scope of the examples of simulated rooms will be increased in order to allow the user to compare their design with more similar cases. This paper will present the state of achievement and give an overview of the first version of the DIAL-Europe software, which will beavailable at the beginning of 2002.
series DDSS
last changed 2003/08/07 16:36

_id ddssar0223
id ddssar0223
authors Mahdavi, A, Suter G. and Ries, R.
year 2002
title A Representation Scheme for Integrated Building Performance Analysis
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part one: Architecture Proceedings Avegoor, the Netherlands), 2002
summary This paper presents a representational scheme for integrated building performance analysis. The underlying research work was motivated by the need for seamless exchange of structured design information.A comprehensive and widely accepted industry standard suitable for exchanging design information among the various AEC (Architecture/Engineering/Construction) applications has yet to emerge. As a contribution to this on-going discussion, we present a specific approach to the integration problem in building product modeling. This approach can be viewed as pragmatic or bottom-up in the sense that itwas driven by the informational needs of related individual domains (particularly in the early stages of design) rather than by a quest for a universally applicable solution. In this paper, we describe a schemawhich emerged from the SEMPER effort, a multi-year project aimed at supporting detailed performance analysis for early design in the energy, life-cycle analysis, lighting, and thermal comfort domains. Thisschema relies on a representational division of labor between a shared building model, and various disciplinary (domain) models. Specifically, we present a documentation of the shared object model together with disciplinary models for the energy, light, acoustics, and life-cyle assessment domain.
keywords building product models, building performance, integration
series DDSS
last changed 2003/08/07 16:36

_id ddssup0212
id ddssup0212
authors Nascimento, M.A.P., Francisco, S.D., Souza, L.C.L. and Silva, A.N.R.
year 2002
title A Multimedia Application to Support Professionals in an EnvironmentallyResponsible Building Design Process
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings Avegoor, the Netherlands), 2002
summary One of the problems faced by the design professionals in trying to incorporate thermal and acoustic concerns when designing a building is the quantity and diversity of building materials that can be applied to improve a poor indoor environment and, in many cases, to later reduce energy consumption. The large amount of information on building materials usually provided as documents makes it almost impossible to the designer to compare products. In the light of the stated facts, the objective of this work was the development of a multimedia application, which was thought as a module of a more comprehensive system able to support professionals in an environmentally responsible building design process. The application takes advantage of the ability of computers to handle texts, images, sounds and movies to introduce several building materials and their characteristics to the designers, in an interactive way. The conclusion of this stage shows that rather than being a module of a larger system, the developed application can work as a powerful standalone multimedia catalogue of building materials that have special interest on thermal, acoustic, and thermal-acoustic applications. It is an application that are notonly fundamental in a support system for effective building design, but also a powerful tool for training architecture students as part of an environmentally responsible building design process.
series DDSS
last changed 2003/08/07 16:36

_id acadia17_202
id acadia17_202
authors Cupkova, Dana; Promoppatum, Patcharapit
year 2017
title Modulating Thermal Mass Behavior Through Surface Figuration
doi https://doi.org/10.52842/conf.acadia.2017.202
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 202-211
summary This research builds upon a previous body of work focused on the relationship between surface geometry and heat transfer coefficients in thermal mass passive systems. It argues for the design of passive systems with higher fidelity to multivariable space between performance and perception. Rooted in the combination of form and matter, the intention is to instrumentalize design principles for the choreography of thermal gradients between buildings and their environment from experiential, spatial and topological perspectives (Figure 1). Our work is built upon the premise that complex geometries can be used to improve both the aesthetic and thermodynamic performance of passive building systems (Cupkova and Azel 2015) by actuating thermal performance through geometric parameters primarily due to convection. Currently, the engineering-oriented approach to the design of thermal mass relies on averaged thermal calculations (Holman 2002), which do not adequately describe the nuanced differences that can be produced by complex three-dimensional geometries of passive thermal mass systems. Using a combination of computational fluid dynamic simulations with physically measured data, we investigate the relationship of heat transfer coefficients related to parameters of surface geometry. Our measured results suggest that we can deliberately and significantly delay heat absorption re-radiation purely by changing the geometric surface pattern over the same thermal mass. The goal of this work is to offer designers a more robust rule set for understanding approximate thermal lag behaviors of complex geometric systems, with a focus on the design of geometric properties rather than complex thermal calculations.
keywords design methods; information processing; physics; smart materials
series ACADIA
email
last changed 2022/06/07 07:56

_id acadia23_v3_129
id acadia23_v3_129
authors Ayres, Phil
year 2023
title Sensitive Scaffolds – Cultivating Spatio-temporal Dialogues with Living Complexes
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary Thank you to the ACADIA team for extending the invitation to come here. For me, it's a really fantastic moment to reconnect with the ACADIA community. I've been dipping in and out of it since -- I think my first ACADIA was in Savannah, Georgia. Does anyone remember what year that was? 2001? 2002? I've been dipping in and out. And I really see this community as a model. You know, we could talk about the Mississippi and how it meanders, and passages of energy and matter and information begin to change. And the ACADIA community meanders across these different territories, but somehow it maintains its particular identity. And that identity, I think, is shrouded within ideals of sharing -- knowledge sharing -- and within a kind of creative design research, you know, rigor, which I find really fascinating.
series ACADIA
type keynote
email
last changed 2024/04/17 13:59

_id 7e02
authors Elger, Dietrich and Russell, Peter
year 2002
title The Virtual Campus: A new place for (lifelong) learning?
doi https://doi.org/10.52842/conf.ecaade.2002.472
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 472-477
summary 472 eCAADe 20 [design e-ducation] Modeling Real and Virtual Worlds Session 13 In the early spring of 2001 a collection of German universities founded a virtual faculty of architecture, which was named „Liquid Campus“. Current thinking about future forms of education in the field of architecture combined with over 4 years of experience with net-based design studios, led to questions about the future of existing universities, their buildings and their use. This problem was put to 43 students in the form of a design exercise to create a place for a virtual university. In the current situation, in which the administration of knowledge is more and more located on the internet, and even the so-called meeting places themselves can be virtualised through the help of video-conference-software, the exercise was to design a virtual campus in the framework and to carry out this design work in a simulation of distributed practice. Initial criticism of the project came from the students in that exemplary working methods were not described, but left for the students to discover on their own. The creation of a concept for the Liquid Campus meant that the participants had to imagine working in a world without the face to face contacts that form the basis (at present) of personal interaction. Additionally, the assignment to create or design possible links between the real and the virtual was not an easy task for students who normally design and plan real physical buildings. Even the tutors had difficulties in producing focused constructive criticism about a virtual campus; in effect the virtualisation of the university leads to a distinctive blurring of its boundaries. The project was conducted using the pedagogical framework of the netzentwurf.de; a relatively well established Internet based communication platform. This means that the studio was organised in the „traditional“ structure consisting of an initial 3 day workshop, a face to face midterm review, and a collective final review, held 3,5 months later in the Museum of Communication in Frankfurt am Main, Germany. In teams of 3 (with each student from a different university and a tutor located at a fourth) the students worked over the Internet to produce collaborative design solutions. The groups ended up with designs that spanned a range of solutions between real and virtual architecture. Examples of the student’s work (which is all available online) as well as their working methods are described. It must be said that the energy invested in the studio by the organisers of the virtual campus (as well as the students who took part) was considerably higher than in normal design studios and the paper seeks to look critically at the effort in relation to the outcomes achieved. The range and depth of the student’s work was surprising to many in the project, especially considering the initial hurdles (both social and technological) that had to overcome. The self-referential nature of the theme, the method and the working environment encouraged the students to take a more philosophical approach to the design problem. The paper explores the implications of the student’s conclusions on the nature of the university in general and draws conclusions specific to architectural education and the role of architecture in this process.
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2011_072
id caadria2011_072
authors Gallas, Mohamed-Anis; Didier Bur and Gilles Halin
year 2011
title Daylight and energy in the early phase of architectural design process: A design assistance method using designer’s intents
doi https://doi.org/10.52842/conf.caadria.2011.761
source Proceedings of the 16th International Conference on Computer Aided Architectural Design Research in Asia / The University of Newcastle, Australia 27-29 April 2011, pp. 761-770
summary The integration of daylighting from the beginning of the design process can help designers to create buildings that respect their environment benefit from the solar gain thus giving an answer to illumination and energy needs (Bodart et al, 2002). This paper proposes a declarative assistance method/tool designed for the early design phase. This method assists the designer in integrating the daylight and its energetic impact from the beginning of the architectural design process by means of intents. The intents are related to the daylight, energy and spatial configuration aspects of the architectural project. The method translates the designer’s intents into potential solutions. They are the first formal representation of the architect’s intents that could be customized and altered during the next architectural design phases.
keywords Daylight; energy; early design phase; design support; intents
series CAADRIA
email
last changed 2022/06/07 07:50

_id c839
authors Hwang, Jie-Eun
year 2002
title SpaceScope: Developing a Spatial Information Retrieval System - Focused on Apartment Unit Floor Plans -
source Yonsei University, Dept. of Housing & Interior Design
summary This research investigates the spatial information retrieval (IR) in architecture focused on constructing efficient metadata that is crucial for data retrieval. Generally speaking, metadata is ‘structured data about data’ to describe resources especially in a digital format. In this research, metadata is a sort of data object to be useful in searching spatial information. Metadata is also used to describe raw spatial data object as not only attribute data but also content structurally and semantic ally. There are two issues that motivate this research; 1) what is the spatial information – that materializes the intangible space as a data object, and 2) how we can search the information efficiently – the content-based information retrieval. Although knowledge of a building’s spatial content is most important in architecture, there has been no logical method to manage it.

From the viewpoint of content-based retrieval, the researcher analyzes spatial information of a floor plan, with a focus on the apartment unit floor plan common in Korea. Then the metadata items are extracted in a structured manner. To manage the items efficiently, the researcher develops a data model for spatial information according to the concept of the “Structured Floor Plan”. The main object of content to retrieve is a spatial network that consists of nodes of spaces and their linkages. There are two ways to organize the metadata: the traditional index files and the RDF (Resource Description Framework). While the index files are still efficient with computability, the RDF applies greater options to retrieve, such as fuzzy predicates, semantic predicates, and so on. To exploit the metadata, this research shows several possibilities of query operations that present a set of sample queries about L-DK(Living room – Dining room – Kitchen). Implementation of the prototype system is divided into three parts: 1) a modeling module using Vitruvius; 2) an indexing module using MS SQL Server? 2000 in conjunction XML; and 3) a browsing module using the SpaceScope browser.

The future works may consider XML-based databases and a knowledge based query language, such as RQL/XQL, working on such databases. The more specific domain knowledge is involved, the more practical systems would be. Even in architecture, there may be a diverse range of domain knowledge, such as design, building performance, facility management, energy management, post occupied evaluation, historical research, and so on. Also the issue of interface should be investigated in depth, so that it will be adequate to the needs of the architectural field.

keywords Content-based Information Retrieval; Metadata; RDF; XML; Spatial Information; Apartment Floor Plan; Semantics
series thesis:MSc
email
last changed 2003/04/25 07:27

_id c7e9
authors Maver, T.W.
year 2002
title Predicting the Past, Remembering the Future
source SIGraDi 2002 - [Proceedings of the 6th Iberoamerican Congress of Digital Graphics] Caracas (Venezuela) 27-29 november 2002, pp. 2-3
summary Charlas Magistrales 2There never has been such an exciting moment in time in the extraordinary 30 year history of our subject area, as NOW,when the philosophical theoretical and practical issues of virtuality are taking centre stage.The PastThere have, of course, been other defining moments during these exciting 30 years:• the first algorithms for generating building layouts (circa 1965).• the first use of Computer graphics for building appraisal (circa 1966).• the first integrated package for building performance appraisal (circa 1972).• the first computer generated perspective drawings (circa 1973).• the first robust drafting systems (circa 1975).• the first dynamic energy models (circa 1982).• the first photorealistic colour imaging (circa 1986).• the first animations (circa 1988)• the first multimedia systems (circa 1995), and• the first convincing demonstrations of virtual reality (circa 1996).Whereas the CAAD community has been hugely inventive in the development of ICT applications to building design, it hasbeen woefully remiss in its attempts to evaluate the contribution of those developments to the quality of the built environmentor to the efficiency of the design process. In the absence of any real evidence, one can only conjecture regarding the realbenefits which fall, it is suggested, under the following headings:• Verisimilitude: The extraordinary quality of still and animated images of the formal qualities of the interiors and exteriorsof individual buildings and of whole neighborhoods must surely give great comfort to practitioners and their clients thatwhat is intended, formally, is what will be delivered, i.e. WYSIWYG - what you see is what you get.• Sustainability: The power of «first-principle» models of the dynamic energetic behaviour of buildings in response tochanging diurnal and seasonal conditions has the potential to save millions of dollars and dramatically to reduce thedamaging environmental pollution created by badly designed and managed buildings.• Productivity: CAD is now a multi-billion dollar business which offers design decision support systems which operate,effectively, across continents, time-zones, professions and companies.• Communication: Multi-media technology - cheap to deliver but high in value - is changing the way in which we canexplain and understand the past and, envisage and anticipate the future; virtual past and virtual future!MacromyopiaThe late John Lansdown offered the view, in his wonderfully prophetic way, that ...”the future will be just like the past, onlymore so...”So what can we expect the extraordinary trajectory of our subject area to be?To have any chance of being accurate we have to have an understanding of the phenomenon of macromyopia: thephenomenon exhibitted by society of greatly exaggerating the immediate short-term impact of new technologies (particularlythe information technologies) but, more importantly, seriously underestimating their sustained long-term impacts - socially,economically and intellectually . Examples of flawed predictions regarding the the future application of information technologiesinclude:• The British Government in 1880 declined to support the idea of a national telephonic system, backed by the argumentthat there were sufficient small boys in the countryside to run with messages.• Alexander Bell was modest enough to say that: «I am not boasting or exaggerating but I believe, one day, there will bea telephone in every American city».• Tom Watson, in 1943 said: «I think there is a world market for about 5 computers».• In 1977, Ken Olssop of Digital said: «There is no reason for any individuals to have a computer in their home».The FutureJust as the ascent of woman/man-kind can be attributed to her/his capacity to discover amplifiers of the modest humancapability, so we shall discover how best to exploit our most important amplifier - that of the intellect. The more we know themore we can figure; the more we can figure the more we understand; the more we understand the more we can appraise;the more we can appraise the more we can decide; the more we can decide the more we can act; the more we can act themore we can shape; and the more we can shape, the better the chance that we can leave for future generations a trulysustainable built environment which is fit-for-purpose, cost-beneficial, environmentally friendly and culturally significactCentral to this aspiration will be our understanding of the relationship between real and virtual worlds and how to moveeffortlessly between them. We need to be able to design, from within the virtual world, environments which may be real ormay remain virtual or, perhaps, be part real and part virtual.What is certain is that the next 30 years will be every bit as exciting and challenging as the first 30 years.
series SIGRADI
email
last changed 2016/03/10 09:55

_id 073c
authors Papamichael, Kostas and Pal, Vineeta
year 2002
title Bridging the Gap Between Building Science and Designing Studios
doi https://doi.org/10.52842/conf.caadria.2002.123
source CAADRIA 2002 [Proceedings of the 7th International Conference on Computer Aided Architectural Design Research in Asia / ISBN 983-2473-42-X] Cyberjaya (Malaysia) 18–20 April 2002, pp. 123-130
summary Design studios and building science courses have been conducted independent of each other, mainly due to a lack of tools that allow quick and easy consideration of building science criteria, such as comfort and energy requirements, during the design process. Existing tools are not user-friendly and their use requires significant effort in gaining familiarity with the input requirements, understanding the modeling assumptions and interpreting the output. This paper is about the Building Design Advisor (BDA), an evolving computer-based tool intended to bridge the gap between design studios and building science considerations by addressing the above-mentioned limitations of existing tools. BDA allows automatic preparation of input files to multiple simulation tools while the user is working in a CAD environment. BDA automatically activates the relevant simulation tools when the user selects performance parameters to be computed and provides the results in a graphical form, allowing comparison of multiple design options with respect to multiple performance criteria. The paper includes considerations for the use of the BDA in the design studio and ends with a description of the current development efforts and future plans.
series CAADRIA
email
last changed 2022/06/07 08:00

_id 1992
authors Russell, Peter
year 2002
title Using Higher Level Programming in Interdisciplinary teams as a means of training for Concurrent Engineering
doi https://doi.org/10.52842/conf.ecaade.2002.014
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 14-19
summary The paper explains a didactical method for training students that has been run three times to date. The premise of the course is to combine students from different faculties into interdisciplinary teams. These teams then have a complex problem to resolve within an extremely short time span. In light of recent works from Joy and Kurzweil, the theme Robotics was chosen as an exercise that is timely, interesting and related, but not central to the studies of the various faculties. In groups of 3 to 5, students from faculties of architecture, computer science and mechanical engineering are entrusted to design, build and program a robot which must successfully execute a prescribed set of actions in a competitive atmosphere. The entire course lasts ten days and culminates with the competitive evaluation. The robots must navigate a labyrinth, communicate with on another and be able to cover longer distances with some speed. In order to simplify the resources available to the students, the Lego Mindstorms Robotic syshed backgrounds instaed of synthetic ones. The combination of digitally produced (scanned) sperical images together with the use of HDR open a wide range of new implementation in the field of architecture, especially in combining synthetic elements in existing buildings, e.g. new interior elements in an existing historical museum).ural presentations in the medium of computer animation. These new forms of expression of design thoughts and ideas go beyond mere model making, and move more towards scenemaking and storytelling. The latter represents new methods of expression within computational environments for architects and designers.its boundaries. The project was conducted using the pedagogical framework of the netzentwurf.de; a relatively well established Internet based communication platform. This means that the studio was organised in the „traditional“ structure consisting of an initial 3 day workshop, a face to face midterm review, and a collective final review, held 3,5 months later in the Museum of Communication in Frankfurt am Main, Germany. In teams of 3 (with each student from a different university and a tutor located at a fourth) the students worked over the Internet to produce collaborative design solutions. The groups ended up with designs that spanned a range of solutions between real and virtual architecture. Examples of the student’s work (which is all available online) as well as their working methods are described. It must be said that the energy invested in the studio by the organisers of the virtual campus (as well as the students who took part) was considerably higher than in normal design studios and the paper seeks to look critically at the effort in relation to the outcomes achieved. The range and depth of the student’s work was surprising to many in the project, especially considering the initial hurdles (both social and technological) that had to overcome. The self-referential nature of the theme, the method and the working environment encouraged the students to take a more philosg and programming a winning robot. These differences became apparent early in the sessions and each group had to find ways to communicate their ideas and to collectively develop them by building on the strengths of each team member.
series eCAADe
type normal paper
email
last changed 2022/06/07 07:56

_id cf2011_p060
id cf2011_p060
authors Sheward, Hugo; Eastman Charles
year 2011
title Preliminary Concept Design (PCD) Tools for Laboratory Buildings, Automated Design Optimization and Assessment Embedded in Building Information Modeling (BIM) Tools.
source Computer Aided Architectural Design Futures 2011 [Proceedings of the 14th International Conference on Computer Aided Architectural Design Futures / ISBN 9782874561429] Liege (Belgium) 4-8 July 2011, pp. 451-476.
summary The design of laboratory buildings entails the implementation of a variety of design constraints such as building codes; design guidelines and technical requirements. The application of these requires from designers the derivation of data not explicitly available at early stages of design, at the same time there is no precise methodology to control the consistency, and accuracy of their application. Many of these constraints deal with providing secure environmental conditions for the activities inside laboratories and their repercussions both for the building occupants and population in general, these constraints mandate a strict control over the building’s Mechanical Equipment (MEP), in particular the Heating Ventilating and Air Conditioning (HVAC) system. Due to the importance of these laboratory designers are expected to assess their designs not only according spatial relationships, but also design variables such as HVAC efficiency, air pressure hierarchies, operational costs, and the possible implications of their design decisions in the biological safety of the facility. At this point in time, there are no practical methods for making these assessments, without having constant interaction with HVAC specialists. The assessment of laboratory design variables, particularly those technical in nature, such as dimensioning of ducts or energy consumption are usually performed at late stages of design. They are performed by domain experts using data manually extracted from design information, with the addition of domain specific knowledge, the evaluation is done mostly through manual calculations or building simulations. In traditional practices most expert evaluations are performed once the architectural design have been completed, the turn around of the evaluation might take hours or days depending on the methods used by the engineer, therefore reducing the possibility for design alternatives evaluation. The results of these evaluations will give clues about sizing of the HVAC equipment, and might generate the need for design reformulations, causing higher development costs and time delays. Several efforts in the development of computational tools for automated design evaluation such as wheel chair accessibility (Han, Law, Latombe, Kunz, 2002) security and circulation (Eastman, 2009), and construction codes (ww.Corenet.gov.sg) have demonstrated the capabilities of rule or parameter based building assessment; several computer applications capable of supporting HVAC engineers in system designing for late concept or design development exist, but little has been done to assess the capabilities of computer applications to support laboratory design during architectural Preliminary Concept Design(PCD) (Trcka, Hensen, 2010). Developments in CAD technologies such as Building Information Modeling (BIM) have opened doors to formal explorations in generative design using rule based or parametric modeling [7]. BIM represents buildings as a collection of objects with their own geometry, attributes, and relations. BIM also allows for the definition of objects parametrically including their relation to other model objects. BIM has enabled the development of automated rule based building evaluation (Eastman, 2009). Most of contemporary BIM applications contemplate in their default user interfaces access to design constraints and object attribute manipulations. Some even allow for the application of rules over these. Such capabilities make BIM viable platforms for automation of design data derivation and for the implementation of generative based design assessment. In this paper we analyze the possibilities provided by contemporary BIM for implementing generative based design assessment in laboratory buildings. In this schema, domain specific knowledge is embedded in to the BIM system as to make explicit design metrics that can help designers and engineers to assess the performance of design alternatives. The implementation of generative design assessments during PCD can help designers and engineers to identify design issues early in the process, reducing the number of revisions and reconfigurations in later stages of design. And generally improving design performance.
keywords Heating ventilating and Air Conditioning (HVAC), Building Information Models (BIM), Generative Design Assessment
series CAAD Futures
email
last changed 2012/02/11 19:21

_id 4219
authors Wang, Shengwei and Wang, Jin-Bo
year 2002
title Automatic sensor evaluation in BMS commissioning of building refrigeration systems
source Automation in Construction 11 (1) (2002) pp. 59-73
summary A strategy and software is developed to automatically diagnose and evaluate the Building Management Systems (BMS) sensors of building refrigeration systems during commissioning or periodical check (recommissioning). The strategy is based on the first law of thermodynamics (i.e., heat and mass balance of water networks). The strategy evaluates soft sensor faults (biases) by examining and minimizing the weighted sum of the squares of the concerned mass and/or steady state energy balance residuals represented by the corrected measurements over a period, on the basis of the measurements downloaded from BMS. A Genetic Algorithm is employed to determine the global minimal solution to the multimodal objective function, which can be difficult to achieve by traditional gradient-directed search methods. The sensor bias estimates, the confidence intervals of bias estimates and the comparisons of the balance residuals before and after the correction are generated by the software to provide a convenient and reliable means for the engineers to check and diagnose the measurement devices of BMS. The strategy, the software configuration and examples of application are presented in this paper.
series journal paper
more http://www.elsevier.com/locate/autcon
last changed 2003/05/15 21:23

_id koshak_phd_dissertation
id koshak_phd_dissertation
authors Koshak, N.
year 2002
title OBJECT-ORIENTED DATA MODELING AND WAREHOUSING TO SUPPORT URBAN DESIGN
source Ph.D. Dissertation, School of Architecture, Carnegie Mellon University
summary All over the world, local authorities are moving towards managing and storing urban data in digital form. But the data storage devices used are heterogeneous and typically include relational database management systems (DBMS), GIS and CAD files. As a result, data are present in different locations on different platforms and under different schemas. This poses a problem for software applications meant to support decision-making in urban design that require input from more than one data source. This dissertation demonstrates how data warehousing—combined with object-oriented data modeling—is able to provide a general solution for this problem. Data warehousing is a technique initially developed for business applications, but is equally useful for urban design: The data warehouse constitutes a communication layer between the urban design applications and data sources. It makes the data available through a unified interface that hides the sources themselves and represents that data in terms of a general-purpose, preferably object-oriented, model. The dissertation also describes an implementation prototype of the data model and the data warehouse. The test case of this research is the city of Makkah in Saudi Arabia, which faces significant urban design and planning issues in connection with the pilgrimage (Hajj) that brings millions of visitors to the city every year.
series thesis:PhD
type normal paper
email
last changed 2005/09/09 13:10

_id ddssup0209
id ddssup0209
authors Koshak, Nabeel and Flemming, Ulrich
year 2002
title Object-Oriented Data Modeling and Warehousing to Support Urban Design
source Timmermans, Harry (Ed.), Sixth Design and Decision Support Systems in Architecture and Urban Planning - Part two: Urban Planning Proceedings Avegoor, the Netherlands), 2002
summary All over the world, local authorities are moving towards managing and storing urban data in digital form. But the data storage devices used are heterogeneous and typically include relational database managementsystems (DBMS), GIS and CAD files. As a result, data are present in different locations on different platforms and under different schemas. This poses a problem for software applications meant to supportdecision-making in urban design that require input from more than one data source. We demonstrate in our paper how data warehousing—combined with object-oriented data modeling—is able to provide a general solution for this problem. Data warehousing is a technique initially developed for businessapplications, but is equally useful for urban design: The data warehouse constitutes a communication layer between the urban design applications and data sources. It makes the data available through a unified interface that hides the sources themselves and represents that data in terms of a general-purpose, preferably object-oriented, model. We also describe an implementation prototype that supports different applications. The City of Makkah in Saudi Arabia provides us with real-world data and a context to test our prototype.
series DDSS
last changed 2003/08/07 16:36

_id 6fbc
authors Tunçer, Bige, Stouffs, Rudi and Sariyildiz, Sevil
year 2002
title Cooperating on Architectural Analyses
doi https://doi.org/10.52842/conf.ecaade.2002.020
source Connecting the Real and the Virtual - design e-ducation [20th eCAADe Conference Proceedings / ISBN 0-9541183-0-8] Warsaw (Poland) 18-20 September 2002, pp. 20-27
summary As part of a fourth semester architectural design studio, students perform an analysis of selected precedents according to various criteria. For this purpose, they are provided with a web-based environment for the storage and management of their analyses. In this way, , and By integrating the analysis results into a common, extensible, library, the students are able to benefit from a collaboration with peers, and draw upon each others’ results for comparisons and relationships between different design aspects or buildings. In order to support this integration and strengthen the collaboration, we are developing organization and presentation tools that are integrated within the webbased environment. In this paper, we describe the context as provided by the design studio course, reflect on the advantages of a web-based repository for managing design and analysis information, describe the techniques we are developing to improve this process, and present the implementation of the resulting tools within the web-based environment.
series eCAADe
email
last changed 2022/06/07 07:57

No more hits.

HOMELOGIN (you are user _anon_59177 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002